The aim of this work was to study the metabolic fate of 4-hydroxy- trans-2-nonenal (HNE) in human plasma, which represents the main vascular site of reactive carbonyl species (RCS) formation and where the main pro-atherogenic target proteins are formed. When HNE was spiked in human plasma, it rapidly disappeared (within 40 s) and no phase I metabolites were detected, suggesting that the main fate of HNE is due to an adduction mechanism. HNE consumption was then monitored in two plasma fractions: low molecular weight plasma protein fractions (<10 kDa; LMWF) and high molecular weight plasma protein fractions (>10 kDa; HMWF). HNE was almost stable in LMWF, while in HMWF it was consumed by almost 70% within 5 min. Proteomics identified albumin (HSA) as the main protein target, as further confirmed by a significantly reduced HNE quenching of dealbuminated plasma. LC-ESI-MS/MS analysis identified Cys34 and Lys199 as the most reactive adduction sites of HSA, through the formation of a Michael and Schiff base adducts, respectively. The rate constant of HNE trapping by albumin was 50.61 +/- 1.89 M (-1) s (-1) and that of Cys34 (29.37 M (-1) s (-1)) was 1 order of magnitude higher with respect to that of GSH (3.81 +/- 0.17 M (-1) s (-1)), as explained by molecular modeling studies. In conclusion, we suggest that albumin, through nucleophilic residues, and in particular Cys34, can act as an endogenous detoxifying agent of circulating RCS

Albumin is the main nucleophilic target of human plasma : a protective role against pro-atherogenic electrophilic reactive carbonyl species? / G. Aldini, G. Vistoli, L. Regazzoni, L. Gamberoni, R. Maffei Facino, S. Yamaguchi, K. Uchida , M. Carini. - In: CHEMICAL RESEARCH IN TOXICOLOGY. - ISSN 0893-228X. - 21:4(2008), pp. 824-835.

Albumin is the main nucleophilic target of human plasma : a protective role against pro-atherogenic electrophilic reactive carbonyl species?

G. Aldini
Primo
;
G. Vistoli
Secondo
;
L. Regazzoni;L. Gamberoni;R. Maffei Facino;M. Carini
Ultimo
2008

Abstract

The aim of this work was to study the metabolic fate of 4-hydroxy- trans-2-nonenal (HNE) in human plasma, which represents the main vascular site of reactive carbonyl species (RCS) formation and where the main pro-atherogenic target proteins are formed. When HNE was spiked in human plasma, it rapidly disappeared (within 40 s) and no phase I metabolites were detected, suggesting that the main fate of HNE is due to an adduction mechanism. HNE consumption was then monitored in two plasma fractions: low molecular weight plasma protein fractions (<10 kDa; LMWF) and high molecular weight plasma protein fractions (>10 kDa; HMWF). HNE was almost stable in LMWF, while in HMWF it was consumed by almost 70% within 5 min. Proteomics identified albumin (HSA) as the main protein target, as further confirmed by a significantly reduced HNE quenching of dealbuminated plasma. LC-ESI-MS/MS analysis identified Cys34 and Lys199 as the most reactive adduction sites of HSA, through the formation of a Michael and Schiff base adducts, respectively. The rate constant of HNE trapping by albumin was 50.61 +/- 1.89 M (-1) s (-1) and that of Cys34 (29.37 M (-1) s (-1)) was 1 order of magnitude higher with respect to that of GSH (3.81 +/- 0.17 M (-1) s (-1)), as explained by molecular modeling studies. In conclusion, we suggest that albumin, through nucleophilic residues, and in particular Cys34, can act as an endogenous detoxifying agent of circulating RCS
Settore CHIM/08 - Chimica Farmaceutica
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/62196
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 82
social impact