Let M be the Shimura variety associated to the group of spinor similitudes of a quadratic space over Q of signature (n,2). We prove a conjecture of Bruinier and Yang, relating the arithmetic intersection multiplicities of special divisors and complex multiplication points on M to the central derivatives of certain L-functions. Each such L-function is the Rankin–Selberg convolution associated with a cusp form of half-integral weight n/2+1, and the weight n/2 theta series of a positive definite quadratic space of rank n. When n=1 the Shimura variety M is a classical quaternionic Shimura curve, and our result is a variant of the Gross–Zagier theorem on heights of Heegner points.
Height pairings on orthogonal Shimura varieties / F. Andreatta, E.Z. Goren, B. Howard, K. Madapusi Pera. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - 153:3(2017 Mar), pp. 474-534. [10.1112/S0010437X1600779X]
Height pairings on orthogonal Shimura varieties
F. Andreatta;
2017
Abstract
Let M be the Shimura variety associated to the group of spinor similitudes of a quadratic space over Q of signature (n,2). We prove a conjecture of Bruinier and Yang, relating the arithmetic intersection multiplicities of special divisors and complex multiplication points on M to the central derivatives of certain L-functions. Each such L-function is the Rankin–Selberg convolution associated with a cusp form of half-integral weight n/2+1, and the weight n/2 theta series of a positive definite quadratic space of rank n. When n=1 the Shimura variety M is a classical quaternionic Shimura curve, and our result is a variant of the Gross–Zagier theorem on heights of Heegner points.File | Dimensione | Formato | |
---|---|---|---|
GSpin.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
622.02 kB
Formato
Adobe PDF
|
622.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
height_pairings_on_orthogonal_shimura_varieties.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.