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Abstract. Sobolev type embeddings for radial functions into variable

exponent Lebesgue spaces are studied. In particular, the following in-

equality is proved:

Let B � R
N ; N � 3, be the unit ball, and let H1

0;rad(B) denote the

�rst order Sobolev space of radial functions, and 2� = 2N=(N � 2) the

corresponding critical Sobolev embeddding exponent. Let r = jxj, and

p(r) = 2� + r�, with � > 0; then

(0.1) sup
nZ

B

jujp(r) dx
�� u 2 H1

0;rad(B); kruk2 = 1
o

< +1:

We point out that the growth of p(r) is strictly larger than 2�, except

in the origin.

Furthermore, we show that for p(r) = 2�+r�, with 0 < � < minfN
2
;N�

2g, the supremum in (0.1) is attained.

Finally, we prove that associated elliptic equations admit nontrivial ra-

dial solutions. This is somewhat surprising since the nonlinearities have

strictly supercritical growth except in the origin.

1. Introduction and main results

Let 
 � R
N denote a bounded domain in RN , N � 3. The Sobolev em-

beddings yield explicit (critical) exponents for embeddings into Lebesgue Lp-
spaces, W 1;2(
) � L2

�

(
), which are optimal within the class of Lp spaces.
Extending to the class of \rearrangement invariant" (r.i.) Banach spaces, the
Sobolev embeddings may be slightly improved by going to Lorentz spaces
Lp;q(
) (see Peetre [9] and Tartar [15]); Lorentz spaces Lp;q are scales of
rearrangement invariant interpolation spaces between Lebesgue spaces Lp.
Indeed, one has

W 1;2(
) � L2
�;2(
):

It is inherent to the de�niton of r.i. Banach spaces that the inequalities
remain valid under symmetrization, and hence it is su�cient to prove the
respective inequalities in the radial context.
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In this article we consider inequalities and related embeddings into non
rearrangement inavariant Banach spaces. In fact, our targes spaces are vari-
able exponent Lebesgue spaces (see [8]), which have received wide attention
in recent years. Since symmetrization cannot be applied in this situation,
and in order to obtain optimal results, we are lead to restrict the spaces
to functions which are adapted to the variable exponents. In particular,
for radially symmetric variable exponents, it is natural to restrict to spaces
of radially symmetric functions. On the other hand, we will see that this
restriction allows for a considerable gain in growth.
In particular, we will prove the following inequality: Let B � RN denote

the unit ball, r = jxj and let H1
0;rad(B) be the �rst order Sobolev space of

radial functions, and 2� = 2N=(N � 2) the corresponding critical Sobolev
embeddding exponent.

Theorem 1.1. Let p(r) = 2� + r� and � > 0; then

(1.1) sup
nZ

B
ju(x)jp(r)dx : u 2 H1

0;rad(B); kruk2 = 1
o

< +1:

We emphasize that the variable exponent p(r) has critical Sobolev growth
only in the origin, and is strictly supercritical everywhere else. Furthermore,
if 0 < � < 1, then the derivative of p(r) in the origin is +1.
As a consequence of Theorem 1.1, we have the following embedding of the

subspace of radial functions in H1
0 (B) into a not rearrangement invariant

Lebesgue space with variable exponent:

Corollary 1.2. The following embedding is continuous:

(1.2) H1
0;rad(B) ,! Lp(r)(B) ;

where Lp(r) is de�ned as follows (see e.g. [8])

Lp(r)(B) :=
n
u : B ! R measurable :

Z
B
ju(x)jp(r)dx <1

o
with norm

kukp(r) = inf
n
� > 0 ;

Z
B

���u(x)
�

���p(r)dx � 1
o
:

Next, let �N denote the following best constant of Sobolev type

(1.3) �N := sup
fu2H1

0;rad(B):kruk2=1g

Z
B
ju(x)j2�dx

and consider the analogous constant in the variable exponent space Lp(r)

(1.4) UN := sup
fu2H1

0;rad(B):kruk2=1g

Z
B
ju(x)jp(r)dx:

We will show the following theorem
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Theorem 1.3. If p(r) = 2� + r� and

(1.5) 0 < � < minfN=2; N � 2g
then:

(1.6) UN > �N :

The restriction (1.5) says that p(r) may not be too at near the origin for
(1.6) to hold.

It is well-kown that the supremum �N in (1.3) is not attained whenever

 6= R

N . The following theorem shows that UN is attained if it is larger
than �N .

Theorem 1.4. If UN > �N , then the supremum UN is attained.

We recall the seminal work of Brezis-Nirenberg [2] who proved that adding
a suitable lower order perturbation to the critical Sobolev exponent func-
tional leads to a conclusion like (1.6), and then that the corresponding supre-
mum is attained. Here we have an analogous result, but with a very di�erent
growth function: the variable exponent function has a strictly supercritical
growth everywhere except in the origin, that is, we have a \supercritical
perturbation" of the critical exponent 2�.

Next, we consider a related elliptic equation with a supercritical nonlin-
earity.

Theorem 1.5. Let p(r) = 2� + r�, with � satisfying condition (1.5). Then
the following boundary value problem has a nontrivial radial solution:

(1.7)

8<
:

��u = up(r)�1 in B;
u > 0 in B;
u = 0 on @B:

Note that the nonlinearity u2
��1+r� has a highly supercritical growth

(expect in the origin where the growth is critical). Thus, the existence of a
solution is quite surprising: recall that by Pohozaev's identity [10] equation
(1.7) has no non-trivial solution if p(r) = 2� + c, with c � 0, while we
obtain the existence of a solution for any p(r) of the form p(r) = 2� + r�.
For existence results concerning equations with critical growth and with
conditions on the domain, we refer to the results of Bahri-Coron [1] and
Coron [3], while for equations with slightly supercritical growth we recall
the articles of del Pino [4], del Pino-Wei [7], see also [6], [5], and for other
types of solutions in supercritical equations, [11], [12].

The proof of Theorem 1.5 follows the ideas of [2]: using the mountain-pass
theorem one constructs a minimax level for the functional corresponding to
equation (1.7). Using the structure of the nonlinearity it is then shown that
this level lies below the non-compactness level of the functional, and is thus
a critical value.
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Plan of the Paper. In Sect. 2, we prove a more general version of Theorem
1.1. In Sect. 3, we prove Theorem 1.3. In Sect. 4, we show that the
supremum UN de�ned in (1.4) is attained. In Sect. 5, we show the existence
of nontrivial solution of (1.7), which as we already emphasized is a semilinear
elliptic problem involving highly supercritical growth.

2. The inequality

In this section we state a more general version of Theorem 1.1 and give the
proof. Let f : [0; 1)! R

+ be a continuous function satisfying the following
conditions:

(f1) f(0) = 0 and f(r) > 0 for all r > 0;

(f2) f(r) � c

j log rj� for some � > 2, for r near 0;

(f3) f(r) � c

j1� rj , for r near 1.
We recall the following facts: Let SN be the best constant in the Sobolev

embedding H1(RN ) ,! L2
�

(RN ) with 2� = 2N=(N � 2), that is

(2.1) SN = inf

(kruk2
L2(RN )

kuk2
L2� (RN )

: u 2 L2
�

(RN ) n f0g;ru 2 LN (RN )

)
:

It is well-known that the in�mum SN is achieved. Moreover, for every
open subset 
 of RN , let

SN (
) := inf
n
kruk22 : u 2 H1

0 (
); kuk2� = 1
o
:

It is known that SN (
) = SN , and that SN (
) is never achieved except
when 
 = R

N .

We will use throughout the paper the notation jxj = r.

We now state and prove the following general inequality:

Theorem 2.1. Assume that f 2 C([0; 1);R+) satis�es (f1) � (f3), and let
p(r) = 2� + f(r). Then

(2.2) sup
nZ

B
ju(x)jp(r) dx : u 2 H1

0;rad(B); kruk2 = 1
o

< +1:

Note that f(r) = r�; � > 0, satis�es (f1) � (f3), and hence Theorem 2.1
implies Theorem 1.1.

We are going to use the following versions of the "radial lemma" (see [16]).

Lemma 2.2. Let u 2 H1
0;rad(B). Then

(2.3) ju(r)j � 1

(N � 2)1=2
kruk2
r(N�2)=2
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and

(2.4) ju(r)j � (1� r)1=2

r(N�2)=2
kruk2:

Proof. If u 2 H1
0;rad(B), then

(2.5)

ju(r)j �
��� Z 1

r
u0(s) ds

��� � Z 1

r

���u0(s)s(N�1)=2 1

s(N�1)=2

��� ds
� krukL2

 1

s(N�1)=2


L2([r;1])

= krukL2

�r2�N � 1

N � 2

�1=2
which yields (2.3). To obtain (2.4), note that we can rewrite

�r2�N � 1

N � 2

�1=2
=

1p
N � 2

� 1

rN�2
� 1

�1=2

=
1p

N � 2

�1� rN�2

rN�2

�1=2
=

1p
N � 2

1

r(N�2)=2

�
1� rN�2

�1=2
=

1p
N � 2

1

r(N�2)=2

��
1� r

��
1 + r + � � �+ rN�3

��1=2
� 1

r(N�2)=2
�
1� r

�1=2
;

which together with (2.5) establishes (2.4). �

2.1. Proof of Theorem 2.1. For u 2 H1
0;rad (B) with kruk2 = 1, we can

write (here !N-1 is the surface area of the unit sphere in RN )
(2.6)
1

!N�1

Z
B
ju(x)j2�+f(r)dx =

Z �

0
ju(r)j2�+f(r)rN�1 dx+

Z 1

�
ju(r)j2�+f(r)rN�1dr;

where � will be determined later. We shall estimate each of these two terms
separately.Z �

0
ju(r)j2�+f(r)rN�1 dx =

Z �

0
ju(r)j2�

�
ju(r)jf(r) � 1

�
rN�1 dx+

Z �

0
ju(r)j2�rN�1 dx

�
Z �

0
ju(r)j2�

�
ju(r)jf(r) � 1

�
rN�1 dx+�N :

By the Radial Lemma 2.2 for u 2 H1
0;rad (B1) with kruk2 = 1 we can write

(2.7) ju(r)j � (1� r)1=2

r(N�2)=2
� 1

r(N�2)=2
;
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which impliesZ �

0
ju(r)j2� �ju(r)jf(r) � 1

�
rN�1 dx

�
Z �

0

� 1

r(N�2)=2

�2N=(N�2)�� 1

r(N�2)=2

�f(r) � 1

�
rN�1dr

�
Z �

0

1

r

�
exp

�
f(r) log

1

r(N�2)=2

�
� 1

�
dr

�
Z �

0

1

r

�
exp

�
N�2
2 f(r)j log rj

�
� 1

�
dr

� d N�2
2

Z �

0
f(r)

j log rj
r

dr;

where in the estimates above we have used that given d > 1 there exists
� = �(d) > 0 such that

eg(s) � 1 � dg(s); 8s 2 (0; �); provided that g(s)! 0; as s! 0 ;

which is the case for g(r) = N�2
2 f(r)j log rj by assumption (f2). Therefore,

in order to obtainZ �

0
ju(r)j2�

�
ju(r)jf(r) � 1

�
rN�1 dx <1

we have to impose the condition

(2.8)

Z �

0
f(r)

j log rj
r

dr <1:

Notice that (2.8) holds if we assume condition (f2).

To estimate the second integral in (2.6), using again (2.7) and assumption
(f3), we can write

(2.9)

Z 1

�
ju(r)j2�+f(r)rN�1dr �

Z 1

�

� 1

r(N�2)=2

�2�+f(r)
rN�1dr

=

Z 1

�

1

r1+
N�2
2

f(r)
dr

= �
Z 0

1��

1

(1� s)1+
N�2
2

f(1�s)
ds

�
Z 1��

0

1

(1� s)1+
N�2
2

c
s

ds

=

Z 1��

0

1

e(1+
N�2
2

c
s
) log(1�s)

ds:

Since e(1+
N�2
2

c
s
) log(1�s) � e�(1+

N�2
2

c
s
)s for s near 0 (i.e. for r near 1), the

integral is �nite.
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Example 2.3. For r near 0, consider

1) f(r) = 1
j log rj2+�

, for � > 0.

2) f(r) = r�j log rj�, for � > 0 and � � 0.

For r near 1, consider f(r) = 1=(1� r).

2.2. Proof of Corollary 1.2. Consider the variable exponent Lebesgue
space

L2
�+f(r)(B) :=

n
u : B ! R measurable :

Z
B
ju(x)j2�+f(r)dx <1

o
endowed with the norm

kuk2�+f(r) := inf
n
� > 0 :

Z
B

����u(x)�
����
2�+f(r)

dx � 1
o
:

Assuming that u 2 H1
0;rad (B) with kruk2 = 1, we have to prove that

kuk2�+f(r) � C. Using Theorem 2.1 we know thatZ
B
ju(x)j2�+f(r)dx = C <1:

For � > 1 we can estimateZ
B

����u(x)�
����
2�+f(r)

dx �
Z
B

ju(x)j2�+f(r)
�2�

dx � C

�2�
� 1

if � = �u is su�ciently large. Then, kuk2�+f(r) � �u.

3. The Supremum UN

From now on we assume that

(3.1) f(r) = r� ; with 0 < � < minfN=2; N � 2g:

3.1. Proof of Theorem 1.3. Let us denote with

(3.2)
u�"(r) = CN

"
N�2
2

("2 + r2)
N�2
2

; " > 0

CN := (N(N � 2))
N�2
2

the standard Sobolev instantons, see [14], [13], which satisfy the equation

(3.3) ��u = u2
��1 ; on R

N

and for whichZ
RN

jru�"(x)j2dx = S
N=2
N and

Z
RN

ju�"(x)j2
�

dx = S
N=2
N
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where SN is as in (2.1). Let � be a suitable cut-o� function; it is then
well-known (see [2]) that

kr(�u�")k22 = S
N=2
N +O("N�2);

k�u�"k2�2� = S
N=2
N +O("N ):

Let now BN := 1=S
N=4
N , and

u"(r) := BN �(r)u�"(r) = AN �(r)
"
N�2
2

("2 + r2)
N�2
2

with AN := BNCN (see (3.2)), so that

(3.4) kru"kL2 = 1 +O("N�2)

and

(3.5)

Z
B
ju"(x)j2�dx =

Z
B
B2�
N j�(x)u�"(x)j2

�

dx

=
S
N=2
N +O("N )�
S
N=4
N

�2�
= S

� N
N�2

N +O("N )

=: �N +O("N ):

Finally, by (3.4) and (3.5) we haveZ
B

� ju"(x)j
kru"(x)k2

�2�
dx = �N +O("N�2):

To prove (1.6) we will show the following

Lemma 3.1. There exists a constant C > 0 such that for all " > 0 smallZ
B
ju"(x)j2�+r�dx �

Z
B
ju"(x)j2�dx+ C j log "j"� +O("N=2) +O("N�2):

Then, since by assumption � � minfN=2; N � 2g, we conclude by asymp-
totics that

UN = sup
nZ

B
ju(x)j2�+r�dx ; kruk2 = 1

o

�
Z
B

� ju"(x)j
kru"k2

�2�+r�

dx =

Z
B
ju"(x)j2�+r�dx+O("N�2)

�
Z
B
ju"(x)j2�dx+ C j log "j"� +O("N=2) +O("N�2)

> �N ;

which concludes the proof of Theorem 1.3. �
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Proof of Lemma 3.1: First observe that

(3.6) BNu
�
"(r) � 1 if and only if r � �

A
2=(N�2)
N "� "2

�1=2
=: a"

(recall that AN = BNCN ). We write

1

!N�1

Z
B
ju"(x)j2�+r�dx =

Z a"

0
ju"(r)j2�+r�rN�1dr+

Z 1

a"

ju"(r)j2�+r�rN�1dr:

First, we estimate the integralZ 1

a"

ju"(r)j2�+r�rN�1dr =
Z 1

a"

j�(r)u"(r)�j2�+r�rN�1dr

�
Z 1

a"

ju�"(r)j2
�

rN�1dr

=

Z 1

a"

A2�
N "

N

("2 + r2)N
rN�1dr

�
Z 1

a"

A2�
N "

N

r2N
rN�1dr

= A2�
N "

N

Z 1

a"

r�N�1dr

=
A2�
N "

N

N

��r�N� ���1
a"

=
A2�
N "

N

N

��
A
2=(N�2)
N "� "2

��N=2 � 1
�

= O("N=2):

As seen above, one also hasZ 1

a"

ju"(r)j2�rN�1dr = O("N=2):

Hence, we getZ 1

0
ju"(r)j2�+r�rN�1dr

=

Z 1

0
ju"(r)j2�rN�1dr +

Z 1

0

�
ju"(r)j2�+r� � ju"(r)j2�

�
rN�1dr

=

Z 1

0
ju"(r)j2�rN�1dr +

Z a"

0

�
ju"(r)j2�+r� � ju"(r)j2�

�
rN�1dr +O("N=2)

=

Z 1

0
ju"(r)j2�rN�1dr+

Z a"

0

�
jBN� u

�
"(r)j2

�+r� � jBN� u
�
"(r)j2

�

�
rN�1dr+O("N=2)

�
Z 1

0
ju"(r)j2�rN�1dr+

Z "

0

�
jBNu

�
"(r)j2

�+r� � jBNu
�
"(r)j2

�

�
rN�1dr+O("N=2);
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since BNu
�
" � 1 on the interval ["; a"]. Set

I1;" :=

Z "

0
jBNu

�
"(r)j2

�
�jBNu

�
"(r)jr

� � 1
�
rN�1dr:

We estimate (setting dN := AN

2(N�2)=2
)

I1;" �
Z "

0
ju"(r)j2�

��AN"
(N�2)=2

(2"2)(N�2)=2

�r� � 1

�
rN�1dr

�
Z "

0
ju"(r)j2�

�� AN

2(N�2)=2

�r�
"�

N�2
2

r� � 1

�
rN�1dr

=

Z "

0

A2�
N "

N

(2"2)N

�
er

� log dN+N�2
2

r�j log "j � 1
�
rN�1dr

� C

Z "

0

1

"N

�
r� log dN + N�2

2 r�j log "j
�
rN�1dr

= C
log dN + N�2

2 j log "j
"N

Z "

0
r� rN�1dr

= C
log dN + N�2

2 j log "j
"N

1
�+N r�+N

����
"

0

= C1j log "j "� +O("�)

� C2j log "j"� ; for a suitable C2 > 0 and " su�ciently small;

which completes the proof. �

3.2. Normalized concentrating sequences.

De�nition 3.2. A sequence (un) � H1
0;rad(B) is a normalized concentrating

sequence if

(i) krunkL2 = 1;

(ii) un * 0 in H1
0;rad(B);

(iii) for any � > 0:

Z 1

�
ju0n(r)j2rN�1dr ! 0.

We denote by N the set of normalized concentrating sequences.

In the next proposition we characterize the maximal limit of the functionalR 1
0 juj2

�+f(r)rN�1dx over N . We restrict to the case that

f(r) = r� ; � 2 (0;minfN=2; N � 2g):

Proposition 3.3.

(3.7) sup
(un)2N

n
lim
n!1

!N�1

Z 1

0
jun(r)j2�+r� rN�1dr

o
� �N :
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Proof. It is su�cient to prove the following:

Given " > 0 there exists � > 0 and n0 2 N such that for any n � n0 we have

(a) !N�1

Z �

0
jun(r)j2�+r� rN�1dr � �N + "=2;

(b) !N�1

Z 1

�
jun(r)j2�+r� rN�1dr � "=2.

We �rst prove that (a) holds; indeed

(3.8) !N�1

Z �

0
jun(r)j2�+r� rN�1dr

= !N�1

Z �

0
jun(r)j2�

�jun(r)jr� � 1
�
rN�1dr + !N�1

Z �

0
jun(r)j2� rN�1dr

� !N�1

Z �

0
jun(r)j2�

�jun(r)jr� � 1
�
rN�1dr +�N :

Using the Radial Lemma we can estimateZ �

0
jun(r)j2�

�jun(r)jr� � 1
�
rN�1dr

�
Z �

0
jun(r)j2�

�� 1

r(N�2)=2

�r� � 1

�
rN�1dr

�
Z �

0
jun(r)j2�

�
exp

�
r� log

� 1

r(N�2)=2
��� 1

�
rN�1dr

� C

Z �

0
jun(r)j2�r�

���log r(N�2)=2��� rN�1dr
� C1 �

� jlog �j
Z 1

0
jun(r)j2� rN�1dr

� C2 �
�j log �j �N :

Now taking � = �(") > 0 su�ciently small such that C2 �
� jlog �j�N � "=2,

we conclude that

(3.9)

Z �

0
jun(r)j2�

�jun(r)jr� � 1
�
rN�1dr � "

2
:

From (3.8) and (3.9) we obtain (a).

To prove (b) we proceed as follows: taking t 2 (�("); 1)) we can write

jun(t)j =
���Z t

1
u0n(s)ds

��� = ���Z t

1
u0n(s)s

(N�1)=2 1

s(N�1)=2
ds
���

�
���Z t

1
ju0n(s)j2sN�1ds

���1=2 ���Z t

1

1

sN�1
ds
���1=2

� �n
�
t2�N � 1

�1=2
� �n t

2�N
2 ;
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where by assumption (iii)

�n :=
���Z 1

�
ju0n(s)j2sN�1ds

���1=2 ! 0 as n!1:

Then we can estimateZ 1

�
jun(r)j2�+r�rN�1dx �

Z 1

�

�
�n r

2�N
2

�2�+r�
rN�1dx

� �2
�

n

Z 1

�

�
r
2�N
2

�2�+r�
rN�1dx

� �2
�

n

Z 1

�
r�1�

N�2
2

r�dx

� �2
�

n c(�) � "

2

if we choose n su�ciently large. �

4. Best constant is attained

We are now ready to prove that UN is attained.

4.1. Proof of Theorem 1.4. Assume by contradiction that UN is not at-
tained. Let (un) be a maximizing sequence. Since (un) is bounded, there
exists a weakly convergent subsequence un * w, and hence by weak lower
semicontinuity

R
B jruj2 � 1. We claim that w = 0. If not,

R
B jrwj2 > 0.

By a Brezis-Lieb type argument we have (with o(1)! 0 as n!1)Z
B
jun(x)j2�+r�dx =

Z
B
jun(x)� w(x)j2�+r�dx+

Z
B
jw(x)j2�+r�dx+ o(1)

and

1 =

Z
B
jrun(x)j2dx =

Z
B
jr(un(x)� w(x))j2dx+

Z
B
jrw(x)j2dx+ o(1):

From the second identity follows that if
R
B jrwj2 = 1, then un ! w strongly

in H1
0 (B) and hence UN is attained by continuity, contradicting the assump-

tion. Hence we can assume that
R
B jrwj2 < 1.
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Then, setting zn = un �w, we have from
R
B junj2

�+r� ! UN and the above
identities that

UN =

Z
B
jznj2�+r�dx+

Z
B
jwj2�+r�dx+ o(1)

=

Z
B

� jznj
krznk2

�2�+r�krznk2�+r�2 dx+

Z
B

� jwj
krwk2

�2�+r�krwk2�+r�dx+ o(1)

� UNkrznk2�2 + UNkrwk2�2 + o(1)

= UN
��
1� krwk22 + o(1)

�2�=2
+
�krwk22)2�=2�+ o(1)

< UN :

This contradiction shows that w = 0, and hence un * 0.

We now show that (un) is a normalized concentrating sequence. For this,
we need to show that

(4.1)

Z 1

�
ju0nj2rN�1dr ! 0 ; for any � > 0:

Recall that

H1
rad([�; 1]) �� Lp([�; 1]) ; 8 p � 1

and hence

(4.2)

Z 1

�
junj2�+r�rN�1dr ! 0:

Since (un) is a maximizing sequence, we have by Ekeland's principle that
there exists a multiplier �n such that

(4.3) �n

Z
B
runr�dx =

Z
B
(2� + r�)junj2��2+r�un�dx+ ho(1); �i:

Choosing � = un we get

�n

Z
B
jrunj2dx =

Z
B
(2� + r�)junj2�+r� dx+ ho(1); uni

� 2�
Z
B
junj2�+r�dx! 2�UN

and so we get lim infn!1 �n � 2�UN .
Next, choose a smooth cut-o� function

(4.4) �(r) =

�
0 ; if r � �=2;
1 ; if r � �:



14 J.M. DO �O, B. RUF, AND P. UBILLA

and choose � = � un in (4.3). Then we obtain by (4.2)Z 1

�=2
u0n(�un)

0rN�1dr

=
1

�n

Z 1

�=2
(2� + r�)junj2��2+r�un(�un)rN�1dr + ho(1); �uni ! 0

from which we get

(4.5)

o(1) =

Z 1

�=2
u0n(�un)

0rN�1dr

=

Z 1

�=2
�ju0nj2rN�1dr +

Z 1

�=2
u0n un�

0 rN�1 dr

�
Z 1

�
ju0nj2rN�1dr �max j�0j krunk2kunk2

=

Z 1

�
ju0nj2rN�1dr + o(1);

where we used that kunk2 ! 0 by the compact embedding. This proves
(4.1).

Thus, we have shown that if UN is not attained, then the maximizing
sequence is a concentrating sequence, along which the functional tends to
�N < UN . This contradiction proves that UN is attained.

5. A supercritical equation

5.1. Proof of Theorem 1.5. We now consider the following highly su-
percritical equation (1.7). Indeed, note that the nonlinearity has critical
Sobolev growth only in one point, namely in the origin, and is (even strongly)
supercritical in all other points.

(5.1)

8<
:

��u = u2
��1+r� in B;

u > 0 in B;
u = 0 on @B;

To prove the existence of a solution, we employ variational methods. Con-
sider the functional

(5.2) I(u) =
1

2

Z
B
jruj2dx�

Z
B

1

2� + r�
juj2�+r�dx : H1

0;rad(B)! R:

Note that due to Theorem 1.1 the functional I(u) is well-de�ned and of class
C1.

It is standard to see that the functional has a mountain-pass structure
in the origin, but of course, due to the supercritical growth, the functional
does not satisfy the Palais-Smale condition. To overcome this problem, we
follow the strategy of the classical Brezis-Nirenberg paper: we identify the
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non-compactness level, and show that below this level there is compactness.
Then, in a �nal step, we show that the minimax level of the functional
lies indeed below the non-compactness level. We emphasize that this result
does not require a perturbation with a lower order term: it is in fact the
supercritical term which already guarantees this.

We proceed in three steps:

1) The level 1
N S

N
2
N is a noncompactness level for the functional I(u).

2) The mountain-pass level c of the functional I(u) satis�es c < 1
N S

N
2
N .

3) By 2) we obtain a weak solution u at level 0 < c < 1
N S

N
2
N . We show that

then u 6= 0, which completes the proof.

In this section we denote again with

u�"(r) = CN
"
N�2
2

("2 + r2)
N�2
2

; " > 0

CN := (N(N � 2))
N�2
2

the standard Sobolev instantons, which satisfy the equation

(5.3) ��u = u2
��1 ; on R

N

and for whichZ
RN

jru�"j2dx = S
N=2
N and

Z
RN

ju�"j2
�

dx = S
N=2
N :

1) Taking a suitable cut-o� function � and setting u" = � u�" one checks that
u" 2 H1

0;rad(B) is a Palais-Smale sequence, with

I(u") =
1

2

Z
B
jru"j2dx�

Z
B

1

2� + r�
ju"j2�+r�dx! 1

N
S
N=2
N :

The sequence u" is concentrating and converges weakly to 0, and thus it
does not contain a strongly convergent subsequence; hence we have proved
1).

2) It is clear that the functional I has a Mountain-Pass structure. To prove

that the moutain-pass level lies below the value 1
N S

N
2
N , we choose u" as in

1), and set

c = inf
2�

max
u2

I(u)

where

� :=
n
 : [0; R]! H1

0 (B) continuous ; (0) = 0; (R) = Ru"

o
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with R > 0 su�ciently large, so that I(Ru") � 0. Then the path "(t) =
tu" ; t 2 [0; R], belongs to �, and

(5.4) c � max
t2[0;R]

I(t u") =: I(t"u"):

We �rst estimate the value of t", using similar estimates as in the proof

of Proposition 3.3. Since d
dtI(t u")

���
t=t"

= 0, we get

(5.5) t"

Z
B
jru"(x)j2dx =

Z
B
t2
�+r��1
" ju"(x)j2�+r�dx:

It is known (see [2]) that

Z
B
jru"(x)j2dx = S

N
2
N +O("N�2) ;

Z
B
ju"(x)j2�dx = S

N
2
N +O("N ):

Hence we get from (5.5)

S
N
2
N +O("N�2) = t2

��2
"

Z
B
ju"(x)j2�dx+ t2

��2
"

Z
B

�
tr

�

" ju"(x)j2
�+r� � ju"(x)j2�

�
dx

= t2
��2
"

h
S

N
2
N +O("N ) +

Z
B
ju"(x)j2�

�
(t"ju"(x)j)r� � 1

�
dx
i

= t2
��2
"

h
S

N
2
N +O("N ) +A"

i
:

Estimate of A": let ~a" such that jt"u"j � 1 for r � ~a" (recall that by the
mountain{pass structure one has � � t" � R)

A" =

Z
B
ju"(x)j2�

�jt"u"(x)jr� � 1
�
dx

� !N�1

Z ~a"

0
ju"(r)j2�

�jt"u"(r)jr� � 1
�
rN�1dr

= !N�1

Z ~a"

0
ju"(r)j2�

�
er

� log jt"u"(r)j � 1
�
rN�1dr

� c

Z "

0
ju"(r)j2�r�j log "j rN�1dr + c

Z ~a"

"
ju"(r)j2�r�j log "j rN�1dr

� c

Z "

0
"�Nr�j log "j rN�1dr + c

Z ~a"

"
"Nr�2Nr�j log "j rN�1dr

� c "�j log "j+ c "N j log "j�� r�N+�
����~a"
"

� c "�j log "j
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and

A" � !N�1

Z 1

~a"

ju"(r)j2�
�jt"u"(r)jr� � 1

�
rN�1dr

� �!N�1

Z 1

~a"

ju"(r)j2�rN�1dr

� � c

Z 1

~a"

"N

r2N
rN�1dr

= c "N r�N
���1
~a"

� � c "N=2:

Thus, we obtain

S
N
2
N +O("N�2) = t2

��2
"

h
S

N
2 +O("N ) +O("�jlog "j) +O("

N
2 )
i

from which we see that t" ! 1, and then we get

1 +O("N�2) =
�
1 + (2� � 2)(t" � 1)

�h
1 +O("�jlog "j) +O("

N
2 )
i

from which we �nally obtain, assuming that 0 < � < minfN � 2; N2 g

t" � 1 = O("N�2) +O("�jlog "j) +O("
N
2 )

= O("�jlog "j) =: R":
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We now return to the estimate of the level c, see (5.4): we have

I(t"u") =
1

2

Z
B
t2" jru"j2 �

Z
B

t2
�+r�
"

2� + r�
ju"j2�+r�

=
1

2
(1 +R")

2
�
S

N
2
N +O("N�2)

�� Z
B

(1 +R")
2�+r�

2� + r�
ju"j2�+r�

=
1

2
S

N
2
N +R"S

N
2
N + cR2

" +O("N�2)�
Z
B

(1 +R")
2�+r�

2� + r�
ju"j2�

�
Z
B

(1 +R")
2�+r�

2� + r�

�
ju"j2�+r� � ju"j2�

�

� 1

2
S

N
2
N +R"S

N
2
N + cR2

" +O("N�2)�
Z
B

1 + (2� + r�)R" + cR2
"

2� + r�
ju"j2�

� d

Z
B

�
ju"j2�+r� � ju"j2�

�

� 1

2
S

N
2
N +R"S

N
2
N + cR2

" +O("N�2)�
Z
B

1

2� + r�
ju"j2� �R"S

N
2
N

+O(R""
N ) +O(R2

")� d

Z
B

�
ju"j2�+r� � ju"j2�

�

=
1

2
S

N
2
N +O(R2

") +O("N�2)� 1

2�
S

N
2
N +O("N ) +

Z
B

� 1

2�
� 1

2� + r�

�
ju"j2�

� d

Z
B

�
ju"j2�+r� � ju"j2�

�

=
1

N
S

N
2
N +O(R2

") +O("N�2) + c "� � c "� jlog "j

<
1

N
S

N
2
N ; for " > 0 su�ciently small ;

where we have used that

Z
B

� 1

2�
� 1

2� + r�

�
ju"j2�dx � c

Z
B
r�ju"j2�rN�1dr

� c

Z "

0
r�"�NrN�1dr + c

Z 1

"
r�

"N

r2N
rN�1 dr

� c "� + c ("� � "N ) = c "�
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andZ
B

�
ju"(x)j2�+r� � ju"(x)j2�

�
dr =

Z
B
ju"(x)j2�

�ju"(x)jr� � 1
�
dr

�
Z "

0
ju"(r)j2�

�ju"(r)jr� � 1
�
rN�1dr �

Z 1

a"

ju"(r)j2�
�
1� ju"(r)jr�

�
rN�1dr

�
Z "

0
"�Nr�j log "jrN�1dr �

Z 1

a"

ju"j2�rN�1 dr

� "�j log "j � "N
Z 1

a"

r�2NrN�1 dr

� "�j log "j � "N ("�N=2 � 1)

� "�j log "j:

3) By 2) we obtain a (PS)c sequence (un) with

I(un)! c <
1

N
S

N
2
N

and
(5.6)

I 0(un)['] = !N�1

Z 1

0
u0n'

0 rN�1dr � !N�1

Z 1

0
junj2��1+r�' rN�1dr ! 0:

It is standard to show that fung � H1
0 (
) is bounded, and hence there is a

weakly convergent subsequence

un * u ; n!1
which solves weakly equation (5.3). If u 6= 0 we are done. Hence we assume
that u = 0, and show that this is impossible.

