Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures.

Influences on the thermal efficiency of energy piles / F. Cecinato, F. Loveridge. - In: ENERGY. - ISSN 0360-5442. - 82(2015), pp. 1021-1033. [10.1016/j.energy.2015.02.001]

Influences on the thermal efficiency of energy piles

F. Cecinato
Primo
;
2015

Abstract

Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures.
Energy piles; Geothermal; Thermal efficiency; Thermal response test; Numerical modelling; Convection-diffusion
Settore ICAR/07 - Geotecnica
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
EGY_pre_print.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri
1-s2.0-S0360544215001504-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/616261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 110
social impact