ON SUPERCRITICAL SOBOLEV TYPE INEQUALITIES
AND RELATED ELLIPTIC EQUATIONS

JOAO MARCOS DO O, BERNHARD RUF, AND PEDRO UBILLA

ABSTRACT. Sobolev type embeddings for radial functions into variable
exponent Lebesgue spaces are studied. In particular, the following in-
equality is proved:

Let B C RN, N > 3, be the unit ball, and let H{ ,.4(B) denote the
first order Sobolev space of radial functions, and 2* = 2N/(N — 2) the
corresponding critical Sobolev embeddding exponent. Let r = |z|, and
p(r) =2 + 7%, with a > 0; then

(0.1) sup{/ [Wf'?) do | w€ Hea(B), [Vull: =1} < +oo.
B

We point out that the growth of p(r) is strictly larger than 2%, except
in the origin.

Furthermore, we show that for p(r) = 2*+r®, with 0 < a < min{{; N—
2}, the supremum in (0.1) is attained.

Finally, we prove that associated elliptic equations admit nontrivial ra-
dial solutions. This is somewhat surprising since the nonlinearities have
strictly supercritical growth except in the origin.

1. INTRODUCTION AND MAIN RESULTS

Let © C RY denote a bounded domain in RV, N > 3. The Sobolev em-
beddings yield explicit (critical) exponents for embeddings into Lebesgue LP-
spaces, WH2(Q) ¢ L? (), which are optimal within the class of LP spaces.
Extending to the class of “rearrangement invariant” (r.i.) Banach spaces, the
Sobolev embeddings may be slightly improved by going to Lorentz spaces
LP1(Q) (see Peetre [9] and Tartar [15]); Lorentz spaces LP9 are scales of
rearrangement invariant interpolation spaces between Lebesgue spaces LP.
Indeed, one has

Wh2(Q) c L7 2(Q).
It is inherent to the definiton of r.i. Banach spaces that the inequalities
remain valid under symmetrization, and hence it is sufficient to prove the
respective inequalities in the radial context.
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In this article we consider inequalities and related embeddings into non
rearrangement inavariant Banach spaces. In fact, our targes spaces are vari-
able exponent Lebesgue spaces (see [8]), which have received wide attention
in recent years. Since symmetrization cannot be applied in this situation,
and in order to obtain optimal results, we are lead to restrict the spaces
to functions which are adapted to the variable exponents. In particular,
for radially symmetric variable exponents, it is natural to restrict to spaces
of radially symmetric functions. On the other hand, we will see that this
restriction allows for a considerable gain in growth.

In particular, we will prove the following inequality: Let B C RY denote
the unit ball, r = |z| and let H&rad(B) be the first order Sobolev space of
radial functions, and 2* = 2N/(N — 2) the corresponding critical Sobolev
embeddding exponent.

Theorem 1.1. Let p(r) =2*4+r* and « > 0; then
(1.1) sup{/ lu(z) P dz uEH&yrad(B), IVull2 = 1} < +o0.
B

We emphasize that the variable exponent p(r) has critical Sobolev growth
only in the origin, and is strictly supercritical everywhere else. Furthermore,
if 0 < a < 1, then the derivative of p(r) in the origin is 4oc.

As a consequence of Theorem 1.1, we have the following embedding of the
subspace of radial functions in HE(B) into a not rearrangement invariant
Lebesgue space with variable exponent:

Corollary 1.2. The following embedding is continuous:
(1.2) Hyraa(B) = Ly (B)
where Ly, is defined as follows (see e.g. [8])

Lp(r)(B) = {u : B — R measurable : /B \u(m)\pmdx < oo}
with norm

Jeallpry = i {A >0, /B ‘“(f)"’(”dx <1},

Next, let ¥ denote the following best constant of Sobolev type

(13) Ny = sup / |u(z)* da
{uEHé,rad(B):HVU"b:l} B

and consider the analogous constant in the variable exponent space Ly ;)

(1.4) Uy = sup / ‘U(x)‘p(r)dx.
{uEHé,rad(B):HVUHZZI} B

We will show the following theorem
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Theorem 1.3. If p(r) =2* +r* and

(1.5) 0 < a<min{N/2, N —2}
then:
(16) Un > XN,

The restriction (1.5) says that p(r) may not be too flat near the origin for
(1.6) to hold.

It is well-kown that the supremum Xy in (1.3) is not attained whenever
Q # RN, The following theorem shows that Uy is attained if it is larger
than >y.

Theorem 1.4. If Ux > X, then the supremum Uy is altained.

We recall the seminal work of Brezis-Nirenberg [2] who proved that adding
a suitable lower order perturbation to the critical Sobolev exponent func-
tional leads to a conclusion like (1.6), and then that the corresponding supre-
mum is attained. Here we have an analogous result, but with a very different
growth function: the variable exponent function has a strictly supercritical
growth everywhere except in the origin, that is, we have a “supercritical
perturbation” of the critical exponent 2*.

Next, we consider a related elliptic equation with a supercritical nonlin-
earity.

Theorem 1.5. Let p(r) = 2* +r®, with « satisfying condition (1.5). Then
the following boundary value problem has a nontrivial radial solution:

—Au = w*"-1 in B,
(1.7) u > 0 in B,
u = 0 on 0B.
Note that the nonlinearity u2" """ has a highly supercritical growth

(expect in the origin where the growth is critical). Thus, the existence of a
solution is quite surprising: recall that by Pohozaev’s identity [10] equation
(1.7) has no non-trivial solution if p(r) = 2* 4+ ¢, with ¢ > 0, while we
obtain the existence of a solution for any p(r) of the form p(r) = 2* + re.
For existence results concerning equations with critical growth and with
conditions on the domain, we refer to the results of Bahri-Coron [1] and
Coron [3], while for equations with slightly supercritical growth we recall
the articles of del Pino [4], del Pino-Wei [7], see also [6], [5], and for other
types of solutions in supercritical equations, [11], [12].

The proof of Theorem 1.5 follows the ideas of [2]: using the mountain-pass
theorem one constructs a minimax level for the functional corresponding to
equation (1.7). Using the structure of the nonlinearity it is then shown that
this level lies below the non-compactness level of the functional, and is thus
a critical value.
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Plan of the Paper. In Sect. 2, we prove a more general version of Theorem
1.1. In Sect. 3, we prove Theorem 1.3. In Sect. 4, we show that the
supremum Uy defined in (1.4) is attained. In Sect. 5, we show the existence
of nontrivial solution of (1.7), which as we already emphasized is a semilinear
elliptic problem involving highly supercritical growth.

2. THE INEQUALITY

In this section we state a more general version of Theorem 1.1 and give the
proof. Let f:[0,1) — R" be a continuous function satisfying the following
conditions:

(f1) f(0 ):Oandf( ) > 0 for all r > 0;
(1) f(?")_“ —~

) Jr) < o

We recall the following facts: Let Sy be the best constant in the Sobolev
embedding H'(RY) — L2 (RY) with 2* = 2N/(N — 2), that is

for some S > 2, for r near 0;

, for r near 1.

IVl

(2.1) Sy = inf{ e L7 (RM)\ {0}, Vu € LN(RN)} .

FollZae e,
It is well-known that the infimum Sy is achieved. Moreover, for every

open subset © of RV, let
s =1},

It is known that Sy (2) = Sy, and that Sy(€2) is never achieved except
when Q = RV,

Sn(Q) == inf{uvuug cu € HY9), |u

We will use throughout the paper the notation |z| = r.
We now state and prove the following general inequality:
Theorem 2.1. Assume that f € C([0,1),RT) satisfies (f1) — (f3), and let
p(r) =2*+ f(r). Then
@2 sw{ [ W@P) s we B (B), [Vula =1} < +x.

Note that f(r) = r®* a > 0, satisfies (f1) — (f3), and hence Theorem 2.1
implies Theorem 1.1.

We are going to use the following versions of the ”radial lemma” (see [16]).
Lemma 2.2. Let u € H&,rad(B)' Then

1 [Vull2
(N — 2)172 7 (N=2)2

(2.3) u(r)| <
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and

(1—r)l/?

(2.4) [u(r)] < SN2z

V]2

Proof. If u € H} . ,(B), then

1 1
B 1
lu(r)| < ‘/r u'(s) ds‘ S/r W)™ 1)/23(1\7—71)/2‘ s
(2.5)
1 r2=N _1\1/2
< ||Vl g2 7 o) = |Vl 72 (ﬁ)

which yields (2.3). To obtain (2.4), note that we can rewrite
r2=N _1\1/2 1 1 . 1/2
( N —2 ) - N—Q(TN_Q_ )

1 1—rN=2y1/2
N N—Q( rN—2 >

_ 1 1 Y
__Vﬁvij§7(N*m/2<l_7] )

1 1 )
:mT(N*Z)/2<(1_T)(1+T+"~—|—TN 3)>

1 1/2
< =)

1/2

which together with (2.5) establishes (2.4). O

2.1. Proof of Theorem 2.1. For u € H&md(B) with |Vull2 = 1, we can

write (here wy_1 is the surface area of the unit sphere in RY )
(2.6)
1

WN-—-1

* 14 . 1 .
/ \u(x)\Q +f(7“)dx :/ ’u(,r.)‘Z +f(7“),rN71 d:E—I—/ |u(7")]2 jtf(r)erldlr7
B 0 p

where p will be determined later. We shall estimate each of these two terms
separately.

P .l p . 7 p *
/ lu(r) 2O pN=1 gy :/ Ju(r)[? <|u(7,)|f(7~) _ 1> T’Nldx—i—/ ()2 V1 d
0 0 ;
P *
S/ |u(r)|? (‘U(T)‘f(r) _ 1) N1 dr + Sy
0
By the Radial Lemma 2.2 for u € H&md(Bl) with [|Vulls = 1 we can write

(1—r)l/2 1

(2.7) lu(r)] < r(N=2)/2 = p(N-2)/2°
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which implies

Aﬂmmﬁummwﬂ—nw”ww

P 1 2N/(N—-2) 1 () N—1
= /0 (;oom) [<T<N2>/2) - 1] rdr
P11 1
S /0 ; [exp (f('f') log m) — 1:| dr
1 N—2
- [exp (Tf(r)\ logr\) — 1] dr

_ p logr
Sd;f[;ﬂm’f’m,

where in the estimates above we have used that given d > 1 there exists
p = p(d) > 0 such that

eds) 1< dg(s), Vs € (0, p), provided that g(s) — 0, as s — 0,

which is the case for g(r) = Y52 f(r)|logr| by assumption (f2). Therefore,

in order to obtain
p o )
J 1R ()0 = 1) e < o0
0

we have to impose the condition

p
(2.8) /0 f(r)‘lofr‘dr < .

Notice that (2.8) holds if we assume condition (fs).

To estimate the second integral in (2.6), using again (2.7) and assumption
(f3), we can write

Aﬂmm

1+ 852 log(1—s) , —(1+552

Since e $)5 for s near 0 (i.e. for r near 1), the

integral is finite.
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Example 2.3. For r near 0, consider

1) f(’l") = |10g7‘|2+‘5’ fO’l" ) > 0.
2) f(r) =r®logr|", for o> 0 and n > 0.
For r near 1, consider f(r)=1/(1—r).

2.2. Proof of Corollary 1.2. Consider the variable exponent Lebesgue
space

LZ By = {u : B — R measurable : / lu(z) >+ Ddz < oo}
B
endowed with the norm

ullos 4 p(ry == inf{A >0: /B

Assuming that u € H&md(B) with |[Vul|l2 = 1, we have to prove that
|ull2+ 4y < C. Using Theorem 2.1 we know that

u(z) 24 f(r)

X dxgl}.

