We present a probabilistic model for motion estimation in which motion characteristics are inferred on the basis of a finite mixture of motion models. The model is graphically represented in the form of a pairwise Markov Random Field network upon which a Loopy Belief Propagation algorithm is exploited to perform inference. Experiments on different video clips are presented and discussed.

Motion estimation via belief propagation / G. Boccignone, A. Marcelli, P. Napoletano, M. Ferraro - In: Image Analysis and Processing, 2007. ICIAP 2007. 14th International Conference on[s.l] : IEEE, 2007. - ISBN 0769528775. - pp. 55-60 (( Intervento presentato al 14. convegno International Conference on Image Analysis and Processing tenutosi a Modena nel 2007.

Motion estimation via belief propagation

G. Boccignone
;
2007

Abstract

We present a probabilistic model for motion estimation in which motion characteristics are inferred on the basis of a finite mixture of motion models. The model is graphically represented in the form of a pairwise Markov Random Field network upon which a Loopy Belief Propagation algorithm is exploited to perform inference. Experiments on different video clips are presented and discussed.
vision; images; models; flow
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
2007
CPS Color
Franco Cosimo Panini
Banca Popolare dell'Emilia Romagna
Accademia Militare di Modena
CNA di Modena
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
04362757.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 406.96 kB
Formato Adobe PDF
406.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/494311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact