Let (X,L) be a polarized manifold of dimension n. Its Hilbert curve is an affine algebraic plane curve of degree n encoding properties related to fibrations of X, defined by suitable adjoint linear systems to L. In particular, if (X,L) is a scroll over a smooth surface S, its Hilbert curve consists of n−2 parallel lines with a given slope and evenly spaced, plus a conic. Making its equation explicit, we show that this conic turns out to be itself the Hilbert curve of the ℚ-polarized surface (Formula presented.), where ℰ is the rank-(n−1) vector bundle obtained by pushing down L via the scroll projection, if and only if ℰ is properly semistable in the sense of Bogomolov.

A property of Hilbert curves of scrolls over surfaces / A. Lanteri. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - (2018). [Epub ahead of print] [10.1080/00927872.2018.1464169]

A property of Hilbert curves of scrolls over surfaces

A. Lanteri
2018

Abstract

Let (X,L) be a polarized manifold of dimension n. Its Hilbert curve is an affine algebraic plane curve of degree n encoding properties related to fibrations of X, defined by suitable adjoint linear systems to L. In particular, if (X,L) is a scroll over a smooth surface S, its Hilbert curve consists of n−2 parallel lines with a given slope and evenly spaced, plus a conic. Making its equation explicit, we show that this conic turns out to be itself the Hilbert curve of the ℚ-polarized surface (Formula presented.), where ℰ is the rank-(n−1) vector bundle obtained by pushing down L via the scroll projection, if and only if ℰ is properly semistable in the sense of Bogomolov.
Hilbert curve; scroll; vector bundle (properly semistable); Q-polarized surface
Settore MAT/03 - Geometria
2018
2-mag-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Lanteri_A_property_final_April2018.pdf

Open Access dal 14/12/2019

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 307.61 kB
Formato Adobe PDF
307.61 kB Adobe PDF Visualizza/Apri
A property of Hilbert curves of scrolls over surfaces.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 405.92 kB
Formato Adobe PDF
405.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/581347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact