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Abstract 

Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy 

efficiency has so far seen little research. In this work, a finite element numerical model is developed for the 

accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in 

geothermal structures. The model is validated by reproducing both the outcome of a thermal response test 

carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the 

model is employed to carry out a parametric analysis to identify the key factors in maximising the pile 

energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can 

be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. 

The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also 

discussed in light of their energetic implications. Counter to engineering intuition, the fluid flow rate does 

not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model 

presented in this paper can be easily adapted to the detailed study of other types of geothermal structures. 

 

Keywords: Energy piles, geothermal, thermal efficiency, thermal response test, numerical modelling, 

convection-diffusion.   

 

1. Introduction 

Increased use of renewable energy is required in the coming decades to contribute to a reduction in global 

energy use and also a reduction in carbon dioxide emissions.  Ground source heat pump systems will make 

an important contribution to renewable energy as they lead to both energy efficiencies in buildings and are 

compatible with moving away from fossil fuels as lower carbon sources of electricity become available.  

However, ground source heat pump systems have a high up front capital cost meaning there is a payback 

period of several years before the building owner sees the benefit of the energy efficiencies of the system.  
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Consequently, any means to either reduce the capital cost of systems and/or increase their efficiency will 

be timely.  

All ground source heat pump schemes comprise a series of ground heat exchangers forming a primary 

circuit and a building heating system forming the secondary circuit. As well as the heat pumps themselves, 

construction of the ground heat exchangers, where pipes must be cast into the ground, are also a 

significant capital cost.  One way to reduce this cost, and also save on embodied energy, is to use the piled 

foundations of new buildings as the ground heat exchangers (e.g Wood et al, 2010), so called energy piles.  

This removes the requirement to make expensive special purpose excavations. In addition, the larger 

diameter of energy piles tends to mean they can be expected to have a greater energy capacity per drilled 

metre than other types of ground heat exchanger, such as boreholes (Bozis et al, 2011). While borehole 

heat exchangers have been in use and the subject of research for decades (e.g Spitler, 2005), energy piles 

are only now becoming more common (e.g Amis & Loveridge, 2014). Consequently, the energy efficiency of 

piles used as ground heat exchangers has seen little research compared to other types of ground heat 

exchangers.  

In fact, much energy pile design is currently carried out using methods developed for borehole ground heat 

exchangers.  In such cases it is usually beneficial to install two rather than one U-loops of heat transfer 

pipes and to separate the up and down legs of the U-loops with spacers to prevent thermal interactions 

(e.g Banks, 2012).  With energy piles there is the scope for inclusions of many more pipes within the pile 

cross section, but little available guidance as to optimum spacing or arrangements. It is factors like these, 

along with pile size, thermal properties and heat transfer fluid flow rate that will influence the thermal 

behaviour and ultimately the energy efficiency of the pile. While some studies of these factors exist, there 

is currently no overarching framework to help engineers make design decisions. 

2. Background 

Initial studies into energy piles were carried out by Brandl (2006). For smaller diameter energy piles he 

characterised thermal output in terms of Watts per metre length of the pile, but used Watts per square 



metre for larger diameter piles (≥ 600mm) reflecting the expected beneficial effects of larger surface areas 

of bigger piles.  The internal thermal aspects of energy piles are often taken into account by a lumped 

parameter known as thermal resistance. A low thermal resistance means more efficient thermal transfer to 

the surrounding ground.  As thermal resistance encompasses both geometry and material property effects, 

it is convenient in many respects, but can mask which of these parameters is most important.  Guidance for 

determining pile thermal resistance can be found in SIA (2005) and Loveridge & Powrie (2014).  The former 

publication suggests that larger diameter piles are only more efficient if the opportunity to install more 

pipes is taken. The latter contains a more detailed study showing the importance of the pile concrete 

thermal properties and the position of the pipes within the pile. However, the study is limited to two 

dimensions and therefore does not include the influence of pipe flow condition and the potential for pipe-

to-pipe interactions.  

Gao et al (2008) investigated experimentally the importance of the number of heat transfer pipes and their 

connections.  Parallel U-loops were seen to be slightly more efficient than series U-loops and the study also 

confirmed the potential for greater heat transfer with more pipes and faster fluid flow conditions.  It has 

also been shown that the flow conditions are of greater relative importance when there are only few pipes 

(Bozis et al, 2011). Recently there has also been interest in the potential for greater energy efficiency from 

using spiral coil type heat transfer pipes rather than vertical pipes installed as U-loops (e.g Park et al, 2012, 

Zarella et al, 2013). However, practically spiral coils are rarely installed as they are limited to use in 

scenarios where the pile reinforcement cage, to which the coils must be fixed, is installed in one piece.  

To investigate further how the design of energy piles can be adjusted to increase their energy efficiency this 

paper presents a numerical sensitivity study covering the key factors that will control the pile thermal 

behaviour: pile diameter and length, concrete cover, concrete thermal conductivity, number and diameter 

of installed pipes, fluid flow velocity. Numerical methods are common in ground heat exchanger research 

(e.g Fan et al, 2008, Zanchini et al, 2012) and allow consideration of many more configurations that can be 

addressed in practical experiments.  However, most models are produced to consider specific case studies 

(e.g Knellwolf et al, 2011, Dupray et al., 2014, Sinnathamby, 2014) and do not take the opportunity to study 



the important general problem of optimisation guidance for designers. Distinct from previous work this 

study allows the relative importance of the design key parameters to be compared so that practical 

recommendations can be made regarding where designers should focus their efforts to increase the energy 

efficiency of their energy piles scheme. The results of the analysis therefore allows development of an 

overarching  framework for efficient thermal design of energy piles. For simplicity, this study is limited to 

rotary bored piles with vertical pipes (or U-loops) installed as this is the most common approach globally 

for equipping energy piles. 

3. Model description 

3.1 Theoretical background 

The proposed numerical model aims at realistically reproducing the main processes behind the heat 

transfer phenomenon, taking place in geothermal structures. In this case it is applied to energy piles, but 

would be equally applicable to other energy geo-structures. Three principal components of a geothermal 

system are identified as the heat exchanger fluid within the pipes, the grout/concrete filling the space 

between the pipes and the ground, and the soil/rock surrounding the heat exchanger. The corresponding 

three main heat transfer mechanisms are thermal convection between the fluid and the pipe wall, thermal 

conduction in the grout/concrete, and thermal conduction in the ground. 

The above depicted situation provides a simplified representation of reality where additional thermal 

phenomena may occur, such as thermal radiation at the soil surface and convective heat transfer in the 

pore water, when the groundwater is flowing. While the role of radiant heat exchange is generally deemed 

to be negligible in all but the coarsest of soils (Rees et al, 2000, Fillion et al, 2011), the potential importance 

of groundwater convection makes the model realistically applicable to cases of low-permeability, or dry, 

soils or rocks. However, if the groundwater at a specific site is known to be in static conditions, the model 

can be also applied to high-permeability water-saturated geologic materials. 

A general form of the convection-diffusion equation that applies to the heat exchanger fluid, neglecting the 

contribution of friction heat dissipated by viscous shear, is 



  T D T v T S       (1) 

Where T  the temperature, D  the fluid thermal diffusivity, v  the fluid velocity and S  the temperature sink 

term. The first term on the left hand side of Equation (1) represents the time rate of change of 

temperature, the second term represents heat diffusion in the circulating fluid along the pipe, and the third 

term is linked to the convective spatial temperature change due to fluid circulation. The sink term 

represents the convective heat transfer between the fluid and the pipe wall. 

By introducing the standard expressions of diffusivity and convective heat transfer, Equation (1) can be 

expressed in terms of heat flux quantities, as 

  f pf f pf
c T T mc T h T         (2) 

Where f
 and 

pf
c  the fluid density and specific heat capacity, 

f
  the fluid thermal conductivity, m vA  

the mass flow rate, A the pipe cross-sectional area, h the ‘film’ (or convective heat transfer) coefficient, and 

 s f
T T T    the temperature difference between the solid interface (pipe wall) and the fluid. 

Equation (2) can be simplified for the purposes of our analysis, by assuming that (i) convection due to fluid 

flow occurs as a quasi-static phenomenon, and (ii) conductive heat transfer along the flow direction can be 

neglected compared to both the radial heat transfer at the fluid/pipe wall interface and the convective 

transfer. 

The above simplifying hypotheses correspond to neglecting the first two terms of Equation (2), and were 

shown to yield accurate results for the purposes of vertical ground heat exchangers simulation (Choi et al. 

2011). It should be remarked that ignoring the first term of Equation (2) implies neglecting temperature 

variations due to the temperature front propagating along with fluid flow. This may lead to inaccurate 

modelling of the very early stage of circulation, if a sharp temperature discontinuity is imposed at the inlet 

pipe, limited to the time span required for the temperature front to reach the outlet (of the order of a few 

seconds to a few minutes, depending on the flowrate and circuit length). This approximation is acceptable 

since the typical time span of interest for our simulations is several order of magnitudes larger (a few days). 



Furthermore, as shown in Section 4, the simulation results obtained with this assumption can accurately 

reproduce temperature field measurements for the full operating time range. 

The heat transfer through the pipe wall, concrete/grout and the ground is governed by standard transient 

heat conduction, derived from Equation (1) as 

  s ps s
c T T      (3) 

 where 
s

 , 
ps

c  and 
s

  are respectively the density, specific heat capacity and thermal conductivity of the 

considered solid material. 

3.2 Numerical implementation 

The above outlined transient heat convection-diffusion problem applied to energy piles was solved by 

resorting to the Finite Element Method. The model was implemented following a similar procedure to that 

outlined by Choi et al. (2011), employing software ABAQUS to integrate 3D transient conduction through 

the solids (Equation (3)), complemented by writing bespoke user subroutines to model the convective heat 

transfer at the fluid/solid interface and the temperature changes in the fluid along the pipe. This 

corresponds to solving, at a given time step, at each node k along the pipe circuit a simplified and 

discretised version of Equation (2): 

 
 

,
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    (4) 

where  , 1flow k k k
T T T


    the temperature difference between node k and the node preceding k in the 

fluid flow direction, 
e

h  an equivalent film coefficient to include the effect of conduction through the pipe 

wall, S  the lateral pipe surface and 
s

T  the temperature of concrete adjacent to the pipe.  

Bespoke Fortran coding was incorporated into user subroutine FILM to specify, at each node representing 

the pipe-ground interface, the fluid temperature 
f

T  and the equivalent film coefficient 
e

h . User 

subroutine URDFIL was used to access the ABAQUS internal results file, create additional support files to 



describe the fluid circulation in the U-loops and perform the necessary calculations to solve Equation (4), 

deducing the fluid temperature 
k

T  at all nodes along the pipe at each calculation time step. 

The above outlined procedure results in a calculation scheme that performs at each time step, alongside 

the standard ABAQUS calculation of heat diffusion in the concrete/ground , the necessary convection 

computations in the following semi-coupled way: (1) calculation via subroutine FILM, at each pipe segment, 

of the radial heat flux as  i ei si fi i
q h T T S   (where 

i
S  the lateral surface of the i-th pipe segment); (2) 

calculation via subroutine URDFIL, at each pipe node, of the fluid temperature change as 

 1k k i l pf
T T q S mc


  . 

To minimise computational time, yet controlling the element aspect ratio and node spacing at key locations 

to warrant accuracy of heat exchange calculations, the 3D FE mesh was created via manual input in an 

axisymmetric fashion, consisting of 6-node linear triangular prism and 8-node linear brick diffusive heat 

transfer elements (Figure 1). The spacing of the nodes representing the ground was progressively increased 

towards the outer boundary, while the mesh was refined in the exchanger pipe and surrounding pile areas. 

The size of the domain was chosen by numerical experimentation to be much larger than the area actually 

affected by heat transfer, for the time range explored in this study. 

Despite the fluid temperature change being calculated with an explicit procedure (Equation (4)), numerical 

experimentation showed that fairly large integration time steps t  can be adopted (the standard setting 

for all simulations described below is t =5 min), except for cases where the pipe circuit (constituted by 

several U-pipes connected in series) is particularly long, the flowrate is low and there is a sharp difference 

between initial ground and inlet fluid temperature.  In these cases, the integration time step is reduced 

during the first 30-60 min of simulation to minimise numerical instabilities (e.g., for run 5 shown in Table 5  

below, t  was gradually incremented from 0.5 min to 5 min during the first 50 min of simulation). 

A single energy pile was represented in the mesh, with the possibility of selecting the position and number 

of embedded pipes, as well as the type of hydraulic connection between the loops (in series or in parallel). 

Significant calculation time can be spared exploiting the symmetry of the problem, i.e. only one half of the 



domain can be considered, as shown in Figure 1a. This is possible whenever (i) a single U-pipe loop is 

installed, or (ii) multiple U-loops connected in parallel are installed, provided that the number of loops is 

even (i.e. the total number of pipes in the cross section is a multiple of 4). The complete domain must be 

considered whenever several U-loops are connected in series. 

As boundary conditions, the inlet fluid temperature is prescribed with the relevant time history via 

subroutine URDFIL. Natural boundary conditions are adopted for the outer domain bounds. As initial 

conditions, no heat flux and a unique equilibrium temperature for both the fluid and the concrete/ground 

are set.  

 

4. Model validation 

4.1 Reproduction of TRT field data 

The proposed numerical model was tested by reproducing a multi-stage thermal response test (TRT) carried 

out in London on a 300mm diameter, 26.8m length test pile (Loveridge et al. 2014). The pile was equipped 

with a single U-loop, 32mm diameter pipe and was installed through water-saturated, firm to stiff London 

Clay. During the test the fluid volumetric flowrate and inlet and outlet temperatures were measured at five 

minute intervals using an electromagnetic flow meter and Iron-Constantan (J type) thermocouples 

respectively. The flow meter has an accuracy of approximately 1% at the flow rates used and a repeatability 

of ±0.2%. Calibration of the thermocouples prior to the test showed accuracy within 0.2oC.  In addition to 

the fluid measurements, temperatures within the pile concrete were measured at four depths by 

thermistors associated with vibrating wire strains gauges placed within the pile to help understand the 

mechanical behaviour of the pile. Temperature measurements from such devices tend to be accurate to 

around 0.5oC. The test started with an initial isothermal circulation (stage 1) and then comprised different 

stages where a heat injection test (stage 2) and recovery period (stage 3) was followed by a heat extraction 

test (stage 4) and recovery period (stage 5) (Figure 2). 

 



 

 

Figure 1. Example of 3D FE mesh for one energy pile with a single U-pipe, with sample calculated temperature contours. (a) view of 
the pile top; (b) longitudinal section, pile base zone. Only a half of the domain is considered  for symmetry reasons (the symmetry 
plane cuts through the two exchanger pipes). 

 

The TRT geometry, including the pipe spacing, was reproduced in detail in the numerical model, referring to 

half of the domain for symmetry reasons. The physical and thermal properties of the materials involved 

were taken, wherever possible, from published data (Loveridge et al. 2014, Choi et al. 2011). As an 

example, the concrete density was set as the average of measured values on tested concrete cubes, 

c
  =2210 kg/m3 and the soil density was set to 

g
  =1900 kg/m3 as a reasonable value for firm to stiff 

London Clay (e.g. see Bell, 2000). 

a) 

b) 



Particular attention was given to the choice of fundamental parameters regulating transient heat diffusion, 

namely 
c

 ,
g

 , thermal conductivities, and pc
c , 

pg
c , specific heat capacities, of concrete and the ground 

respectively. Of the two properties, specific heat capacity is rarely considered in practical geothermal 

studies, as it is peculiar to transient analyses only, while thermal conductivity is frequently measured in the 

field, since it features in the simplified analytical or empirical steady-state formulae that are routinely used 

to interpret thermal response tests. For a first-attempt simulation, thermal properties of the concrete (or 

grout) constituting the solid body of the pile were chosen after Choi et al. (2011) as 
c

 =2.8 W/mK and 

pc
c  = 1050 J/kgK. The specific heat capacity of the ground was deduced, assuming the clay to be fully 

saturated, as   1
pg pw ps

c nc n c   , where n =0.3 a reasonable value of porosity, pw
c =4200 J/kgK the 

specific heat capacity of water at ambient temperature and ps
c =800 J/kgK the specific heat capacity of soil 

particles. The soil thermal conductivity, that generally varies depending upon soil type and saturation, was 

set to 
g

 =2.3 W/mK, as obtained by interpreting TRT stages 2 and 3 by means of empirical G-functions 

(Loveridge et al. 2014).  

A complete list of parameters adopted for all materials involved in the simulation is reported in Table 1. 

 

 

Figure 2. Inlet and outlet fluid temperature and input power versus time for stages 2-5 of the London TRT. 



Table 1.. List of parameters adopted for all materials involved in the verification simulation. 

Materials Parameters Values Units 

Water/circulating fluid 

Density 1000 kg/m3 

Kinematic viscosity 1.00E-06 m2/s 

Specific heat capacity 4200 J/(kg K) 

Mass flowrate 0.108 kg/s 

Thermal conductivity 0.6 W/mK 

Prandtl number 7   

Concrete 

Density 2210 kg/m3 

Specific heat capacity 1050 J/(kg K) 

Thermal conductivity 2.8 W/mK 

PE (pipe material) Thermal conductivity 0.385 W/mK 

Soil 

Density 1900 kg/m3 

Specific heat capacity 1820 J/(kg K) 

Thermal conductivity 2.3 W/mK 

 

As an initial condition, the equilibrium temperature for all materials was set to 17.4°C, corresponding to the 

isothermal circulation stage 1 of the test. As a boundary condition, the measured inlet fluid temperature 

history (Figure 2) was imposed at the first node of the U-pipe throughout the simulation time (equal to 

about two weeks for stages 2 through 5). 

The simulation results in terms of predicted outlet fluid temperature, compared to the corresponding 

measured values, are presented in Figure 3 for TRT stages 2 through 5. It can be observed that the 

numerical simulation effectively reproduce the field measurements for all stages of the TRT. 

To further evaluate the accuracy of the simulation, the root mean square error (RMSE) of the residuals was 

calculated, resulting in RMSE2-5=0.6586 for stages 2-5, and RMSE2-3=0.2308, RMSE4-5=0.8653 considering 

stages 2-3 and stages 4-5 respectively. It can be inferred that a somewhat better fit of experimental data is 

achieved for the first two test stages compared to the second two. This outcome is in line with the findings 

of Loveridge et al (2014), who used analytical and empirical methods to match the TRT output and estimate 



the ground thermal conductivity, obtaining slightly different back-calculated values of 
g

  for the different 

test stages. 

 

 

Figure 3. Predicted outlet fluid temperature (solid line) compared to measured outlet fluid temperature (dashed line) for TRT stages 
2 through 5. 

 

One of the reasons for the above mentioned reduction of fit as the test progresses is the documented 

presence, during stage 5, of unexpected spikes in the inlet measured temperature history (Figure 2). While 

such spikes were not detected in the outlet temperature measurements (Figure 2), they did have a 

noticeable influence in the simulated values of section 5 (Figure 3).  

To compare our numerical results with those obtained from empirical methods, RMSEs were also 

calculated considering the ‘average fluid temperature’ (computed as the average between the measured 

inlet and simulated outlet temperature), resulting in an improved fit: RMSEAVG,2-5=0.3293 for stages 2-5, and 

RMSE AVG,2-3=0.1154, RMSE AVG,4-5=0.4326 for stages 2-3 and stages 4-5 respectively. These values compare 

favourably with the corresponding RMSE values obtained by the variable power parameter estimation 
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presented by Loveridge et al. (2014), suggesting the better accuracy of prediction of a numerical method 

that accounts for transient diffusion compared to simpler steady-state methods. 

To further explore the capabilities of the numerical model, simulated temperature history data from the 

concrete area were also extracted at selected points along the pile, for direct comparison with available 

vibrating wire strain gauge (VWSG) temperature measurements during the TRT. Couples of VWSG sensors 

had been placed at four depth locations, immersed in the concrete and positioned in a symmetric fashion 

with respect to the pile axis. The sensor position within the pile cross-section view corresponded to a radial 

distance from the pile centre of 30mm, and an angular distance from the pipes location of about 90° (Figure 

4). The availability of reliable VWSG measurements was limited to TRT stage 4 at the time of writing. The 

rational spacing of the FE 3D mesh allowed accurate selection of the nodes corresponding to the 

measurement points. A comparison of simulated versus measured concrete temperature at the sample 

locations of 13.8 m and 23.8 m of depth, during test stage 4, are shown in Figure 5 and Figure 6 

respectively. It can be observed that also in this case, numerical predictions can adequately reproduce field 

measurements. Overall, the agreement between the two curves is less accurate than in the case of fluid 

temperature. A reason for this might be related to any uncertainty in the precise position of the sensors in 

an environment when there can be steep temperature gradients. 

 

 

Figure 4. Schematic of test pile cross-section in the FE model with details about the location of inlet and outlet pipes and VWSG 
sensors. 



 

Figure 5. Comparison of simulated versus measured concrete temperature change history at the sample location of 13.8 m of depth, 
during test stage 4. 

 

 

Figure 6. Comparison of simulated versus measured concrete temperature change history at the sample location of 23.8 m of depth, 
during test stage 4. 

 



4.2 Comparison with analytical model results 

As an additional validation step, the performance of the proposed numerical model was compared to 

calculations obtained using the infinite line heat source analytical solution. 

The analytical solution can be employed to calculate the temperature change in the ground 
g

T  over time 

t by assuming an infinite line heat source of constant power q per unit depth, as follows (Carlslaw and 

Jaeger 1959): 

 
2

4

4
g

u

g

g r
t

q e
T du

u




 

     (5) 

where gand g are the ground thermal conductivity and diffusivity respectively and r  is the radial 

coordinate. 

The numerical code was modified to accommodate the simplifications of the analytical approach. First, the 

inlet fluid temperature boundary condition was modified. In real TRT tests, although the applied power is 

nominally constant during each stage of the test, there are actually significant fluctuations with time 

around the nominal value (e.g. see Figure 2). Hence, instead of using the TRT inlet temperature history, a 

synthetic inlet temperature history was dynamically generated during the numerical simulation by means 

of feedback control, ensuring the maintenance of a constant q=85.9 W/m, corresponding to the actual 

average power applied during stage 2 of the above described TRT. Further, as Equation (5) cannot 

distinguish between different material properties, the same values of density, thermal conductivity and 

specific heat capacity were chosen in the numerical code for both concrete and the ground. Finally, to 

obtain representative values from our 3D output that could be compared to the 1D response of the 

analytical solution, at any given radius r the average temperature was computed both around the 

circumference (considering horizontal sections of the 3D domain) and along the pile depth. As can be seen 

as an example from the temperature contours shown in Figure 1, the temperature field is in fact neither 

uniform around the pile nor along the pile, hence extracting an average value constitutes a strong 

simplification of the numerical simulation results.  