/ lu(z)|> HMdz = C < 0.
B

For A > 1 we can estimate

2+ f(r 2*+f
[ [e) d</|“| ¢ _,
B

A A%
if A = )\, is sufficiently large. Then, ||u

| /\

>
N
IN

21 f(r) < Aue

3. THE SUPREMUM Uy
From now on we assume that

(3.1) f(r)=7r%, with 0 < a <min{N/2,N —2}.

3.1. Proof of Theorem 1.3. Let us denote with

52
U*('r') = CN 67]\,_2 5 > 0
(3.2) (2471277
N-=2

Cn = (N(N=2))"

the standard Sobolev instantons, see [14], [13], which satisfy the equation
(3.3) —Au=u*"1, on RY

and for which

/ Vi (@)Pdz = S/ and / iz ()| d = SN2
RN RN
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where Sy is as in (2.1). Let n be a suitable cut-off function; it is then
well-known (see [2]) that

IVud)l2 = Sy/*+0@N2),

2= SYP+0(EN).

[|muz

Let now By := 1/3’%/4, and

ue(r) := By n(r)u(r) = Ay n(r) <+>
with Ay := ByCly (see (3.2)), so that
(3.4) Vel 2 = 1+ O(eN2)
and

z = 2 ()t ()% dx
/B|ug<x>| da —/BBNW Jurt ()] d

SN 0@EN)

(3.5) - (5113/4)2*

_N_
=5y 7 +0(eN)
= EN + O(&N).
Finally, by (3.4) and (3.5) we have

/B (mr*dx =3y +0(e").

To prove (1.6) we will show the following

Lemma 3.1. There exists a constant C' > 0 such that for all ¢ > 0 small
/ e ()2 dg > / e (2)[2 dz + C | log ele® + O(eN/2) + O(eN2).
B B

Then, since by assumption o < min{/N/2, N — 2}, we conclude by asymp-
totics that

ty = sup{ [ fula) P+ do , [Vul =1}
B

> / <‘“€(‘”)‘)2*+Tadx:/ u(2)| T dz + O(eN?)
— Je \UVuel2 B

> / e (2)[2 da + C|log ele® + O(eV/2) + O(eN-2)
B
XN

>

bl

which concludes the proof of Theorem 1.3. (|



ON SUPERCRITICAL SOBOLEV TYPE INEQUALITIES 9
Proof of Lemma 3.1: First observe that
(3.6) Byul(r) <1 ifand only if r > (A?V/(N_Q)a — 62)1/2 =: q,
(recall that Ay = ByCp). We write

]. * o aE
/ e ()7 d = / e (r)
WN-1.JB 0

First, we estimate the integral

1
/ e (1) 247" N g =
[/ ag

1
AN e = In(r)us(r)*
1

< | )P e ar

Qe

1 2 _N
_ Aye N-1,4
= 2 L N r
a. (€24 12)
1 427N
€
</ N rN=ldy
= 2N
Qg
1
:AQ* N/ N4,

A?\;s )

(=
( A2/(N=2) —52)_N/2—1)
).

1
2*+TarN1dr+/ |ue (1) |2*+Taerldr.
e

* Lo _
2% +r TN ldT’

(

As seen above, one also has

1
[ e e = o)

Hence, we get
L * oY
/ g (r) |2 T e N Ly
0
1 * 1 * a *
= / |ue ()] erdr—i—/ (\UE(T)IQ T e (r)? )TN’ldr
0 0
1 e
= [ e [ (e = ) ) e+ 0
1 ac
= [t e [ (Bt )P = Byt o)) 7 a0
0 0

1 €
> [ P e [ 1By
0 0

—|Byul(r)* ) vV lar 0N,
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since Byu} > 1 on the interval [e, a.]. Set
&
I, = / By () (IBya ()" — 1) ™=,
0

We estimate (setting dy := 2(]\}477@)/2)

” T/ Ape@=2)/2 o
2 N _ N-1
hez [P | () -1

€ * A re N-2
2 N — =2 g N—-1
> /0 |ue(r)] [(2(1\/2)/2> €’ 1]T dr

£ A2* N .
_ / AN{': (ero‘ 1ong+N2_Zro‘|10gs| o 1) rN=1ar
- 2\N

o (267)

|
20/ 6—N<r°‘10ng+¥ra|log5|)r]v_1dr
0

logdy + 22| loge| [¢

- C gaN €N2 | g |/(; Ta’I”N_ld’l"
long+¥|loge| 1 a+N€
N a+N

=C
€

= C1|loge| e* + O(e%)
> Collogele® , for a suitable Co > 0 and ¢ sufficiently small,

0

which completes the proof. O

3.2. Normalized concentrating sequences.

Definition 3.2. A sequence (u,) C H&rad(B) is a normalized concentrating
sequence if

(i) [IVunllzz = 1;
(il) up — 0 in Hy .q(B);

1
(iii) for any § > 0: / Jul, (r)2rN " tdr — 0.
)

We denote by N the set of normalized concentrating sequences.

In the next proposition we characterize the maximal limit of the functional
fol w2 N =14 over N'. We restrict to the case that

f(r)=r%, a € (0,mn{N/2, N —2}).

Proposition 3.3.

1
(3.7) sup { lim wN_l/ |t () |27 TN_ldr} < Y.
0

(un)eN S0
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Proof. 1t is sufficient to prove the following:
Given € > 0 there exists 7 > 0 and ng € N such that for any n > ny we have

n * o
(a) wN_l/ |t ()2 PN dr < Sy 4 £/2;
0

1
(b) wN1/”|unw>*
n

We first prove that (a) holds; indeed

rNldr < /2.

* « _
2% +r TN 1d7”

n
(3.8) le/ |t (1)
n *
= WN- 1/ Jun ()7 (Jun(r)]™ = 1) T’N_ldr+wN1/ un ()| PV tdr
0

< wy_ 1/ |un (7) ]un( ) —1) rNldr + By

Using the Radial Lemma we can estimate

n * @
/ \un(r)\Q (\un(r)\r —1) rN-lqp
0
n N 1 re
2 _ N-1
S/O |un(r) [(T(N_Q)/Q> 1] o
n * ].
2 fo! N—-1
S /0 |Un(')")| [exp <'f’ log (W)> - 1:| r dr

< [P

1
< C&vflﬂogn\J/ fun(r)2 Y dr
0

< Cy n%|logn| Xy

(N=2)/2| .N—14,.

Now taking n = n(e) > 0 sufficiently small such that Cy n® |logn| Xy < /2,
we conclude that

(3.9) / | (7

From (3.8) and (3.9) we obtain (a).

(e}

“(un ()" = 1) PN ldr < g

To prove (b) we proceed as follows: taking ¢ € (n(e),1)) we can write

lun ()| = ‘/ s)ds ‘/ 28(1\/—%)/26&5

_ bt 1/2
< /1 |ul, ()25 1ds‘ ‘/1 sNi_lds
On (t27N — 1)1/2

2-N
<opt 2z,
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where by assumption (iii)

! ! 2.N-1 1/2
Op = ‘/ lu,(s)[7s™ “ds| —0 as n — oc.
n

Then we can estimate

1 1 _ 2% Lpa
2% N—1 2-N N—1
n = n
/ |t (1) r dm</ opT 2 ) r T ds
n n

if we choose n sufficiently large. O

4. BEST CONSTANT IS ATTAINED

We are now ready to prove that Uy is attained.

4.1. Proof of Theorem 1.4. Assume by contradiction that Uy is not at-
tained. Let (u,) be a maximizing sequence. Since (uy) is bounded, there
exists a weakly convergent subsequence u, — w, and hence by weak lower
semicontinuity [, |Vul? < 1. We claim that w = 0. If not, [, [Vw|? > 0.

By a Brezis-Lieb type argument we have (with o(1) — 0 as n — o0)

/ |t (2))? T dz = / |un (z) — w(z)|> " dz +/ lw(z))? T dz + o(1)
B B B
and
1= / |V, (z)|*de = / IV (un () — w(z))|>dx —l—/ |Vw(x)|2dz + o(1).
B B B
From the second identity follows that if [, [Vw|? = 1, then u, — w strongly

in H}(B) and hence Uy is attained by continuity, contradicting the assump-
tion. Hence we can assume that [, [Vw|? < 1.
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Then, setting 2, = un, — w, we have from [}, [up|? t™" — Uy and the above
identities that

UN:/ |zn|2*+radx—|—/ lw|? T dz + o(1)
B B

E 2% 4ro / jw] 27+ 2% 4
= Vi, " dx + Vuw " dx + o1
[ (o) v () 19w M

< UVl + Uy Vw3 +o(1)

2* 2 *
= UN((l—HVwH%+o(1)) P4 (IVw|3)? /2>+0(1)
< Up.

This contradiction shows that w = 0, and hence u,, — 0.

We now show that (uy,) is a normalized concentrating sequence. For this,
we need to show that

1
(4.1) / lup,|>r¥ "*dr — 0, for any 6 > 0.
0

Recall that
lelad([67 1]) cC LP([(S 1]) 7v p 2 1

and hence

(12) [t

Since (uy) is a maximizing sequence, we have by Ekeland’s principle that
there exists a multiplier A,, such that

* a _
2t N=lg 0,

43) A / Vun Ve dz = / (2" + 1) un |2 "2 unds dz + (0(1), ).
B B
Choosing ¢ = u,, we get
)\n/ |V, |*de = / (2° + 1) un |2 T da + (o(1), up)
B B
> 2*/ un|? T d — 2" Uy
B

and so we get liminf,, .o A, > 2*U.
Next, choose a smooth cut-off function

oo, it r<é/2,
(44) ”(r)_{ 1, if r>4.
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and choose ¢ = nu, in (4.3). Then we obtain by (4.2)

1
/ ul (nuy)'rN " Ldr
5/2

1 [t ‘oira
oW // (2" + ra)\un]2 —24r un(nun)rN_ldr + (o(1),nuyp) — 0
nJé/2

from which we get

1

o(1) :/ u;(nun)'erldr
5/2
1 1
:/ n|u;1|2rN1dr+/ ul ' TN dr

(4.5) 5/12 5/2
> [ e [ o

1
= / |u;1|27'N_1d7’ + o(1),
)

where we used that ||u,|l2 — 0 by the compact embedding. This proves
(4.1).

Thus, we have shown that if Uy is not attained, then the maximizing
sequence is a concentrating sequence, along which the functional tends to
Yny < Upn. This contradiction proves that Uy is attained.

5. A SUPERCRITICAL EQUATION

5.1. Proof of Theorem 1.5. We now consider the following highly su-
percritical equation (1.7). Indeed, note that the nonlinearity has critical
Sobolev growth only in one point, namely in the origin, and is (even strongly)
supercritical in all other points.

—Au = ¥~ in B,
(5.1) u > 0 in B,
u = 0 on 0B,

To prove the existence of a solution, we employ variational methods. Con-
sider the functional

1 1
52) I(u)=z [ |Vul’d —/
62 1) =g [ [VuPdo— [ oo

Note that due to Theorem 1.1 the functional I(u) is well-defined and of class
Cl.

It is standard to see that the functional has a mountain-pass structure
in the origin, but of course, due to the supercritical growth, the functional
does not satisfy the Palais-Smale condition. To overcome this problem, we
follow the strategy of the classical Brezis-Nirenberg paper: we identify the

%z Hyeq(B) = R
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non-compactness level, and show that below this level there is compactness.
Then, in a final step, we show that the minimax level of the functional
lies indeed below the non-compactness level. We emphasize that this result
does not require a perturbation with a lower order term: it is in fact the
supercritical term which already guarantees this.

We proceed in three steps:

N

1) The level & S2 is a noncompactness level for the functional I(u).
N

2) The mountain-pass level ¢ of the functional I(u) satisfies ¢ < £572.

N
3) By 2) we obtain a weak solution u at level 0 < ¢ < +-5,2. We show that
then u # 0, which completes the proof.

In this section we denote again with

N-2
£ 2
ui(r) = Con———x—~, €>0
(e2+7r2) 2
N-2

Cy = (N(N—-2)"z

the standard Sobolev instantons, which satisfy the equation
(5.3) —Au=u*"1, on RV
and for which

%127, alN/2 % 2* 7 alNJ/2
/RN’VUE| de =Sy~ and /RNWE‘ de =Sy~

1) Taking a suitable cut-off function 7 and setting u. = nu’ one checks that
us € H&J 1q(B) is a Palais-Smale sequence, with

1 1 x4 pa 1
I(u;) = 2/B|Vu5|2d:1:—/32*+ra lue|* T da — NS%/Q.

The sequence u. is concentrating and converges weakly to 0, and thus it
does not contain a strongly convergent subsequence; hence we have proved

1).

2) It is clear that the functional I has a Mountain-Pass structure. To prove
N

that the moutain-pass level lies below the value % Sy » we choose u. as in

1), and set

¢ = inf max I(u)
yel' uey

where

.= {fy : [0, R] — Hy(B) continuous ,(0) = 0,y(R) = Rug}
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with R > 0 sufficiently large, so that I{(Ru.) < 0. Then the path ~.(t) =
tue , t € [0, R], belongs to I', and

5.4 < I(tus) =: I(Tcue).
(54) e < max T(tu) =t I(t)

We first estimate the value of ¢., using similar estimates as in the proof
of Proposition 3.3. Since %I(t Ue)
t

=0, we get

=tle

(5.5) ‘. / Vo (2)|%dz = / 2Ty ()20 g
B B
It is known (see [2]) that
N . N

/ |Vue(z)|?dz = S + 0@V ?) / ue ()|* dz = S + O(eY).

B B
Hence we get from (5.5)

N * a * | pa *

SZ +0(eN-2) =2 2/ lue (z)|2 do + 2 2/ (ﬂ“ lue () — Jue ()2 )dm

=253 + 0™ + [ @) (Uehuclo))” ~ 1)ds]

N
= 422 [Sg +O(eN) + Ag] :

Estimate of A.: let a. such that |t-u.| < 1 for r > a. (recall that by the
mountain—pass structure one has § < t. < R)

Ae —/ |t (x |t ue ()" —1)da
Sle/O e ()2 (It

2% (61"0‘ log [teuc(r)| 1)TN71d’)”

Qg
:le/ |ue(r)
0
Qe

&€
<o [ e togel Mt e [ jue(r) o togel L
0

£

(7‘)|Ta — 1)TN_1dr

£ Qe

§c/ 5N7"a]10g5]7“N1d7“+c/ eNr 2N log e| rN Ldr
0 €

e

< ce”loge| + ce¥|loge|( —r 1)

£

< ce”lloge]
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and

ue(r )|Ta — 1)7”N71d7’

A > wy_ 1/|u8

> —wn_ 1/ e (r)|* N L

N—-1
2 / 7‘271\[7‘ dr

N/2.

Thus, we obtain

N‘Z

ﬂ *
SZ +0(eN2) =12 2|87 + 0(eV) + O(*loge|) + O(e*

)

from which we see that {. — 1, and then we get

1\4‘2

140V %) = (14 2" = 2)(t = 1) [1+ O(eloge]) + O F)

from which we finally obtain, assuming that 0 < o < min{/N — 2 %

N
2

t:—1 =0V "2) + 0 loge|) + O(e
= O(e%|loge|) =: R:

)

17
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We now return to the estimate of the level ¢, see (5.4): we have

2% 4

1 2 2 tg*—i—ra
I(tg’ll,g) = 2/BtE|V'UJE| —/BW|U5

1 N _ (1+R )2*+7~01 * | e
=—(1 £ 2 v N=2 —/ A c 2% +r

S0+ R (5] o) - [ SEEED

L.y x - 1+ R)>T .

