The correct duplication of genetic information is essential to maintain genome stability, which is lost in cancer cells. Replication fork integrity is ensured by a number of DNA metabolism proteins that assist replication of chromatin regions difficult to replicate due to their intrinsic DNA sequence composition, coordinate repair of DNA molecules resulting from aberrant replication events or protect replication forks in the presence of lesions impairing their progression. Some DNA metabolism genes involved in DNA repair are essential in higher eukaryotes even in unchallenged conditions, suggesting the existence of biological processes requiring these specialized functions in organisms with complex genomes. The impact on cell survival of null mutants of many DNA metabolism genes has precluded complete in depth analysis of their function. Cell free extracts represent a fundamental tool to overcome survival issues. The Xenopus laevis egg cell free extract is an ideal system to study replication-associated functions of essential genes. We are taking advantage of this system together with innovative imaging and proteomic based experimental approaches to characterize the molecular function of essential DNA metabolism proteins. Using this approach we have uncovered the role of some essential homologous recombination and fork protection proteins in chromosomal DNA replication and we have characterized some of the factors required for faithful replication of specific vertebrate genomic regions. This approach will be instrumental to study the molecular mechanisms underlying the function of a number of essential DNA metabolism proteins involved in the maintenance of genome stability in complex genomes.

Studying essential DNA metabolism proteins in Xenopus egg extract / V. Sannino, A.M. Kolinjivadi, G. Baldi, V. Costanzo. - In: THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY. - ISSN 0214-6282. - 60:7-9(2016), pp. 221-227. [10.1387/ijdb.160103vc]

Studying essential DNA metabolism proteins in Xenopus egg extract

G. Baldi
Penultimo
Methodology
;
V. Costanzo
Ultimo
Supervision
2016

Abstract

The correct duplication of genetic information is essential to maintain genome stability, which is lost in cancer cells. Replication fork integrity is ensured by a number of DNA metabolism proteins that assist replication of chromatin regions difficult to replicate due to their intrinsic DNA sequence composition, coordinate repair of DNA molecules resulting from aberrant replication events or protect replication forks in the presence of lesions impairing their progression. Some DNA metabolism genes involved in DNA repair are essential in higher eukaryotes even in unchallenged conditions, suggesting the existence of biological processes requiring these specialized functions in organisms with complex genomes. The impact on cell survival of null mutants of many DNA metabolism genes has precluded complete in depth analysis of their function. Cell free extracts represent a fundamental tool to overcome survival issues. The Xenopus laevis egg cell free extract is an ideal system to study replication-associated functions of essential genes. We are taking advantage of this system together with innovative imaging and proteomic based experimental approaches to characterize the molecular function of essential DNA metabolism proteins. Using this approach we have uncovered the role of some essential homologous recombination and fork protection proteins in chromosomal DNA replication and we have characterized some of the factors required for faithful replication of specific vertebrate genomic regions. This approach will be instrumental to study the molecular mechanisms underlying the function of a number of essential DNA metabolism proteins involved in the maintenance of genome stability in complex genomes.
Animals; Cell-Free System; Chromatin; Female; Oocytes; Xenopus laevis; DNA Replication
Settore MED/04 - Patologia Generale
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
SanninoCOSTANZO60103-2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri
ft221.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/578167
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact