Let M be the Shimura variety associated with the group of spinor similitudes of a quadratic space over Q of signature (n,2). We prove a conjecture of Bruinier-Kudla-Yang, relating the arithmetic intersection multiplicities of special divisors and big CM points on M to the central derivatives of certain L-functions. As an application of this result, we prove an averaged version of Colmez’s conjecture on the Faltings heights of CM abelian varieties.

Faltings heights of abelian varieties with complex multiplication / F. Andreatta, E. Goren, B. Howard, K. Madapusi Pera. - In: ANNALS OF MATHEMATICS. - ISSN 0003-486X. - 187:2(2018 Mar), pp. 391-531. [10.4007/annals.2018.187.2.3]

Faltings heights of abelian varieties with complex multiplication

F. Andreatta
Primo
;
2018

Abstract

Let M be the Shimura variety associated with the group of spinor similitudes of a quadratic space over Q of signature (n,2). We prove a conjecture of Bruinier-Kudla-Yang, relating the arithmetic intersection multiplicities of special divisors and big CM points on M to the central derivatives of certain L-functions. As an application of this result, we prove an averaged version of Colmez’s conjecture on the Faltings heights of CM abelian varieties.
Complex Multiplication, Faltings height, Shimura varieties, abelian varieties
Settore MAT/02 - Algebra
Settore MAT/03 - Geometria
mar-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
AnnalsMathematics_FaltinsHeightsAbelianVarieties.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 940.76 kB
Formato Adobe PDF
940.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/544356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 39
social impact