The list of material and geometric parameters used in both types of simulations is reported in Table 2, while 

the remaining parameters necessary for the numerical simulation are the same as in Table 1.  As an 

example, in Figure 7 the simulated ground temperature vs time (in log scale) at r=0.3 m and r=0.45 m is 

reported for both the numerical and analytical models. Remarkably good agreement between the two 

types of curves can be observed at both locations. A comparatively better agreement is obtained at farther 

distance from the domain centre, since at smaller values of r the numerical results are realistically more 

influenced by the inhomogeneity of temperature field due to the closeness of the two branches of U-pipe 

(located at r=0.065, Figure 4). It can be seen that the two types of simulations are most similar in the early-

mid range of time, while they tend to diverge at both very early and late times. This is most likely due to the 

well-known inability of the analytical solution to capture on the one hand initial transient effects, on the 

other hand three-dimensional effects (Loveridge and Powrie 2013), causing some underestimation of the 

initial temperature change and overestimation of the long-term temperature change. 

Table 2. Material and geometric parameters used in both numerical and analytical simulations, for comparison between the 
transient numerical model and the infinite line source solution. 

Parameters Values Units 

Density 1900 kg/m3 

Specific heat capacity 2100 J/(kg K) 

Thermal conductivity 2.5 W/mK 

Heat flux/unit length 85.9 W/mK 

 

5. Model application: parameters governing energy efficiency 

The 3D numerical model presented above has been shown to provide realistic interpretation of the key 

aspects related to heat transfer in energy piles. While the significant computational expense (tens of 

minutes to a few hours with an ordinary laptop) makes the model unsuitable for quick practical design or 

routine TRT interpretation, it can be fruitfully employed to identify the most important design parameters 

in maximising energy efficiency. This is done through a number of simulations where each relevant physical 

or geometrical property of the energy pile is independently varied within realistic ranges. 



The energetic efficiency of a geothermal installation can be assessed by looking at the total exchanged 

energy in a given time. A total simulation time of 4 days was set for all simulations, which could be typical 

of a larger diameter pile TRT, long enough to explore the bulk of the transient behaviour in most cases, yet 

short enough to save computational time. The total exchanged power q  can be calculated from each 

simulation as 

      pf in out
q t mc T t T t      (6) 

where  in
T t  the design inlet temperature history and  out

T t  the simulated outlet temperature history. 

The inlet temperature can be set as constant over time, after a short (5 min) initial ramp to avoid possible 

numerical problems due to the abrupt temperature change. A typical (initial) temperature difference 

between exchanger fluid and the ground has been set to 8 °C; hence, considering an undisturbed ground 

temperature of 12 °C (averagely representative of central Europe) a constant temperature of 20°C is set for 

our simulations. This represents the increasing importance of heat rejection to the ground for cooling 

buildings. The output variable representing energy efficiency is then computed as 

  
0

ft

tot
E q t dt    (7) 

where 
f

t =5760 min the total simulation time. 

Among all model parameters, the ones that are potentially easier to engineer are chosen for the parametric 

study: the pile diameter 
pile

D , the U-pipe external diameter 
pipe

d , the number of pipes in the cross-section 

p
n  (Figure 8), the fluid velocity v, the pile length L (reflecting also the pipe circuit length, as the U-pipes are 

extended until the pile base), the concrete thermal conductivity 
c

  and the concrete cover c (i.e. the 

distance from the pipe edge to the pile edge, as pipes are attached to the reinforcement cage, see Figure 

8). Model parameters that do not exhibit a high variability, cannot be engineered or are not expected to 

influence the results with their variation, are kept constant in the parametric study, and are assigned 

average values (Table 3). The ground thermal conductivity is set to 2 W/mK, which could be considered a 



mid-range value for geomaterials (Banks, 2012). The ground specific heat is set to 1600 J/kgK, which could 

be considered more typical of soils than the values used for the case study, as it implies a volumetric heat 

capacity of 3 MJ/m3K (Clarke et al. 2008). As the ground properties cannot be controlled at any given site 

this parameter was not part of the sensitivity analysis. However, potentially the concrete properties can be 

controlled to some extent, and it is known that the ratio of the soil and concrete thermal properties can be 

important (Loveridge & Powrie, 2014).  

All simulations are set to reproduce a situation of pipes connected in series, as this is the most common 

design option in practice. The concrete and the ground are assumed to be fully water-saturated. 

 

 

Figure 7. Simulated ground temperature change for both numerical and analytical simulations at distances from the domain centre 
of r=30 cm and r=45 cm. 
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Figure 8. Schematic of pile geometrical parameters that were chosen for the parametric study. 

 

Table 3.. Model parameter values that are kept constant in the parametric study. 

Parameters Values Units 

Soil th. Conductivity 2 W/mK 

Initial soil temperature 12 °C 

Ground spec. Heat 1600 J/(kg K) 

Concrete spec. Heat 1000 J/(kg K) 

Soil density 1900 kg/m3 

Concrete density 2210 kg/m3 

 

5.1 Choice of parameter range 

After selecting the variables to be examined in the parametric analysis, realistic ranges for them must be 

established. With the aim of assessing the relative importance of the different properties, it is appropriate 

to select upper and lower bounds that are not extreme, but representative of typical installations. This 

ensures the compatibility between the different configurations and avoids parameter interactions that may 

alter the analysis outcome. We therefore consider 500 1000
pile

D  mm, 20 30
pipe

d  mm, and 

2 6
p

n   to ensure compatibility with the defined cross-section geometries. A range for fluid velocity of 

0.4 1.2v   m/s is chosen to warrant turbulent flow (Reynolds number Re>8000) whilst not becoming 

unrealistically large. Pile length is assigned the range 15 25L  m, which is considered to provide a 



realistic range of length to diameter ratios (15 to 50).  Saturated concrete thermal conductivity is taken in 

the range 1.5 3
c

   W/mK, in line with literature findings (e.g. Neville 1995). Finally, since this study is 

concentrated on rotary bored piles, concrete cover range is limited to 50 75c   mm. Hence, the present 

analysis is not relevant to Continuous Flight Auger (CFA) piles, where the U-pipes are typically installed 

separately from the reinforcement, closer to the pile centre (i.e. with much larger c) to allow full-length 

installation of heat exchangers. 

5.2 Parametric analysis design 

The aim of the parametric analysis is to run one simulation for each possible combination of the selected 

parameters, and analyse the results to determine which factors are most influential in maximising the energy 

efficiency. The set of values (levels) that each parameter can assume must be defined. For a general, time-

efficient analysis, it is sufficient to select two levels for each parameter, namely the upper-bound and the 

lower-bound values. This choice is justified by the likelihood that the parameters investigated will have a 

more quantifiable effect in the results when they are set to an extreme value. The seven parameters 

discussed above are summarised in Table 4, along with the two selected levels. 

 

Table 4. Selected levels of parameters featuring in the parametric analysis.  

 Parameter 
Lower 
bound 

Upper 
bound Units 

1 Pile diameter 500 1000 mm 

2 Pipe diameter 20 30 mm 

3 No. of pipes 2 6   

4 Fluid velocity 0.2 1.2 m/s 

5 Pile length 15 25 m 

6 
Concrete thermal 

Conductivity 1.5 3 W/mK 

7 Concrete cover 50 75 mm 

 

The parametric study was set up using the concepts of Experimental Design, a branch of Engineering Statistics 

that deals with deliberately changing one or more variables (the selected parameters) in a process (the 

simulation of geothermal operation), in order to observe the effect that the changes have on a response 



variable (the calculated total exchanged energy). Among the available types of experimental design, the one 

that was found to best suit the problem at hand due to its robustness, simplicity and adaptability to 

engineering problems, is the Taguchi method (e.g., Taguchi et al. 1989, Peace 1993, Cecinato and Zervos 

2012). With the current settings of seven parameters and two levels (Table 4), a Taguchi analysis will need 

only 8 simulations (experiments) to be completed, followed by some basic statistical analysis of the results. 

By contrast, with the ‘full factorial’ method (i.e. running one simulation for each one of the possible 

combinations of parameters) the number of simulations needed would be 7
2 128 . 

A fundamental step in Taguchi analysis is the definition of a suitable ‘orthogonal array’, i.e., a 2-dimensional 

matrix defining the variable settings for each of the experiments needed. Each row of the matrix contains 

the list of settings for all parameters in one experiment. Each column corresponds to one of the variables, 

and contains all the values that this variable will be assigned during the experiments. The essential property 

of the orthogonal array is ‘statistical independence’: not only within each column an equal number of 

occurrences for each level is present, but also the columns are mutually orthogonal , i.e. for each level within 

one column, each level within any other column will occur an equal number of times as well. A given 

parameter has a strong impact on the output variable if the results associated with one of its levels are very 

different from the results associated with another one of its levels. Since, due to orthogonality, the levels of 

all other parameters occur an equal number of times for each level of this given parameter, their effect will 

be cancelled out in the computation of the given parameter’s effect. The estimation of the effect of any one 

particular parameter will then tend to be accurate and reproducible (Peace 1993). 

For the above described 7-parameter, 2-level Taguchi analysis, the conventional orthogonal array “ 8L ” is 

readily available in the literature (e.g. Peace, 1993), and can be filled in with the factors’ settings of Table 4 

to finalise the parametric study design. The resulting array is shown in Table 5, where a column has been 

added at the extreme right to specify the output of the simulations for each row, i.e., the calculated total 

exchanged energy (Equation (7)). These rather diverse energy values constitute the ‘raw data’ of the Taguchi 

parametric study, to which some statistical post-processing needs to be applied in order to extract 

meaningful results. This is done in the next Section. 



Table 5. Taguchi orthogonal array “L8” with parameter settings. In the rightmost column the output in terms of calculated total 
exchanged energy is reported, for each simulation run. 

Run # pile dia pipe dia 
no. 

pipes 
fluid 

velocity. 
pile 

length 
concrete. 

conductivity 
concrete 

cover Response 

  mm mm   m/s m W/mK mm MJ 

1 500 20 2 0.4 15 1.5 50 1.54E+02 

2 500 20 2 1.2 25 3 75 3.73E+02 

3 500 30 6 0.4 15 3 75 3.30E+02 

4 500 30 6 1.2 25 1.5 50 4.90E+02 

5 1000 20 6 0.4 25 1.5 75 5.22E+02 

6 1000 20 6 1.2 15 3 50 5.52E+02 

7 1000 30 2 0.4 25 3 50 4.59E+02 

8 1000 30 2 1.2 15 1.5 75 1.45E+02 

         

confirmation 1000 20 6 1.2 25 3 50 8.53E+02 

 

6. Parametric analysis results 

To determine the combination of factors affecting the target variable the most, the Energy output values of 

Table 5 were interpreted with a level average analysis (Peace 1993), consisting of (1) calculating the average 

simulation result for each level of each factor, (2) quantifying the effect of each factor by taking the absolute 

difference between the highest and lowest average results and (3) identifying the strong effects, by ranking 

the factors from the largest to the smallest absolute difference. Results are summarised in the response table 

(Table 6). 

Table 6.. Response table for the parametric analysis, showing in the bottom line the ranking of importance of parameters, from the 
strongest to the weakest effect. 

