Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces are studied. In particular, the following inequality is proved: let B⊂ RN, N≥ 3 , be the unit ball, and let H0,rad1(B) denote the first order Sobolev space of radial functions, and 2 ∗= 2 N/ (N- 2) the corresponding critical Sobolev embeddding exponent. Let r= |x| , and p(r) = 2 ∗+ rα, with α> 0 ; then (Formula presented.). We point out that the growth of p(r) is strictly larger than 2 ∗, except in the origin. Furthermore, we show that for p(r) = 2 ∗+ rα, with 0
On supercritical Sobolev type inequalities and related elliptic equations / J.M. do Ó, B. Ruf, P. Ubilla. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 55:4(2016 Aug 01).
On supercritical Sobolev type inequalities and related elliptic equations
B. Ruf
;
2016
Abstract
Sobolev type embeddings for radial functions into variable exponent Lebesgue spaces are studied. In particular, the following inequality is proved: let B⊂ RN, N≥ 3 , be the unit ball, and let H0,rad1(B) denote the first order Sobolev space of radial functions, and 2 ∗= 2 N/ (N- 2) the corresponding critical Sobolev embeddding exponent. Let r= |x| , and p(r) = 2 ∗+ rα, with α> 0 ; then (Formula presented.). We point out that the growth of p(r) is strictly larger than 2 ∗, except in the origin. Furthermore, we show that for p(r) = 2 ∗+ rα, with 0File | Dimensione | Formato | |
---|---|---|---|
doO-Ruf-Ubilla-revised.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
323.92 kB
Formato
Adobe PDF
|
323.92 kB | Adobe PDF | Visualizza/Apri |
DoÓ2016_Article_OnSupercriticalSobolevTypeIneq.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
483.79 kB
Formato
Adobe PDF
|
483.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.