How visual attention is shared between objects moving in an observed scene is a key issue to situate vision in the world. In this note, we discuss how a computational model taking into account such issue, can be designed in a bayesian framework. To validate the model, experiments with eye-tracked human subjects are presented and discussed.
A bayesian approach to situated vision / G. Boccignone, V. Caggiano, G.D. Fiore, A. Marcelli, P. Napoletano - In: Brain, Vision, and Artificial Intelligence / [a cura di] M. De Gregorio, V. Di Maio, M. Frucci, C. Musio. - [s.l] : Springer, 2005. - ISBN 3540292829. - pp. 367-376 (( Intervento presentato al 1. convegno International Symposium on Brain, Vision, and Artificial Intelligence tenutosi a Napoli nel 2005.
A bayesian approach to situated vision
G. Boccignone
;
2005
Abstract
How visual attention is shared between objects moving in an observed scene is a key issue to situate vision in the world. In this note, we discuss how a computational model taking into account such issue, can be designed in a bayesian framework. To validate the model, experiments with eye-tracked human subjects are presented and discussed.File | Dimensione | Formato | |
---|---|---|---|
chp%3A10.1007%2F11565123_35.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
435.14 kB
Formato
Adobe PDF
|
435.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.