RESPONSE TABLE (Total exchanged energy in 4 days, MJ) 

Level/parameter 
pile 
dia 

pipe 
dia 

no. 
pipes 

fluid 
velocity 

pile 
length 

concrete 
conductivity 

concrete 
cover 

Min 336.82 400.30 282.63 366.13 295.06 327.61 413.56 

Max 419.25 355.77 473.43 389.94 461.01 428.45 342.50 

Effect of parameter 82.43 44.53 190.80 23.81 165.95 100.84 71.06 

Ranking 4 6 1 7 2 3 5 

 

Due to the statistical nature of this type of analyses, the influence of the bottom-ranked parameters cannot 

be assessed with confidence (Peace 1993), hence attention will be hereby given to the top-five properties, 



namely (1) the number of pipes 
p

n , (2) the pile length L, (3) the concrete thermal conductivity 
c

 , (4) the 

pile diameter 
pile

D , (5) the concrete cover c. It can be seen from Table 6 that energy efficiency is maximised 

with large values of parameters (1)-(4) and low values of parameter (5). 

As a statistical validation of level average analysis, a reliability check (Peace 1993, Cecinato, 2011) can be 

performed, consisting of calculating an estimate of the predicted response with optimal parameter settings 

and comparing it with a confirmation run based on the most influential settings of the involved parameters 

(bottom line of Table 5). The confirmation run, consistently, resulted in the single largest energy efficiency 

(Etot=8.5 MJ), and was corroborated in magnitude by the estimated predicted response (Etot=7.2 MJ). 

The calculated outlet fluid temperature curves for all runs of Table 5, including the confirmation run, are 

reported in Figure 9, while the corresponding calculated exchanged power curves (whose subtended areas 

correspond to the total energy exchanged) are reported in Figure 10. In both figures, time is reported in 

logarithmic scale, to better appreciate visually the initial parts of the curves. It can be seen that parameter 

settings achieving a higher level of exchanged power do not in general correspond to those causing a lower 

outlet temperature (i.e. a higher difference between inlet and outlet temperature). In fact, by virtue of 

Equation (6) the exchanged power is proportional, in addition to the temperature difference, also to the mass 

flowrate, which is an increasing function of flow velocity and pipe diameter.  For example, it can be seen that 

run #5 has the greatest temperature difference through the simulations (Figure 9), but it also has a low flow 

velocity meaning that it does not always correspond to the maximum available power (Figure 10).  It can also 

be observed that the duration of the transient period, and the shape of the curves at early stages are 

fundamental in determining the overall temperature difference and exchanged power, thus confirming the 

appropriateness of a 3D numerical model accounting for transient conduction to investigate energy 

efficiency. The initial part of the transient behaviour relates to the ramp up of the applied temperature 

difference. All runs reach a peak value of power (Figure 10), which then decreases with time as the 

corresponding temperature difference to the ground reduces (Figure 9). However, different parameters are 

observed to have different timescales for transient effects. For example, run #4 has initially the highest power 

available. This is likely to reflect the large number of pipes in the cross section, the pile length and high flow 



rates used. The smaller pile diameter also means that this run is accessing the higher conductivity ground 

more quickly. However, later in the analysis period, the power available is overtaken by other runs where the 

pile diameter is larger and the concrete conductivity is also larger.  

 

 

Figure 9. Calculated outlet temperature profiles for all parametric analysis simulations listed in Table 5, plus confirmation run 
temperature (thick dashed line) and inlet temperature (thick solid line) profiles. Time is shown in logarithmic scale. 

 



 

Figure 10. Calculated exchanged power profiles for all parametric analysis simulations listed in Table 5, plus exchanged power profile 
for the confirmation run (thick dashed line). Time is shown in logarithmic scale. 

 

7. Discussion 

The best scenario for energy efficiency of a geothermal rotary-bored pile is represented by the parameter 

combination chosen for the confirmation run (bottom line of Table 5), as is evident in Figure 10. The most 

important parameter is the number of pipes 
p

n  , followed by the pile length L. This outcome suggests that, 

all other things being equal, the total amount of pipe surface available for convective heat exchange is 

fundamental. The 2D cross-sectional configuration of pipes (reflected by 
p

n ) has the largest influence, but 

also the longitudinal dimension (reflected by L) appears very important. This is not surprising as heat 

exchange capacity is often expressed in terms of power per drilled depth.  However, it is easier, in practice, 

to decide the number of pipes independently of structural/geotechnical design, compared to the pile 



length, which in contrast to borehole type heat exchangers is rarely increased just to provide additional 

energy supply. Parameter 
p

n  is expected to be limited on the one hand by geometrical constraints (there 

must be sufficient space to accommodate a number of pipes in the pile section, depending on the pile 

diameter and concrete cover), and on the other hand by possible pipe-to-pipe thermal interactions. Such 

interactions are common with borehole heat exchangers where the pipes are, by necessity of the small 

drilled diameter, closer together. It is well known that for a given number of pipes, ensuring separation of 

the pipes in this environment will help maximise energy output by reducing the interaction potential (Diao 

et al, 2004).  In addition, it is also known that the benefit from increasing the number of pipes within an 

energy pile is non-linear and that there will be diminishing returns as more and more pipes are added 

(Loveridge & Powrie, 2014). This has been further examined by running additional simulations representing 

a 1000 mm diameter pile where only parameter 
p

n  has been varied, all other things being equal. In 

particular, the same settings as in run #6 of Table 5 were kept unchanged for a total of six simulations 

except for the number of pipes (connected in series), which was set to 2, 4, 6, 8, 12 and 18. The results of 

this sensitivity analysis are reported in Figure 11, where the total exchanged energy tot
E  in 4 days is 

reported as a function of the number of pipes. It can be noticed that at large 
p

n values the curve tends 

towards horizontal, representing a limit to energy efficiency, demonstrating that a marked nonlinearity 

exists between 
p

n  and tot
E . These diminishing returns can be illustrated with the approximate two thirds 

increase in exchanged energy when the number of pipes is doubled from two to four. However, doubling 

p
n  from 6 to 12 fields an increase in exchanged energy of only one quarter. In figure 12, an example of 

temperature contour lines for each of the 
p

n  configurations discussed above is shown at cross-sections of 

the pile area taken roughly at mid-height of the pile, after 4 days of heat injection. It can be noticed that a 

larger 
p

n implies a more symmetric distribution of temperature in the domain cross section, and more 

homogeneous heating of the pile core. 

