Background and Purpose: The advanced glycation end products (AGEs) participate in the pathogenesis of diabetic nephropathy (DN) by promoting renal inflammation and injury. L-carnosine acts as a quencher of the AGE precursors reactive carbonyl species (RCS), but is rapidly inactivated by carnosinase. In this study, we evaluated the effect of FL-926-16, a carnosinase-resistant and bioavailable carnosine derivative, on the onset and progression of DN in db/db mice. Experimental Approach: Adult male db/db mice and coeval db/m controls were left untreated or treated with FL-926-16 (30 mg/Kg body weight) from weeks 6 to 20 (prevention protocol) or from weeks 20 to 34 (regression protocol). Key Results: In the prevention protocol, FL-926-16 significantly attenuated increases in creatinine (-80%), albuminuria (-77%), proteinuria (-75%), mean glomerular area (-34%), fractional (-40%) and mean (-42%) mesangial area in db/db mice. This protective effect was associated with a reduction in glomerular matrix protein expression and cell apoptosis, circulating and tissue oxidative and carbonyl stress, and renal inflammatory markers, including the NLRP3 inflammasome. In the regression protocol, the progression of DN was completely blocked, although not reversed, by FL-926-16. In cultured mesangial cells, FL-926-16 prevented NLRP3 expression induced by RCS but not by the AGE Nε-carboxymethyllysine. Conclusion and Implications: FL-926-16 is effective at preventing the onset of DN and halting its progression in db/db mice by quenching RCS, thereby reducing the accumulation of their protein adducts and the consequent inflammatory response. In a future perspective, this novel compound may represent a promising AGE-reducing approach for DN therapy.

FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice / C. Iacobini, S. Menini, C. Blasetti Fantauzzi, C.M. Pesce, A. Giaccari, E. Salomone, A. Lapolla, M. Orioli, G. Aldini, G. Pugliese. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - 175:1(2018 Jan), pp. 53-66. [10.1111/bph.14070]

FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice

M. Orioli;G. Aldini
Penultimo
;
G. Pugliese
2018

Abstract

Background and Purpose: The advanced glycation end products (AGEs) participate in the pathogenesis of diabetic nephropathy (DN) by promoting renal inflammation and injury. L-carnosine acts as a quencher of the AGE precursors reactive carbonyl species (RCS), but is rapidly inactivated by carnosinase. In this study, we evaluated the effect of FL-926-16, a carnosinase-resistant and bioavailable carnosine derivative, on the onset and progression of DN in db/db mice. Experimental Approach: Adult male db/db mice and coeval db/m controls were left untreated or treated with FL-926-16 (30 mg/Kg body weight) from weeks 6 to 20 (prevention protocol) or from weeks 20 to 34 (regression protocol). Key Results: In the prevention protocol, FL-926-16 significantly attenuated increases in creatinine (-80%), albuminuria (-77%), proteinuria (-75%), mean glomerular area (-34%), fractional (-40%) and mean (-42%) mesangial area in db/db mice. This protective effect was associated with a reduction in glomerular matrix protein expression and cell apoptosis, circulating and tissue oxidative and carbonyl stress, and renal inflammatory markers, including the NLRP3 inflammasome. In the regression protocol, the progression of DN was completely blocked, although not reversed, by FL-926-16. In cultured mesangial cells, FL-926-16 prevented NLRP3 expression induced by RCS but not by the AGE Nε-carboxymethyllysine. Conclusion and Implications: FL-926-16 is effective at preventing the onset of DN and halting its progression in db/db mice by quenching RCS, thereby reducing the accumulation of their protein adducts and the consequent inflammatory response. In a future perspective, this novel compound may represent a promising AGE-reducing approach for DN therapy.
No
English
receptor-mediated mechanisms; induced glomerular injury; glycation end-products; apoe-null mice; kidney-disease; renal injury; lipid-peroxidation; design; atherosclerosis; accumulation
Settore CHIM/08 - Chimica Farmaceutica
Articolo
Esperti anonimi
Pubblicazione scientifica
gen-2018
John Wiley & Sons
175
1
53
66
14
Pubblicato
Periodico con rilevanza internazionale
scopus
pubmed
crossref
Aderisco
info:eu-repo/semantics/article
FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice / C. Iacobini, S. Menini, C. Blasetti Fantauzzi, C.M. Pesce, A. Giaccari, E. Salomone, A. Lapolla, M. Orioli, G. Aldini, G. Pugliese. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - 175:1(2018 Jan), pp. 53-66. [10.1111/bph.14070]
open
Prodotti della ricerca::01 - Articolo su periodico
10
262
Article (author)
no
C. Iacobini, S. Menini, C. Blasetti Fantauzzi, C.M. Pesce, A. Giaccari, E. Salomone, A. Lapolla, M. Orioli, G. Aldini, G. Pugliese
File in questo prodotto:
File Dimensione Formato  
Iacobini_et_al-2018-British_Journal_of_Pharmacology copia.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/557383
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 29
social impact