Embedding asset pricing in a utility maximization framework leads naturally to the concept of minimax martingale measures. We consider a market model where the price process is assumed to be a R^{d}- semimartingale X and the set of trading strategies consists of all predictable, X- integrable, R^{d} valued processes H for which the stochastic integral (H.X) is uniformly bounded from below. When the market is free of arbitrage, we show that a sufficient condition for the existence of the minimax measure is that the utility function u:R→R is concave and nondecreasing. We also show the equivalence between the No Free Lunch with Vanishing Risk condition, the existence of a separating measure, and a properly defined notion of viability.
Titolo: | On the existence of minimax martingale measures |
Autori: | FRITTELLI, MARCO (Ultimo) |
Parole Chiave: | Asset pricing; Duality; Incomplete markets; Martingale measures; Relative entropy; Utility maximization; Viability |
Settore Scientifico Disciplinare: | Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie |
Data di pubblicazione: | 2002 |
Rivista: | |
Tipologia: | Article (author) |
Digital Object Identifier (DOI): | 10.1111/1467-9965.00001 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.