BACKGROUND: In mammalian cells a regulatory mechanism, known as nonsense-mediated mRNA decay, degrades mRNA harboring premature termination codons. This mechanism is intron-dependent and functions as a quality control mechanism to eliminate abnormal transcripts and modulates the levels of a variety of naturally occurring transcripts. DESIGN AND METHODS: In this study, we explored the molecular mechanism of ADAMTS13 deficiency in two compound heterozygous siblings carrying a 29-nucleotide deletion mutation located in exon 3 (c.291_319delGGAGGACACAGAGCGCTATGTGCTCACCA) in one allele and a single base (A) insertion mutation (c.4143_4144insA) in the second CUB domain previously reported in the other allele. Real-time quantitative reverse transcriptase polymerase chain reaction was used to explore whether the premature termination codons introduced by the deletion of the 29 nucleotides triggered the nonsense-mediated mRNA decay. RESULTS: In vitro-expression studies demonstrated that the premature termination codons inserted by the 29 bp deletion probably lead to a reduction of ADAMTS13 mRNA levels through the regulatory mechanisms of nonsense-mRNA decay. Furthermore, the 4143_4144insA mutation causes an impairment of secretion that leads to retention of the mutant protein in the endoplasmic reticulum, as observed in immunofluorescence studies. CONCLUSIONS: In conclusion, this work reports how two different ADAMTS13 gene defects acting at two different levels, i.e, impairment of steady-state mRNA level caused by the premature termination codon mediated decay mechanism induced by the 29 bp deletion mutation and alteration of the secretion pathway due to 4143_4144insA, lead to a severe deficiency of ADAMTS13
Nonsense-mediated mRNA decay in the ADAMTS13 gene caused by a 29-nucleotide deletion / I. Garagiola, C. Valsecchi, S. Lavoretano, H. Oren, M. Bohm, F. Peyvandi. - In: HAEMATOLOGICA. - ISSN 0390-6078. - 93:11(2008 Nov), pp. 1678-1685.
Nonsense-mediated mRNA decay in the ADAMTS13 gene caused by a 29-nucleotide deletion
I. GaragiolaPrimo
;C. ValsecchiSecondo
;S. Lavoretano;F. PeyvandiUltimo
2008
Abstract
BACKGROUND: In mammalian cells a regulatory mechanism, known as nonsense-mediated mRNA decay, degrades mRNA harboring premature termination codons. This mechanism is intron-dependent and functions as a quality control mechanism to eliminate abnormal transcripts and modulates the levels of a variety of naturally occurring transcripts. DESIGN AND METHODS: In this study, we explored the molecular mechanism of ADAMTS13 deficiency in two compound heterozygous siblings carrying a 29-nucleotide deletion mutation located in exon 3 (c.291_319delGGAGGACACAGAGCGCTATGTGCTCACCA) in one allele and a single base (A) insertion mutation (c.4143_4144insA) in the second CUB domain previously reported in the other allele. Real-time quantitative reverse transcriptase polymerase chain reaction was used to explore whether the premature termination codons introduced by the deletion of the 29 nucleotides triggered the nonsense-mediated mRNA decay. RESULTS: In vitro-expression studies demonstrated that the premature termination codons inserted by the 29 bp deletion probably lead to a reduction of ADAMTS13 mRNA levels through the regulatory mechanisms of nonsense-mRNA decay. Furthermore, the 4143_4144insA mutation causes an impairment of secretion that leads to retention of the mutant protein in the endoplasmic reticulum, as observed in immunofluorescence studies. CONCLUSIONS: In conclusion, this work reports how two different ADAMTS13 gene defects acting at two different levels, i.e, impairment of steady-state mRNA level caused by the premature termination codon mediated decay mechanism induced by the 29 bp deletion mutation and alteration of the secretion pathway due to 4143_4144insA, lead to a severe deficiency of ADAMTS13File | Dimensione | Formato | |
---|---|---|---|
1678.full[1].pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
238.19 kB
Formato
Adobe PDF
|
238.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.