The thiol group of cysteine plays a pivotal role in structural and functional biology. We use mass spectrometry to study glutathione-related homo- and heterodimeric disulfides, aiming at understanding the factors affecting the redox potentials of different disulfide/thiol pairs. Several electrospray ionization (ESI)-protonated disulfides of cysteamine, cysteine, penicillamine, N-acetylcysteine, N-acetylpenicillamine, γGluCySH, HSCyGly, and glutathione were analyzed on a triple quadrupole instrument to measure their energy-resolved tandem mass spectra. Fission of the disulfide bond yields RSH*H+ and RS+ ions. The logarithm of the intensity ratio of the RS+/RSH*H+ fragments in homodimeric disulfides is proportional to the normal reduction potential of their RSSR/RSH pairs determined by nuclear magnetic resonance (NMR) in solution, the more reducing ones yielding the higher ratios. Also in some R1S-SR2 disulfides, the ratio of the intensities of the RSHRHR and RSR ions of each participating thiol shows a linear relationship with the Nernst equation potential difference of the corresponding redox pairs. This behavior allows us to measure the redox potentials of some disulfide/thiol pairs by using different thiol-reducing probes of known oxidoreductive potential as reference. To assist understanding of the fission mechanism of the disulfide bond, the fragments tentatively identified as 'sulfenium' were themselves fragmented; accurate mass measurement of the resulting second-generation fragments demonstrated a loss of thioformaldehyde, thus supporting the assigned structure of this elusive intermediate of the oxidative stress pathway. Understanding this fragmentation process allows us to employ this technique with larger molecules to measure by mass spectrometry the micro-redox properties of different disulfide bonds in peptides with catalytic and signaling biological activity. Copyright

Thiol-disuplhide redox equilibria of glutahione metaboloma compounds investigated by tandem mass spectrometry / F.M. Rubino, M. Pitton, E. Caneva, M. Pappini, A. Colombi. - In: RAPID COMMUNICATIONS IN MASS SPECTROMETRY. - ISSN 0951-4198. - 22:23(2008 Nov 10), pp. 3935-3948.

Thiol-disuplhide redox equilibria of glutahione metaboloma compounds investigated by tandem mass spectrometry

F.M. Rubino
Primo
;
M. Pitton
Secondo
;
E. Caneva;M. Pappini
Penultimo
;
A. Colombi
Ultimo
2008

Abstract

The thiol group of cysteine plays a pivotal role in structural and functional biology. We use mass spectrometry to study glutathione-related homo- and heterodimeric disulfides, aiming at understanding the factors affecting the redox potentials of different disulfide/thiol pairs. Several electrospray ionization (ESI)-protonated disulfides of cysteamine, cysteine, penicillamine, N-acetylcysteine, N-acetylpenicillamine, γGluCySH, HSCyGly, and glutathione were analyzed on a triple quadrupole instrument to measure their energy-resolved tandem mass spectra. Fission of the disulfide bond yields RSH*H+ and RS+ ions. The logarithm of the intensity ratio of the RS+/RSH*H+ fragments in homodimeric disulfides is proportional to the normal reduction potential of their RSSR/RSH pairs determined by nuclear magnetic resonance (NMR) in solution, the more reducing ones yielding the higher ratios. Also in some R1S-SR2 disulfides, the ratio of the intensities of the RSHRHR and RSR ions of each participating thiol shows a linear relationship with the Nernst equation potential difference of the corresponding redox pairs. This behavior allows us to measure the redox potentials of some disulfide/thiol pairs by using different thiol-reducing probes of known oxidoreductive potential as reference. To assist understanding of the fission mechanism of the disulfide bond, the fragments tentatively identified as 'sulfenium' were themselves fragmented; accurate mass measurement of the resulting second-generation fragments demonstrated a loss of thioformaldehyde, thus supporting the assigned structure of this elusive intermediate of the oxidative stress pathway. Understanding this fragmentation process allows us to employ this technique with larger molecules to measure by mass spectrometry the micro-redox properties of different disulfide bonds in peptides with catalytic and signaling biological activity. Copyright
thiol-disulphide ; metaboloma ; mass spectometry
Settore MED/44 - Medicina del Lavoro
10-nov-2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/52466
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact