We apply to aerosols the optical method of Single Particle Extinction and Scattering recently proposed for characterizing liquid suspensions and specifically adapted to the aim. It provides simultaneous measurements of the real and imaginary parts of the field scattered in the forward direction by single airborne particles passing through a tightly focused laser beam. The intensity of transmitted light is collected in the forward direction, thus realizing a self-reference interferometric scheme relying on the fundamentals of the optical theorem. A high frequency (20 MS/s), extended dynamics (12 bits) sampling is performed by a cheap segmented photodiode, and a specific pulse shape analysis is exploited to validate the signals against a precise mathematical model. We show that accessing two independent physical quantities allows to exploit physical models to recover the aerosol size distribution from the measurement of the refractive index, either real or even complex. Laboratory measurements have been performed with polydisperse aerosols made of water droplets and NaCl in the submicron range, and the system has been accurately characterized. Examples of measurements of graphite nanoparticles and Pyrethrum smoke are shown. Limitations are discussed.

Single Particle Extinction and Scattering allows novel optical characterization of aerosols / F.P. Mariani, V. Bernardoni, F. Riccobono, R. Vecchi, G. Valli, T. Sanvito, B. Paroli, A. Pullia, M.A.C. Potenza. - In: JOURNAL OF NANOPARTICLE RESEARCH. - ISSN 1388-0764. - 19:8(2017), pp. 291.1-291.15. [10.1007/s11051-017-3995-3]

Single Particle Extinction and Scattering allows novel optical characterization of aerosols

F.P. Mariani
Primo
;
V. Bernardoni
Secondo
;
R. Vecchi;G. Valli;B. Paroli;A. Pullia
Penultimo
;
M.A.C. Potenza
2017

Abstract

We apply to aerosols the optical method of Single Particle Extinction and Scattering recently proposed for characterizing liquid suspensions and specifically adapted to the aim. It provides simultaneous measurements of the real and imaginary parts of the field scattered in the forward direction by single airborne particles passing through a tightly focused laser beam. The intensity of transmitted light is collected in the forward direction, thus realizing a self-reference interferometric scheme relying on the fundamentals of the optical theorem. A high frequency (20 MS/s), extended dynamics (12 bits) sampling is performed by a cheap segmented photodiode, and a specific pulse shape analysis is exploited to validate the signals against a precise mathematical model. We show that accessing two independent physical quantities allows to exploit physical models to recover the aerosol size distribution from the measurement of the refractive index, either real or even complex. Laboratory measurements have been performed with polydisperse aerosols made of water droplets and NaCl in the submicron range, and the system has been accurately characterized. Examples of measurements of graphite nanoparticles and Pyrethrum smoke are shown. Limitations are discussed.
Absorption; Aerosol optical properties; Extinction; Light scattering; Nano- and microparticles; Refractive index; Bioengineering; Chemistry (all); Atomic and Molecular Physics, and Optics; Modeling and Simulation; Materials Science (all); Condensed Matter Physics
Settore FIS/03 - Fisica della Materia
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
SPES_JournNanoRes2017.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/526539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact