Background: The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. Experimental design: DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. Results: DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. Conclusions: These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.

Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples : Insights from liver tissue / A. Tanca, M. Abbondio, S. Pisanu, D. Pagnozzi, S. Uzzau, M.F. Addis. - In: CLINICAL PROTEOMICS. - ISSN 1542-6416. - 11:1(2014 Jul). [10.1186/1559-0275-11-28]

Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples : Insights from liver tissue

M.F. Addis
2014

Abstract

Background: The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. Experimental design: DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. Results: DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. Conclusions: These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.
archival tissues; FASP; FFPE; LC-MS/MS; protein extraction; molecular medicine; molecular biology; clinical biochemistry
Settore BIO/10 - Biochimica
lug-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Addis_ClinicalProteomics_Critical_2014.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/492752
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact