Two-dimensional electrophoresis is usually run on fully reduced samples. Under these conditions even covalently bound oligomers are dissociated and individual polypeptide chains may be fully unfolded by both, urea and SDS, which maximizes the number of resolved components and allows their pI and M(r) to be most accurately evaluated. However, various electrophoretic protocols for protein structure investigation require a combination of steps under varying redox conditions. We review here some of the applications of these procedures. We also present some original data about a few related samples -- serum from four species: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus -- which we run under fully unreduced and fully reduced conditions as well as with reduction between first and second dimension. We demonstrate that in many cases the unreduced proteins migrate with a better resolution than reduced proteins, mostly in the crowded 'alpha-globulin' area of pI 4.5-6 and M(r) 50-70 kDa.

Redox options in two-dimensional electrophoresis / R. Wait, S. Begum, D. Brambilla, A. M. Carabelli, F. Conserva, A. Guerini Rocco, I. Eberini, R. Ballerio, M. Gemeiner, I. Miller, E. Gianazza. - In: AMINO ACIDS. - ISSN 0939-4451. - 28:3(2005), pp. 239-272. [10.1007/s00726-005-0175-z]

Redox options in two-dimensional electrophoresis

A. Guerini Rocco;I. Eberini;E. Gianazza
Ultimo
2005

Abstract

Two-dimensional electrophoresis is usually run on fully reduced samples. Under these conditions even covalently bound oligomers are dissociated and individual polypeptide chains may be fully unfolded by both, urea and SDS, which maximizes the number of resolved components and allows their pI and M(r) to be most accurately evaluated. However, various electrophoretic protocols for protein structure investigation require a combination of steps under varying redox conditions. We review here some of the applications of these procedures. We also present some original data about a few related samples -- serum from four species: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus -- which we run under fully unreduced and fully reduced conditions as well as with reduction between first and second dimension. We demonstrate that in many cases the unreduced proteins migrate with a better resolution than reduced proteins, mostly in the crowded 'alpha-globulin' area of pI 4.5-6 and M(r) 50-70 kDa.
Settore BIO/10 - Biochimica
2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/5365
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact