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Abstract

Let (X,L) be a polarized manifold of dimension n. Its Hilbert curve is an affine
algebraic plane curve of degree n encoding properties related to fibrations of X, defined
by suitable adjoint linear systems to L. In particular, if (X,L) is a scroll over a smooth
surface S, its Hilbert curve consists of n−2 parallel lines with a given slope and evenly
spaced, plus a conic. Making its equation explicit, we show that this conic turns out
to be itself the Hilbert curve of the Q-polarized surface (S, 1

n−1 det E), where E is the
rank-(n − 1) vector bundle obtained by pushing down L via the scroll projection, if
and only if E is properly semistable in the sense of Bogomolov.
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1 Introduction

The Hilbert curve Γ of a polarized manifold (X,L) was introduced in [4]. It is an algebraic
affine plane curve of degree n = dimX, encoding several properties of (X,L). In particular
it is sensitive to the possibility of fibering X over a variety of smaller dimension via an
adjoint bundle to L. This makes scrolls very interesting from the point of view of their
Hilbert curves. Scrolls over a curve are discussed in [7]. Here we focus on scrolls over a
surface S in any dimension (for the 3-dimensional case we refer to [9]). In this case, Γ
consists of n− 2 parallel lines with a given slope and evenly spaced, plus a conic, say G.
It should be emphasized that, in general, there is no Q-polarized surface admitting G as
Hilbert curve. However, it looks natural to ask whether, in some specific framework, G is
itself the Hilbert curve of the base surface S of (X,L) for some Q-polarization related to
the scroll [4, Problem 6.6]. To answer this question, we need first to determine the equation
of Γ. To do that, unlike in [9], we skip the explicit expression of χ(xKX + yL) provided
by the Riemann–Roch theorem, confining ourselves to use the qualitative information
coming from [4, Theorem 6.5] combined with the analysis of the homogeneous polynomial
it defines, when restricted to the line at infinity of the (x, y)-plane. In this way, computing
very few pluridegrees of (X,L) turns out to be enough to obtain all coefficients of the
polynomial we need (Theorem 3.1). In particular we get the explicit equation of the conic
G. This allows us to address the above question, extending the main result of [9]. In fact
we show that G itself is the Hilbert curve of the Q-polarized surface (S, 1

n−1 det E), where
E is the rank-(n− 1) vector bundle obtained by pushing down L via the scroll projection,
if and only if E is properly semistable in the sense of Bogomolov (Theorem 4.1). The case
when E is not properly semistable is also explored. This leads to a number of necessary
conditions for G to be the Hilbert curve of the base surface S for some Q-polarization
(Proposition 4.4).
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2 Background material

Varieties considered in this paper are defined over the field C of complex numbers. We
use the standard notation and terminology from algebraic geometry. A manifold is any
smooth projective variety; a surface is a manifold of dimension 2. The symbol ≡ will
denote numerical equivalence. With a little abuse, we adopt the additive notation for
the tensor products of line bundles. A polarized manifold is a pair (X,L) consisting of a
manifold X endowed with an ample line bundle L. In particular, the word scroll has to
be intended in the classical sense: since we are dealing with scrolls over a surface S, this
means that X = PS(V), where V is an ample vector bundle or rank r ≥ 2 on S and L is
the corresponding tautological line bundle. Notice that such an object is also a scroll in
the adjunction theoretic sense except for very few cases, see [3, Theorem 2.1].

For the notion and the general properties of the Hilbert curve associated to a polarized
manifold we refer to [4], see also [7]. Here we just recall some basic facts. Let (X,L) be a
polarized manifold of dimension n ≥ 2 and regard N(X) := Num(X) ⊗Z C as a complex
affine space. If rk〈KX , L〉 = 2, we can consider the plane A2 = C〈KX , L〉 ⊂ N(X),
generated by the classes of KX and L. For any line bundle D on X the Riemann–Roch
theorem provides an expression for the Euler–Poincaré characteristic χ(D) in terms of D
and the Chern classes of X. Let p denote the complexified polynomial of χ(D), when we set
D = xKX + yL, with x, y complex numbers, namely p(x, y) = χ(xKX + yL). The Hilbert
curve of (X,L) is the complex affine plane curve Γ = Γ(X,L) ⊂ A2 of degree n defined by
p(x, y) = 0 [4, Section 2]. Sometimes, to deal with points at infinity, it is convenient to
consider also the projective Hilbert curve Γ ⊂ P2, namely the projective closure of Γ. In
this case we use (x, y, z) as homogeneous coordinates on P2, z = 0 representing the line at
infinity.

Notice that the Hilbert curve can be defined also when the numerical classes of KX and
L are linearly dependent, but in this case, the (x, y)-plane is only formal and Γ(X,L) loses
the meaning of a plane section of the Hilbert variety of X (see [4, Section 2]). For example,

the Hilbert curve of
(
Pn,OPn(r)

)
has equation p(x, y) = (−1)n

n!

∏n
i=1

(
(n+ 1)x− ry − i

)
.

Due to Serre duality, Γ is invariant under the involution D 7→ KX−D acting on N(X).
Thus, to make this symmetry more evident, it is convenient to represent Γ in terms of
the affine coordinates (u = x − 1

2 , v = y) rather than (x, y). So, rewriting our divisor
as D = 1

2KX + E, where E = uKX + vL, Γ can be represented with respect to these
coordinates by p(1

2 + u, v) = 0. We refer to this equation as the canonical equation of Γ.
In particular the canonical equation of the Hilbert curve Γ(S,L) of a polarized surface

(S,L) is:

p(S,L)

(1

2
+ u, v

)
=

1

2

[
(uKS + vL)2 + 2χ(OS)− 1

4
K2
S

]
= 0. (1)

Now, let L is an ample Q-line bundle on the surface S. Then there exists a positive
integer m such thatM := mL ∈ Pic(S). Letting p(S,L)(

1
2 +u, v) denote the extension of the

polynomial expression χ(1
2KS+E) where E = uKS+vL, from the equality E = uKS+ v

mM
we see that p(S,L)(

1
2 + u, v) = p(S,M)(

1
2 + u, vm), the polynomial defining the canonical

equation of the Hilbert curve Γ(S,M). Thus we can speak about the Hilbert curve Γ(S,L)

of the Q-polarized surface (S,L), its canonical equation being formally the same equation
as (1).
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Extending the terminology in [8], we say that two ample Q-line bundles L and L′ on
the surface S are HC equivalent if Γ(S,L) = Γ(S,L′). Clearly numerical equivalence implies
HC-equivalence, and this, in turn, implies that L2 = L′2 and KS · L = KS · L′, provided
that

(
K2
S , χ(OS)

)
6= (0, 0) [8, Proposition 2.1]. Finally, if E is an ample vector bundle of

rank r ≥ 2 on S, by average polarization induced by E we mean the ample Q-line bundle
1
r det E .

For any vector bundle V of rank r ≥ 2 on a surface S, the Bogomolov number of V is

δ(V) := (r − 1)c1(V)2 − 2rc2(V), (2)

where ci(V), i = 1, 2 are the Chern classes of V. According to [5, Theorem p. 500], if V
is H-stable for any ample line bundle H on S, then δ(V) < 0 (Bogomolov inequality).
Then V is said to be B-unstable if δ(V) > 0; consequently, in accordance with the usual
terminology, we say that V is B-semistable if δ(V) ≤ 0, B-stable if this is a strict inequality,
and properly B-semistable if equality occurs.