1 62*+r“' e .
_/( ‘;*R+)a (|u62+r _|U52)
B T
1.y N Vs 1+ (25 + 1) Re + cR2 |
< 551\2[ +RSSN +CR6+O(€ )_/B 2 4 por ’u‘E’
—d/ ue X T = |ue|*
| (Jul )
L5 o1 2 N-2 1 2* E)
< ESN + RSy +cR:4O(e ) — i e lug|* — RSy
+O(Re) + O) — d [ (7"~ [uf?)
B
1 N 1 x 1 1 *
_ Q2 2 N-2y = @2 N - 2
= 357 + O(RY) + 0(N™) = 258 +0(e )+/B(2* gl
—d/ <|u5|2*+r°‘ _ |u6|2*>
B
1 N
= NSK, + O(R%) + O0(eV72) + ce® — ce® |loge]
1 XN
< NS]\E, , for € >0 sufficiently small ,

where we have used that

1 1 X X
/ (— — 7)|u6|2 dx < c/ rug|* ¥ dr
B \2%  2* 4@ B

€ 1 6N
< c/ ro‘aNerdr—i-c/ 7"0‘—2NTN’1 dr
0 £ r

<ceFe(e® —eN) =ce®
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[ (o ar = / (e
/ e ()2 (e ()7 — 1)y — / e

2/ —-N O‘]logs\rN Ydr — / \ug\g N=L g
0

1
% loge| — 5N/ r2NpN=1 gy
ac

and

o

uE z)|" — 1)d7’

— |ue

Y

A\

e loge| — eV (e~NV? —1)
e loge|.

Vv

3) By 2) we obtain a (PS). sequence (u,) with

L5
I{up) = c< NSA“,

and
(5.6)

1 1
I'(un)[p] = wn_1 / ul ' vV dr — wy_y / lun|> " @ rN " ldr — 0.
0 0
It is standard to show that {u,} C HZ(Q) is bounded, and hence there is a
weakly convergent subsequence
Up — U, T —> 00

which solves weakly equation (5.3). If u # 0 we are done. Hence we assume
that « = 0, and show that this is impossible.

As in (4.2) we have

1
(5.7) /5 i (1)

Taking 1 as in (4.4) and choosing ¢ = nu, in (5.6) we obtain

4t N=1g. v , for § > 0 fixed.

1 1
/ ul (nug)'rN tdr = / lun|? 2 (nup )™ Ydr + (o(1), nuy) — 0
5/2 5/2
from which we get as in (4.5) that
1
/6 lul, (r)*rN"tdr — 0, for any & > 0.

Next, we show that
Hup) = Iop(uy) + o(1)

1 — |ue(r )|TQ)TN_1d7’
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where

2 dz.

Iy(w) = ;/B |Vw(z)|*dz — 21*/B|w(:1:)

Indeed, we have

1 1 1
/ |un|* PN dr = / |un|* N dr +/ (IUn\Q*J’Tada; - |Un\2*)7"N'1dr
0 0 0

1 . n . o 1 . N
:/ Jun|? TN‘ldH/ o (] —I)TN‘ldr+/ T (T T
0 0 .

1 1
< / |un|2*7'N'1d7’ + % —i—/ |un|2*|un|rarN'1 dr
0 n

1
< / |un | N ldr + ¢
0

by (3.9) and (4.2).
Similarly, one shows that

I'(un )] = Iy(un)le] + o(1)
Hence, we obtain that (uy) is a (PS). sequence also for the functinal Io.
However, it is known that for Iy the Palais-Smale condition holds for 0 < ¢ <

N
%S ~ » and hence, for a subsequence, we have that u, — u = 0 strongly in
H}(£2). But this implies that I(u,) — 0, in contradiction to I(u,) — ¢ > 0.
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