Receptors for extracellular nucleotides (the P2X-calcium channels and the phospholipase C-coupled P2Y receptors) play key roles in pain signaling, but little is known on their function in trigerninal ganglia, whose hyperactivation leads to the development of migraine pain. Here we characterize calcium signaling via P2X(3) and P2Y receptors in primary mouse neuron-glia trigerninal cultures. Comparison with intact ganglion showed that, in dissociated cultures, sensory neurons retain, at least in part, their physical relationships with satellite glia. RT-PCR indicated expression of P2X(2)/P2X(3) (confirmed by immunocytochemistry) and of all cloned P2Y receptors. Single-cell calcium imaging with subtype-selective P2-agonists/antagonists revealed presence of functional neuronal P2X(3), as well as of ADP-sensitive P2Y(1,12,13) and UTP-activated P2Y(2)/P2Y(4) receptors on both neurons and glia. Calcium responses were much higher in glia, that also responded to UDP, suggesting functional P2Y(6) receptors. To study whether trigeminal ganglia P2 receptors are modulated upon treatment with pro-inflammatory agents, cultures were acutely (up to 3 min) or chronically (24 h) exposed to bradykinin. This resulted in potentiation of algogenic P2X(3) receptor-mediated calcium responses followed by their down-regulation at 24 h. At this exposure time, P2Y receptors responses in satellite glia were instead upregulated, suggesting a complex modulation of P2 receptors in pain signaling.

Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures / S. Ceruti, M. Fumagalli, G. Villa, C. Verderio, M.P. Abbracchio. - In: CELL CALCIUM. - ISSN 0143-4160. - 43:6(2008 Jun), pp. 576-590. [10.1016/j.ceca.2007.10.003]

Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures

S. Ceruti
Primo
;
M. Fumagalli
Secondo
;
G. Villa;M.P. Abbracchio
Ultimo
2008

Abstract

Receptors for extracellular nucleotides (the P2X-calcium channels and the phospholipase C-coupled P2Y receptors) play key roles in pain signaling, but little is known on their function in trigerninal ganglia, whose hyperactivation leads to the development of migraine pain. Here we characterize calcium signaling via P2X(3) and P2Y receptors in primary mouse neuron-glia trigerninal cultures. Comparison with intact ganglion showed that, in dissociated cultures, sensory neurons retain, at least in part, their physical relationships with satellite glia. RT-PCR indicated expression of P2X(2)/P2X(3) (confirmed by immunocytochemistry) and of all cloned P2Y receptors. Single-cell calcium imaging with subtype-selective P2-agonists/antagonists revealed presence of functional neuronal P2X(3), as well as of ADP-sensitive P2Y(1,12,13) and UTP-activated P2Y(2)/P2Y(4) receptors on both neurons and glia. Calcium responses were much higher in glia, that also responded to UDP, suggesting functional P2Y(6) receptors. To study whether trigeminal ganglia P2 receptors are modulated upon treatment with pro-inflammatory agents, cultures were acutely (up to 3 min) or chronically (24 h) exposed to bradykinin. This resulted in potentiation of algogenic P2X(3) receptor-mediated calcium responses followed by their down-regulation at 24 h. At this exposure time, P2Y receptors responses in satellite glia were instead upregulated, suggesting a complex modulation of P2 receptors in pain signaling.
Bradykinin; Calcium signaling; P2 purinoceptors; Satellite glial cells
Settore BIO/14 - Farmacologia
giu-2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/53374
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 82
social impact