In this paper we propose a novel approach to the synthesis of minimal-sized lattices, based on the decomposition of logic functions. Since the decomposition allows to obtain circuits with a smaller area, our idea is to decompose the Boolean functions according to generalizations of the classical Shannon decomposition, then generate the lattices for each component function, and finally implement the original function by a single composed lattice obtained by gluing together appropriately the lattices of the component functions. In particular we study the two decomposition schemes defining the bounded-level logic networks called P-circuits and EXOR-Projected Sums of Products (EP-SOPs). Experimental results show that about 34% of our benchmarks achieve a smaller area when implemented using the P-circuit decomposition for switching lattices, with an average gain of at least 25%, and about 27% of our benchmarks achieve a smaller area when implemented using the EP-SOP decomposition, with an average gain of at least 22%.
Enhancing logic synthesis of switching lattices by generalized Shannon decomposition methods / A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, T. Villa. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-9331. - 56(2018 Feb), pp. 193-203. [10.1016/j.micpro.2017.12.003]
Enhancing logic synthesis of switching lattices by generalized Shannon decomposition methods
V. Ciriani
Secondo
;L. Frontini;V. Liberali;G. TruccoPenultimo
;
2018
Abstract
In this paper we propose a novel approach to the synthesis of minimal-sized lattices, based on the decomposition of logic functions. Since the decomposition allows to obtain circuits with a smaller area, our idea is to decompose the Boolean functions according to generalizations of the classical Shannon decomposition, then generate the lattices for each component function, and finally implement the original function by a single composed lattice obtained by gluing together appropriately the lattices of the component functions. In particular we study the two decomposition schemes defining the bounded-level logic networks called P-circuits and EXOR-Projected Sums of Products (EP-SOPs). Experimental results show that about 34% of our benchmarks achieve a smaller area when implemented using the P-circuit decomposition for switching lattices, with an average gain of at least 25%, and about 27% of our benchmarks achieve a smaller area when implemented using the EP-SOP decomposition, with an average gain of at least 22%.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
369.6 kB
Formato
Adobe PDF
|
369.6 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S014193311730042X-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
854.03 kB
Formato
Adobe PDF
|
854.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.