As in (4.2) we have

(5.7)

Z 1

�
jun(r)j2�+r�rN�1dr ! 0 ; for � > 0 �xed:

Taking � as in (4.4) and choosing ' = �un in (5.6) we obtain

Z 1

�=2
u0n(�un)

0rN�1dr =

Z 1

�=2
junj2��2+r�(�un)rN�1dr + ho(1); �uni ! 0

from which we get as in (4.5) thatZ 1

�
ju0n(r)j2rN�1dr ! 0 ; for any � > 0:

Next, we show that

I(un) = I0(un) + o(1)
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where

I0(w) =
1

2

Z
B
jrw(x)j2dx� 1

2�

Z
B
jw(x)j2�dx:

Indeed, we haveZ 1

0
junj2�+r�rN-1dr =

Z 1

0
junj2�rN-1dr +

Z 1

0

�
junj2�+r�dx� junj2�

�
rN-1dr

=

Z 1

0
junj2�rN-1dr +

Z �

0
junj2�

�
junjr� � 1

�
rN-1dr +

Z 1

�
junj2�

�
junjr� � 1

�
rN-1dr

�
Z 1

0
junj2�rN-1dr + "

2
+

Z 1

�
junj2� junjr�rN-1 dr

�
Z 1

0
junj2�rN-1dr + "

by (3.9) and (4.2).

Similarly, one shows that

I 0(un)['] = I 00(un)['] + o(1)

Hence, we obtain that (un) is a (PS)c sequence also for the functinal I0.
However, it is known that for I0 the Palais-Smale condition holds for 0 < c <
1
N S

N
2
N , and hence, for a subsequence, we have that un ! u = 0 strongly in

H1
0 (
). But this implies that I(un)! 0, in contradiction to I(un)! c > 0.

References

[1] Bahri, A.; Coron, J.-M., On a nonlinear elliptic equation involving the critical Sobolev

exponent: the e�ect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988),

no. 3

[2] Brezis,H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving

critical sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.

[3] Coron, J.M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris

Ser. I 299 (1984) 209-212.

[4] del Pino, M., Nonlinear elliptic problems above criticality, Milan J. Math. 74 (2006)

313-338.

[5] del Pino, M., Supercritical elliptic problems from a perturbation viewpoint, Discrete

Contin. Dyn. Syst. 21 (2008), no. 1, 69-89.

[6] del Pino, M., Felmer, P., Musso, M., Multi-peak solution for super-critical elliptic

problems in domains with small holes, J. Di�erential Equations 182 (2002) 511-540.

[7] del Pino, M., Wei, J., Supercritical elliptic problems in domains with small holes,

Ann. Inst. H. Poincar Anal. Non Lineaire 24 (2007) 507-520

[8] Diening, L., Harjulehto, P., Hst, P., Ruzicka, M., Lebesgue and Sobolev Spaces with

Variable Exponents, Lecture Notes in Mathematics 2017, Springer (2011)

[9] Peetre, J., Espaces dinterpolation et thorme de Sobole�, Ann. Inst. Fourier 16, 279-317

(1966)

[10] Pohozaev, S., Eigenfunctions of the equation u + f(u) = 0, Soviet Math. Doklady 6

(1965), 1408-1411.



ON SUPERCRITICAL SOBOLEV TYPE INEQUALITIES 21

[11] Ruf, B., Srikanth, P.N., Singularly perturbed elliptic equations with solutions con-

centrating on a 1-dimensional orbit, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 2,

413-427.

[12] Ruf, B., Srikanth, P. N., Concentration on Hopf-�bres for singularly perturbed elliptic

equations, J. Funct. Anal. 267 (2014), no. 7, 2353-2370.

[13] Struwe, M., Variational Methods. Applications to Nonlinear Partial Di�erential Equa-

tions and Hamiltonian Systems, Springer, 1990.

[14] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976),

353372.

[15] Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione

Mat. Ital. Sez. B Artic. Ric. Mat. 8(1), 479-500 (1998)

[16] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys.

55 (1977), 149{162.

(J.M. do �O) Dep. Mathematics, Federal University of Para��ba

58051-900, Jo~ao Pessoa-PB, Brazil

E-mail address: jmbo@pq.cnpq.br

(B. Ruf) Dip. Matematica, Universit�a di Milano

Via Saldini 50, 20133 Milano, Italy

E-mail address: bernhard.ruf@unimi.it

(P. Ubilla) Dep. Matem�aticas y C.C., Universidad de Santiago de Chile

Casilla 307, Correo 2, Santiago - Chile

E-mail address: pubilla.ubilla@usach.cl

mailto:jmbo@pq.cnpq.br
mailto:bernhard.ruf@unimi.it
mailto:pubilla.ubilla@usach.cl

	1. Introduction and main results
	2. The inequality
	2.1. Proof of Theorem 2.1
	2.2. Proof of Corollary 1.2

	3. The Supremum UN
	3.1. Proof of Theorem 1.3
	3.2. Normalized concentrating sequences

	4. Best constant is attained
	4.1. Proof of Theorem 1.4

	5. A supercritical equation
	5.1. Proof of Theorem 1.5

	References