3 The canonical equation of Γ for scrolls over surfaces

Let (X,L) be a polarized manifold of dimension n which is a scroll over a smooth surface
S, with projection π : X → S. In particular, X is a Pn−2-bundle over S, hence χ(OX) =
χ(OS). Set E = π∗L; then E is an ample vector bundle of rank n− 1 on S, and X = P(E),
with tautological line bundle L. Since rk(E) = n − 1, and dimS = 2, the Chern–Wu
relation says that

Ln−1 − π∗c1(E) · Ln−2 + π∗c2(E) · Ln−3 = 0

(see e.g., [6, p. 429]). This gives

Ln−1 · π∗D = Ln−2 · π∗
(
D · c1(E)

)
= D · c1(E) (3)

for any line bundle D on S. Recalling the canonical bundle formula

KX = −(n− 1)L+ π∗
(
KS + c1(E)

)
,

(3) allows us to compute all pluridegrees di = Ki
X · Ln−i (i = 0, . . . , n) of (X,L). Clearly,

d = d0 = Ln is the degree of (X,L). In particular, we get

dn = Kn
X = (−1)n(n− 1)n−1

(
n

2
K2
S +

(n
2
− 1
)
c1(E)2 − (n− 1)c2(E)

)
, (4)

d1 = KX · Ln−1 = KS · c1(E)− (n− 2)c1(E)2 + (n− 1)c2(E), (5)

and
d = Ln = c1(E)2 − c2(E). (6)

Now let Γ = Γ(X,L) be the Hilbert curve of our scroll (X,L). According to (2) we set

δ := δ(E) = (n− 2)c1(E)2 − 2(n− 1)c2(E). (7)

The following result extends [9, Proposition 2.1] to any dimension, providing the explicit
canonical equation of Γ.
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Theorem 3.1 Let (X,L) be an n-dimensional scroll over a smooth surface S, let E :=
π∗L, where π : X → S is the scroll projection, and let δ be as in (7). Then the Hilbert
curve Γ of (X,L) has the following canonical equation in terms of coordinates (u, v)

p
(1

2
+ u, v

)
=
(
αu2 + βuv + γv2 + ε

) n−2∏
i=1

(
(n− 1)u− v +

1

2
(n− 1− 2i)

)
, (8)

where α, β, γ, and ε are given by the following expressions:

α =
(−1)n

(n− 2)!

1

2

(
K2
S +

δ

n

)
, (9)

β =
2(−1)n

(n− 2)!

1

2

(
KS ·

c1(E)

n− 1
− δ

n(n− 1

)
, (10)

γ =
(−1)n

(n− 2)!

1

2

(
c1(E)2

(n− 1)2
+

δ

n(n− 1)2

)
, (11)

ε =
(−1)n

(n− 2)!

1

2

(
2χ(OS)−

K2
S

4
− δ

4n

)
. (12)

Proof. Recalling [4, Theorem 6.5] we know that the canonical equation of Γ has an
expression of the following type

p(x, y) = R(x, y)

n−2∏
i=1

(
(n− 1)x− y − i

)
= 0,

where R is a polynomial of degree 2. Moreover, due to the symmetry properties of Γ, by
using coordinates (u, v) = (x− 1

2 , y) with the origin at the center of the involution induced
by Serre duality, we can write

R
(1

2
+ u, v

)
= αu2 + βuv + γv2 + ε.

To determine the coefficients α, β, and γ we proceed as in [7, Proposition 2.1]. Let
p0(x, y, z) be the homogeneous polynomial associated with p. Since

p(x, y) =

(
α
(
x− 1

2

)2
+ β

(
x− 1

2

)
y + γy2 + ε

) n−2∏
i=1

(
(n− 1)x− y − i

)
,

evaluating p0 on the line at infinity we get

p0(x, 1, 0) =
(
αx2 + βx+ γ

)(
(n− 1)x− 1

)n−2

= (αx2 + βx+ γ)

[
(n− 1)n−2xn−2 − . . .

· · ·+ (−1)n−3

(
n− 2

n− 3

)
(n− 1)x+ (−1)n−2

]
= α(n− 1)n−2xn + · · ·+ (−1)n

(
β − (n− 1)(n− 2)γ

)
x+ (−1)nγ.
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On the other hand, χ(M) = 1
n! M

n + . . . for any line bundle M on X, where dots stand
for lower degree terms, hence

p0(x, 1, 0) =
1

n!
(xKX + L)n =

1

n!

[
dnx

n + · · ·+
(

n

n− 1

)
d1x+ d

]
.

For every power of x we can thus equate the coefficients in the two expressions above. In
particular, looking at the terms of degrees n, 1 and 0, we get the following equalities

α =
1

n!

1

(n− 1)n−2
dn, (13)

β =
(−1)n

n!

(
(n− 1)(n− 2)d+ nd1

)
,

γ =
(−1)n

n!
d.

It remains to determine ε. Recalling that χ(OX) = χ(OS), we get

χ(OS) = p(0, 0) =
(α

4
+ ε
) n−2∏
i=1

(−i) = (−1)n−2(n− 2)!
(α

4
+ ε
)
,

and by using (13) this gives

ε =
(−1)n

n!

(
n(n− 1)χ(OS) +

(−1)n−1

4(n− 1)n−2
dn

)
.

Finally, taking into account (4), (5), (6), and (7), the above expressions can be rewritten
as in (9), (10), (11), and (12), respectively. Q.E.D.

In particular, we see that Γ consists of

a) n− 2 parallel lines of slope n− 1, evenly spaced with step 1 on the v-axis, arranged
symmetrically with respect to the origin, and

b) a conic G, also symmetric with respect to the origin.

This fact was already known from [4, Theorem 6.5]. The crucial point is that Theorem

3.1 provides an explicit equation for G. Actually, up to the multiplicative constant (−1)n

(n−2)! ,
the conic G is represented by the equation

1

2
[u v 1] Aδ

uv
1

 = 0,

where

Aδ =


K2
S + δ

n KS · c1(E)
(n−1) −

δ
n(n−1) 0

KS · c1(E)
n−1 −

δ
n(n−1)

c1(E)2

(n−1)2
+ δ

n(n−1)2
0

0 0 2χ(OS)− K2
S

4 −
δ

4n

 . (14)
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4 G itself as a Hilbert curve

Referring to [4, Problem 6.6], and taking into account [7, Remark 4.1] and [9, Section 3],
it is natural to ask the following question.

Is G the Hilbert curve of S for some Q-polarization related to (X,L)? (15)

The answer is negative in general. In fact it may even happen that there exists no Q-
polarized surface having G as Hilbert curve. This is the case, for instance, for the scroll
over P2 defined by E = OP2(1)⊕(n−2) ⊕ OP2(2); a direct check mimicking [9, Proof of
Proposition 3.1] shows that for no n ≥ 3 there can exist a Q-polarized surface (Σ,M)
such that G = Γ(Σ,M).

Coming back to S, let L be any ample Q-line bundle. According to what we said in
Section 2, the canonical equation of the Hilbert curve Γ(S,L) is

p(S,L)

(1

2
+ u, v

)
=

1

2
[u v 1] A′

uv
1

 = 0,

where

A′ =

 K2
S KS · L 0

KS · L L2 0

0 0 2χ(OS)− K2
S

4

 . (16)

Thus (15) has a positive answer if and only if there exists a nonzero constant factor ρ ∈ Q
such that Aδ = ρA′ for some Q-ample line bundle L on S. In view of (14) this translates
into the following conditions:

K2
S +

δ

n
= ρ K2

S , (17)

KS ·
c1(E)

n− 1
− δ

n(n− 1)
= ρ KS · L, (18)

c1(E)2

(n− 1)2
+

δ

n(n− 1)2
= ρ L2, (19)

2χ(OS)−
K2
S

4
− δ

4n
= ρ

(
2χ(OS)−

K2
S

4

)
. (20)

Let’s point out that ρ must be positive. This follows from (19) because, recalling (6) and
(7), we get

ρ =
2d

n(n− 1)L2
> 0. (21)

Note also that (17) and (20) depend only on S, not involving L; moreover, (17) can be
rewritten as

n(ρ− 1)K2
S = δ, (22)

and this shows that

δ = 0 if and only if either ρ = 1 or K2
S = 0.

Furthermore, in view of (17), condition (20) turns out to be equivalent to

(ρ− 1)χ(OS) = 0. (23)

In case δ = 0, we can answer (15) in a precise way.
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Theorem 4.1 Let (X,L) be a scroll over a smooth surface S and let E = π∗L, where
π : X → S is the scroll projection. The conic G is the Hilbert curve Γ(S,L) of S endowed
with an ample Q-line bundle L ∈ Pic(S) ⊗ Q, HC-equivalent to the average polarization
induced by E, if and only if the vector bundle E is properly B-semistable, i. e., δ = 0.

Proof. Clearly, if δ = 0 then (14) shows that A0 = A′ for L = c1(E)
n−1 , the average

polarization of S induced by E . More generally, the same is true for any Q-polarization L,
HC equivalent to it. Thus G = Γ(S,L) for any such ample Q-line bundle L. To prove the

converse, let G = Γ(S,L) for an ample Q-line bundle L, HC-equivalent to 1
n−1c1(E). Then

L2 = 1
(n−1)2

c1(E)2 and KS · L = KS · 1
n−1c1(E). Hence equations (19) and (18) become

(ρ− 1) c1(E)2 =
δ

n
and (ρ− 1) KS · c1(E) = − δ

n
,

respectively. Summing them up we get

(ρ− 1) c1(E) ·
(
KS + c1(E)

)
= 0. (24)

Now assume, by contradiction, that δ 6= 0. Since (17)–(20) are satisfied, we see that ρ 6= 1.
So (23) and (24) imply

χ(OS) = 0 and c1(E) ·
(
KS + c1(E)

)
= 0. (25)

In particular, the former condition in (25) says that S is not a rational surface. But this
is not compatible with the latter condition, due to the following fact.

Lemma 4.2 Let (X,L) be as in Theorem 4.1 and suppose that (S, E) 6=
(
P2,OP2(1)⊕2

)
.

Then
c1(E) ·

(
KS + c1(E)

)
≥ 0,

with equality if and only if either S = P2 with E = OP2(1)⊕3, OP2(1)⊕OP2(2) or TP2 (the
tangent bundle), or S = P1 × P1 with E = OP1×P1(1, 1)⊕2. In particular, if χ(OS) = 0
then the above inequality is always strict.

Proof. Actually KS + c1(E) is nef by [13, Theorem 2], due to the assumption. Hence
the inequality follows from the ampleness of c1(E). Suppose it is an equality. Then the

Hodge index theorem implies that KS + c1(E) ≡ 0, because
(
KS + c1(E)

)2 ≥ 0, due to
the nefness. Therefore −KS ≡ c1(E) is ample, hence S is a del Pezzo surface. This in
turn implies that −KS = c1(E), since Pic(S) has no torsion. Moreover

(
S, c1(E)

)
cannot

contain lines since E is an ample vector bundle of rank ≥ 2. Therefore
(
S, c1(E)

)
is either(

P2,OP2(3)
)

or
(
P1 × P1,OP1×P1(2, 2)

)
, by the classification of del Pezzo surfaces. Thus

the assertion about E follows from the uniformity of E in view of a classical result of Van
de Ven [10, p. 211] and its analogue for the quadric surface [12, Lemma 3.6.1]. Q.E.D.

This completes the proof of Theorem 4.1. Q.E.D.

(4.3.0) Case δ = 0 being settled, let’s continue to explore what happens if δ 6= 0. Accord-
ing to the above discussion, we know from (22) and (23) that

ρ 6= 1, K2
S 6= 0 and χ(OS) = 0. (26)

By the Enriques–Kodaira classification [1], the last condition in (26) implies that S is
birational to one of the following minimal surfaces:
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a) a P1-bundle over a smooth curve of genus one;

b) an abelian or a bielliptic surface;

c) an elliptic quasi–bundle in the sense of Serrano [11, Definition 1.2].

Note that K2
S ≤ 0 in all these cases, equality occurring if and only if S is a minimal

surface. Hence the second condition in (26) becomes

K2
S < 0. (27)

Combining this with (22), we get

Remark 1. Let δ 6= 0; then δ and 1− ρ have the same sign.

Theorem 4.1 suggests that 1
rkE separates the Q-line bundles L such that G = Γ(S,L)

lying on the ray generated by det E , in terms of the B-stability properties of E . Actually,
arguing as in the proof of Theorem 4.1 and taking into account Remark 1, we can prove
the following fact.

Proposition 4.3 Let (X,L) be a scroll over a smooth surface S and let E = π∗L, where
π : X → S is the scroll projection. Suppose that G = Γ(S,L) for an ample Q-line bundle
L ∈ Pic(S)⊗Q, HC-equivalent to λc1(E) for some positive λ ∈ Q. Then E is B-semistable
(B-unstable) if and only if λ ≤ 1

n−1 (λ > 1
n−1).

Proof. Of course we can assume that δ 6= 0 by Theorem 4.1; hence χ(OS) = 0 by (26).
Since L2 = λ2c1(E)2 and KS · L = λKS · c1(E) (19) and (18) give(

(n− 1)2λ2ρ− 1
)
c1(E)2 =

δ

n
and

(
(n− 1)λρ− 1

)
KS · c1(E) = − δ

n

respectively, and summing them up we get(
(n− 1)λρ− 1

)
c1(E) ·

(
KS + c1(E)

)
+ (n− 1)λρ

(
(n− 1)λ− 1

)
c1(E)2 = 0.

Since λ > 0, recalling (21) and Lemma 4.2 we thus see that ρ − 1 < 0 if λ > 1
n−1 , while

ρ− 1 > 0 if λ < 1
n−1 . Then Remark 1 is enough to conclude. Q.E.D.

Continuing the study of case δ 6= 0, here we determine further explicit conditions on
(S, E) for being G = Γ(S,L). As already noted, the system of (17)–(20) is equivalent to
that of the first three equations only. Look at it as a system in the two unknowns ρ and
δ
n . Clearing denominators we can rewrite it as

K2
S ρ−

δ
n = K2

S

(n− 1)KS · L ρ+ δ
n = KS · c1(E)

(n− 1)2L2 ρ− δ
n = c1(E)2 .

(28)

The augmented matrix of (28), say [A|B], A standing for the coefficient matrix, is:

[A|B] =

 K2
S −1 K2

S

(n− 1)KS · L 1 KS · c1(E)
(n− 1)2L2 −1 c1(E)2

 .
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Note that rk(A) = 2; actually the determinant of the submatrix consisting of the first and
the third rows of A is

∆ = −K2
S + (n− 1)2L2 > 0, (29)

by (27). Thus our system (28) has a solution in Q2 if and only if

det[A|B] = 0. (30)

This condition, however, does not take into account that δ must be an integer. In fact we
will use it only as a necessary condition. By adding the second row to both the first and
the third one of [A|B], we see that

det[A|B] =

∣∣∣∣∣∣
KS ·

(
KS + (n− 1)L

)
0 KS ·

(
KS + c1(E)

)
(n− 1)KS · L 1 KS · c1(E)

(n− 1)L ·
(
KS + (n− 1)L

)
0 c1(E) ·

(
KS + c1(E)

)
∣∣∣∣∣∣

=
(
KS ·

(
KS + (n− 1)L

))(
c1(E) ·

(
KS + c1(E)

))
−(n− 1)

(
L ·
(
KS + (n− 1)L

))(
KS ·

(
KS + c1(E)

))
=

(
KS + (n− 1)L

)
·
(
kKS − (n− 1)hL

)
,

where h := KS ·
(
KS + c1(E)

)
and k := c1(E) ·

(
KS + c1(E)

)
. Therefore (30) is equivalent

to
kK2

S + (k − h)(n− 1)KS · L − h(n− 1)2L2 = 0. (31)

Remark 2. i) Note that k > 0 in view of Lemma 4.2, since S is not rational, as χ(OS) = 0.
ii) Moreover, h < k, since h− k =

(
KS − c1(E)

)(
KS + c1(E)

)
= K2

S − c1(E)2 < 0 by (27).
iii) We can assume that KS + c1(E) is ample; otherwise

(
S, c1(E)

)
would be in a restricted

list of cases that are not compatible with what we know about S (e.g., see [2, Proposition
7.2.2 and Theorem 7.2.3]). So, if h < 0 then no positive multiple of KS can be effective,
and therefore S is ruled in view of the Enriques theorem [1, Corollary VI.18]. Then,
according to the possibilities listed in (4.3.0), S is necessarily a non-minimal elliptic ruled
surface. On the contrary, if S is birational to either an abelian or a biellipic surface or to
an elliptic quasi-bundle, then a positive multiple of KS is effective and nontrivial, since S
is non-minimal. Hence h > 0.
iv) Consider the Q-line bundle T := KS − (n − 1)hkL. Condition (30) combined with
the Hodge index theorem implies either T ≡ 0, or T 2 < 0. The former case cannot
occur: otherwise it would be KS ≡ (n − 1) h

k L, hence K2
S = (n − 1)2(hk )2L2 ≥ 0, which

contradicts (27). Therefore T 2 < 0. This, however, does not seem to have any further
significant implication.

Provided that condition (31) is satisfied, the solution (ρ, δn) of (28) is the same as that
of the linear system consisting of the first and the third equations only. In particular, this
gives

ρ =
1

∆

∣∣∣∣ K2
S −1

c1(E)2 −1

∣∣∣∣ =
c1(E)2 −K2

S

(n− 1)2L2 −K2
S

. (32)
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and
δ

n
=

1

∆

∣∣∣∣ K2
S K2

S

(n− 1)2L2 c1(E)2

∣∣∣∣ = K2
S

c1(E)2 − (n− 1)2L2

(n− 1)2L2 −K2
S

. (33)

In particular, since δ and 1− ρ have the same sign (Remark 1), this says that

E is B-stable if and only if ρ > 1 if and only if L2 <
1

(n− 1)2
c1(E)2

(B-instability is characterized by opposite inequalities).

Going back to (17), we know that ρ =
nK2

S+δ

nK2
S

. According to (27) we can write K2
S = −t,

where t is a positive integer representing the minimal number of blowing-ups a birational
morphism from S to its minimal model factors through. Hence

ρ =
nt− δ
nt

. (34)

By combining (34) with (32), we get

nt− δ
nt

=
t+ c1(E)2

t+ (n− 1)2L2
.

Clearing denominators and recalling (7) and (6), this gives

(n− 1)2(nt− δ)L2 = t
(
nc1(E)2 + δ

)
= 2(n− 1)dt. (35)

Similarly, combining (34) with (18) we get

(n− 1)(nt− δ)KS · L = t
(
nKS · c1(E)− δ

)
. (36)

Therefore,

L2 =
2d t

(n− 1)(nt− δ)
and KS · L =

(
nKS · c1(E)− δ

)
t

(n− 1)(nt− δ)
, (37)

where d is the degree of (X,L), δ is given by (7), and t = −K2
S > 0. In particular, δ < nt.

We stress that the right hands in (37) are expressed only in terms of (S, E). Finally, these
values allow us to reformulate (31) in the following form

n
(

(k − h)KS · c1(E)− kt
)

= h
(

2(n− 1)d− δ
)
. (38)

In conclusion, all conditions we obtained can be summarized as follows.

Proposition 4.4 Let (X,L) be a scroll of degree d over a smooth surface S, let E = π∗L,
where π : X → S is the scroll projection, suppose that E is not properly B-semistable and
let δ be its Bogomolov number. Assume that the conic G is the Hilbert curve Γ(S,L) of
S for some ample Q-line bundle L ∈ Pic(S) ⊗ Q. Then S is birational to a surface as
in a), b) or c) in (4.3.0) and the number of blowing-ups necessary to obtain S from its
minimal model is t > min{0, δn}; moreover, L2 < 1

(n−1)2
c1(E)2 if and only if E is B-stable;

furthermore, L2 and KS · L are expressed by (37), and condition (38) is satisfied.
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