ABSTRACT The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters’ expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.

Postnatal Changes in K+/Cl- Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy / A. Amadeo, A. Coatti, P. Aracri, M. Ascagni, D. Iannantuoni, D. Modena, L. Carraresi, S. Brusco, S. Meneghini, A. Arcangeli, M.E. Pasini, A. Becchetti. - In: NEUROSCIENCE. - ISSN 0306-4522. - 386(2018 Aug 21), pp. 91-107.

Postnatal Changes in K+/Cl- Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy

A. Amadeo
Primo
Writing – Original Draft Preparation
;
M. Ascagni
Methodology
;
D. Modena
Investigation
;
M.E. Pasini
Penultimo
Methodology
;
2018

Abstract

ABSTRACT The Na+/K+/Cl- cotransporter-1 (NKCC1) and the K+/Cl- cotransporter-2 (KCC2) set the transmembrane Cl- gradient in the brain, and are implicated in epileptogenesis. We studied the postnatal distribution of NKCC1 and KCC2 in wild-type (WT) mice, and in a mouse model of sleep-related epilepsy, carrying the mutant β2-V287L subunit of the nicotinic acetylcholine receptor (nAChR). In WT neocortex, immunohistochemistry showed a wide distribution of NKCC1 in neurons and astrocytes. At birth, KCC2 was localized in neuronal somata, whereas at subsequent stages it was mainly found in the somatodendritic compartment. The cotransporters’ expression was quantified by densitometry in the transgenic strain. KCC2 expression increased during the first postnatal weeks, while the NKCC1 amount remained stable, after birth. In mice expressing β2-V287L, the KCC2 amount in layer V of prefrontal cortex (PFC) was lower than in the control littermates at postnatal day 8 (P8), with no concomitant change in NKCC1. Consistently, the GABAergic excitatory to inhibitory switch was delayed in PFC layer V of mice carrying β2-V287L. At P60, the amount of KCC2 was instead higher in mice bearing the transgene. Irrespective of genotype, NKCC1 and KCC2 were abundantly expressed in the neuropil of most thalamic nuclei since birth. However, KCC2 expression decreased by P60 in the reticular nucleus, and more so in mice expressing β2-V287L. Therefore, a complex regulatory interplay occurs between heteromeric nAChRs and KCC2 in postnatal forebrain. The pathogenetic effect of β2-V287L may depend on altered KCC2 amounts in PFC during synaptogenesis, as well as in mature thalamocortical circuits.
ADNFLE; β2-V287L; GABAergic switch; KCC2; prefrontal cortex; reticular thalamic
Settore BIO/16 - Anatomia Umana
Settore BIO/06 - Anatomia Comparata e Citologia
Settore BIO/09 - Fisiologia
21-ago-2018
24-giu-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Amadeo et al.2018 post-print.pdf

Open Access dal 18/12/2019

Descrizione: Testo dell'articolo accettato corredato di highlights e di tavole fotografiche con dati statistici nella loro versione finale
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri
1-s2.0-S030645221830441X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 9.63 MB
Formato Adobe PDF
9.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/582054
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact