Monitoring drift ice in the Arctic and Antarctic regions directly and by remote sensing is important for the study of climate, but a unified modeling framework is lacking. Hence, interpretation of the data, as well as the decision of what to measure, represent a challenge for different fields of science. To address this point, we analyzed, using statistical physics tools, satellite images of sea ice from four different locations in both the northern and southern hemispheres, and measured the size and the elongation of ice floes (floating pieces of ice). We find that (i) floe size follows a distribution that can be characterized with good approximation by a single length scale δl, which we discuss in the framework of stochastic fragmentation models, and (ii) the deviation of their shape from circularity is reproduced with remarkable precision by a geometric model of coalescence by freezing, based on random Voronoi tessellations, with a single free parameter expressing the shape disorder. Although the physical interpretations remain open, this advocates the parameters and as two independent indicators of the environment in the polar regions, which are easily accessible by remote sensing.

Characterizing the size and shape of sea ice floes / M. Gherardi, M. Cosentino Lagomarsino. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 5:1(2015), pp. 10226.1-10226.11.

Characterizing the size and shape of sea ice floes

M. Gherardi;M. Cosentino Lagomarsino
2015

Abstract

Monitoring drift ice in the Arctic and Antarctic regions directly and by remote sensing is important for the study of climate, but a unified modeling framework is lacking. Hence, interpretation of the data, as well as the decision of what to measure, represent a challenge for different fields of science. To address this point, we analyzed, using statistical physics tools, satellite images of sea ice from four different locations in both the northern and southern hemispheres, and measured the size and the elongation of ice floes (floating pieces of ice). We find that (i) floe size follows a distribution that can be characterized with good approximation by a single length scale δl, which we discuss in the framework of stochastic fragmentation models, and (ii) the deviation of their shape from circularity is reproduced with remarkable precision by a geometric model of coalescence by freezing, based on random Voronoi tessellations, with a single free parameter expressing the shape disorder. Although the physical interpretations remain open, this advocates the parameters and as two independent indicators of the environment in the polar regions, which are easily accessible by remote sensing.
Multidisciplinary
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
srep10226.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/562641
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact