The kinetics of the dehydroxylation of chrysotile was followed in situ at high temperature using real-time conventional and synchrotron powder diffraction(XRPD). This is the first time kinetics parameters have been calculated for the dehydroxylation of chrysotile. The value of the order of the reaction mechanism calculated using the Avrami model indicates that the rate-limiting step of the reaction is a one-dimensional diffusion withan instantaneous nucleation or a deceleratory rate of nucleation of the reaction product. Hence, the rate-limiting step is the one-dimensional diffusion of the water molecules formed in the interlayer region by direct condensation of two hydrogen atoms and an oxygen atom. The calculated apparent activation energy of the reaction in the temperature range 620–750 °C is 184 kJ mol)1. The diffusion path is along the axis of the fibrils forming the fibers. The amorphous or short-range ordered dehydroxylate of chrysotile is extremely unstable because forsterite readily nucleates in the Mg-rich regions.Moreover, it is less stable than the dehydroxylate of kaolinite, the so-called metakaolinite, which forms mullite at about 950 °C. This difference is interpreted in terms of the different nature of the two ions Mg2+ and Al3+ and their function as glass modifier and glassforming ion, respectively.

Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD / A. Cattaneo, A.F. Gualtieri, G. Artioli. - In: PHYSICS AND CHEMISTRY OF MINERALS. - ISSN 0342-1791. - 30:3(2003), pp. 177-183. [10.1007/s00269-003-0298-2]

Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD

A. Cattaneo
Primo
;
G. Artioli
Ultimo
2003

Abstract

The kinetics of the dehydroxylation of chrysotile was followed in situ at high temperature using real-time conventional and synchrotron powder diffraction(XRPD). This is the first time kinetics parameters have been calculated for the dehydroxylation of chrysotile. The value of the order of the reaction mechanism calculated using the Avrami model indicates that the rate-limiting step of the reaction is a one-dimensional diffusion withan instantaneous nucleation or a deceleratory rate of nucleation of the reaction product. Hence, the rate-limiting step is the one-dimensional diffusion of the water molecules formed in the interlayer region by direct condensation of two hydrogen atoms and an oxygen atom. The calculated apparent activation energy of the reaction in the temperature range 620–750 °C is 184 kJ mol)1. The diffusion path is along the axis of the fibrils forming the fibers. The amorphous or short-range ordered dehydroxylate of chrysotile is extremely unstable because forsterite readily nucleates in the Mg-rich regions.Moreover, it is less stable than the dehydroxylate of kaolinite, the so-called metakaolinite, which forms mullite at about 950 °C. This difference is interpreted in terms of the different nature of the two ions Mg2+ and Al3+ and their function as glass modifier and glassforming ion, respectively.
Asbestos ; chrysotile ; in situ powder diffraction ; reaction kinetics ; activation energy
Settore GEO/06 - Mineralogia
Settore MED/42 - Igiene Generale e Applicata
2003
http://www.springerlink.com/content/2f2fjc8twk7cvvmu/
Article (author)
File in questo prodotto:
File Dimensione Formato  
Cattaneo et al (2003) - Kinetic_study.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 180.25 kB
Formato Adobe PDF
180.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/47341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 81
social impact