The thermal conductivity of concrete comes third in the ranking of parameter importance. Although this is 

an expected outcome, since 
c

  is known to play an important role in determining the concrete thermal 



resistance (Loveridge and Powrie 2014), it cannot be so readily engineered. While concrete conductivity 

mainly depends on the aggregate lithology (Tatro, 2006) and this could potentially be specified by the 

designer, in practice aggregate types are mostly determined by the locally available materials. However, 

additives and cement replacement products can reduce concrete conductivity (e.g. Demirboga, 2007) and 

these products could be limited by specification.  

 

Figure 11. Total exchanged energy in 4 days as a function of the number of pipes, for a 1000 mm diameter and 15 m length pile 
(configuration of run #6 in Table 5). 

 

The pile diameter has a comparatively intermediate influence, but it is significant to observe that larger 

diameters improve the energy efficiency. All else being equal, larger pile diameters allow larger pipe 

spacing. This can be observed in Figure 13 and Figure 14, where temperature contours on a cross-section 

along the pile are shown for run #4 and run #6 of Table 5  respectively, at the same time instant (t=590 min) 

during the simulation. For the smaller diameter pile, quicker heating of the pile core occurs with associated  



energy efficiency reduction. However, this effect is very much secondary compared to the number of pipes 

installed, and in fact previous studies (SIA, 2005, Loveridge & Powrie, 2014) suggest that there is only 

minimal benefit from a larger pile diameter as long as the same number of pipes is installed. It should also 

be observed that larger diameter piles have the additional benefit of being capable of being equipped with 

a greater number of pipes which is clearly beneficial before the spacing reduces so as to decrease 

efficiency.  

 

 

Figure 12. Example of temperature contour lines for a 1000 mm diameter pile (configuration of run #6 in Table 5) for different 
number of pipes, after 4 days of heat injection. A cross-sections of the pile area taken roughly at mid-height of the pile is shown. 

 

The influence of concrete cover is smaller but significant, causing as expected better energy efficiency for 

smaller values of c (reducing the concrete thermal resistance), which enables pipes to be spaced further 



apart and also closer to the ground. It should also be noted that recent research has suggested that there is 

no reduction in protection to the steel reinforcement by installing the pipe loops within the specified 

minimum concrete cover zone (GSHPA, 2012) which should help to place the pipes as close to the ground 

as possible. This parameter is expected to play a more significant role in the energy efficiency of CFA piles, 

which are not treated in this work. 

Among the bottom-ranked parameters, it may appear somewhat surprising to find that the fluid velocity, 

directly proportional to the volumetric flowrate, has a comparatively negligible influence in the pile’s 

energy efficiency. In fact, empirical guidelines on geothermal design often prescribe a large volumetric 

flowrate, for better heat exchange efficiency. However, this is mainly aimed at achieving large enough 

Reynolds numbers (>4000-5000) to achieve turbulent flow in the pipes. In our analysis, the range of v 

chosen (Section 5) always gave Re>8000, hence always providing fully turbulent flow. On the other hand, it 

follows from Equation (4), by substituting the Dittus-Boelter correlation (McAdams, 1942) for the 

convective coefficient and the expression of Reynolds number that the amount of temperature change 

along the pipe is weakly inversely proportional to fluid velocity: 
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     (8) 

At the same time, v also features in Equation (6) (via the mass flow rate), thus compensating for the inverse 

proportionality effect shown above, yielding a weak proportionality of exchanged power with velocity as 

shown in Figure 15, where v was set to 0.4, 0.8 and 1.2 m/s while keeping the other settings as in run #1 of 

Table 5. 



 

Figure 13. Temperature contours on a cross-section along a 500 mm diameter pile for run #4 of Table 5 , at the time instant t=590 
min during the simulation. 

 

 

Figure 14. Temperature contours on a cross-section along a 1000 mm diameter pile for run #6 of Table 5 , at the time instant t=590 
min during the simulation. 

 

  



 

Figure 15. Exchanged power vs time for three simulations where parameter settings differ only for the fluid velocity value. A weak 
proportionality of exchanged power with velocity can be noticed. Time is shown in logarithmic scale. 

 

8. Conclusions 

It is important to improve the energy efficiency of pile heat exchangers, so called energy piles, to reduce 

the pay back periods and thus increase the take up of this renewable heating technology. This study 

developed and validated an innovative numerical model that captures all of the key heat transfer 

phenomena, and applied it to this problem via Taguchi parametric analysis to determine the relative 

importance of various design parameters for achieving maximum exchanged energy. The results of the 

study mainly showed that: 

1. Maximising the total pipe surface area available for heat transfer is the most important factor for 

increased energy efficiency.  Therefore ensuring opportunities to install increased numbers of pipes 

within a pile cross section is recommended, although it should be noted that there are diminishing 



returns in terms of energy at very close pipe spacing.  Longer pile lengths are also beneficial for 

energy exchange, but unlike borehole heat exchangers, this is not typically controlled by the 

geothermal design for energy piles.  

2. Maximising the concrete thermal conductivity will also result in greater energy exchange.  

Practically this may not be straightforward as aggregate type, which has a strong influence on 

thermal conductivity, is typically defined by local availability. However, specification of the 

minimum required concrete additives, which can be detrimental to thermal properties, should be 

encouraged.  

3. Contrary to general expectation, increasing the heat transfer fluid velocity does not have a 

significant impact on the overall exchanged energy, providing turbulent flow is maintained.  

The model hereby presented is also intended to serve as a basis for further developments, as it is suitable 

for application to other types of energy geo-structures (such as diaphragm walls and tunnel linings) and for 

a number of different uses, such as aiding thermal parameter estimation during thermal response tests, 

and including other important coupled phenomena like thermo-mechanical effects, i.e. to explore any 

effects of the induced temperature variations in the pile mechanical behaviour. 
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