Objectives: To investigate the potential synergism of colistin in combination with N-acetylcysteine against Acinetobacter baumannii strains grown in planktonic phase or as biofilms. Methods: Sixteen strains were investigated, including nine colistin-susceptible (MIC range 0.5-1 mg/L) and seven colistin-resistant (MIC range 16-256 mg/L) strains. Synergism of colistin in combination with N-acetylcysteine was investigated by chequerboard assays. The activity of colistin/N-acetylcysteine combinations was further evaluated by time-kill assays with planktonic cultures (three colistin-resistant strains and one colistinsusceptible strain) and by in vitro biofilm models (three colistin-resistant and three colistin-susceptible strains). Results: Chequerboard assays revealed a relevant synergism of colistin/N-acetylcysteine combinations with all colistin-resistant strains, whereas no synergism was observed with colistin-susceptible strains. Time-kill assays showed a concentration-dependent potentiation of colistin activity by N-acetylcysteine against colistin-resistant strains, with eradication of the culture by combinations of N-acetylcysteine at 8000 mg/L plus colistin at 2 or 8 mg/L. A static effect during the first 8 h of incubation was demonstrated with the colistin-susceptible strain exposed to 0.25×MIC colistin plus 8000 mg/L N-acetylcysteine. A remarkable antibiofilm synergistic activity of 8 mg/L colistin plus 8000 mg/L N-acetylcysteine was demonstrated with all colistin-resistant and colistinsusceptible strains. The effects were greater with colistin-resistant strains (marked reduction of viable biofilm cells was observed at sub-MIC colistin concentrations). Conclusions: N-acetylcysteine, at concentrations achievable by topical administration, was shown to revert the colistin-resistant phenotype in A. baumannii, and to exert a relevant activity against biofilms of colistin susceptible and colistin-resistant A. baumannii strains.

In vitro synergism of colistin in combination with N-acetylcysteine against Acinetobacter baumannii grown in planktonic phase and in biofilms / S. Pollini, S. Boncompagni, T. Di Maggio, V. Di Pilato, T. Spanu, B. Fiori, F. Blasi, S. Aliberti, F. Sergio, G.M. Rossolini, L. Pallecchi. - In: JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY. - ISSN 0305-7453. - 73:9(2018 Sep 01), pp. 2388-2395.

In vitro synergism of colistin in combination with N-acetylcysteine against Acinetobacter baumannii grown in planktonic phase and in biofilms

F. Blasi;S. Aliberti;
2018

Abstract

Objectives: To investigate the potential synergism of colistin in combination with N-acetylcysteine against Acinetobacter baumannii strains grown in planktonic phase or as biofilms. Methods: Sixteen strains were investigated, including nine colistin-susceptible (MIC range 0.5-1 mg/L) and seven colistin-resistant (MIC range 16-256 mg/L) strains. Synergism of colistin in combination with N-acetylcysteine was investigated by chequerboard assays. The activity of colistin/N-acetylcysteine combinations was further evaluated by time-kill assays with planktonic cultures (three colistin-resistant strains and one colistinsusceptible strain) and by in vitro biofilm models (three colistin-resistant and three colistin-susceptible strains). Results: Chequerboard assays revealed a relevant synergism of colistin/N-acetylcysteine combinations with all colistin-resistant strains, whereas no synergism was observed with colistin-susceptible strains. Time-kill assays showed a concentration-dependent potentiation of colistin activity by N-acetylcysteine against colistin-resistant strains, with eradication of the culture by combinations of N-acetylcysteine at 8000 mg/L plus colistin at 2 or 8 mg/L. A static effect during the first 8 h of incubation was demonstrated with the colistin-susceptible strain exposed to 0.25×MIC colistin plus 8000 mg/L N-acetylcysteine. A remarkable antibiofilm synergistic activity of 8 mg/L colistin plus 8000 mg/L N-acetylcysteine was demonstrated with all colistin-resistant and colistinsusceptible strains. The effects were greater with colistin-resistant strains (marked reduction of viable biofilm cells was observed at sub-MIC colistin concentrations). Conclusions: N-acetylcysteine, at concentrations achievable by topical administration, was shown to revert the colistin-resistant phenotype in A. baumannii, and to exert a relevant activity against biofilms of colistin susceptible and colistin-resistant A. baumannii strains.
Settore MED/10 - Malattie dell'Apparato Respiratorio
1-set-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
in vitro synergism of colistin in combination with NAC agaist Acinetobacter baumanii J ANTIMICROB CHEMOTHER 2018.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 551.06 kB
Formato Adobe PDF
551.06 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/585758
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact