In this paper we propose a general class of covariate-adjusted response-adaptive (CARA) designs based on a new functional urn model. We prove strong consistency concerning the functional urn proportion and the proportion of subjects assigned to the treatment groups, in the whole study and for each covariate profile, allowing the distribution of the responses conditioned on covariates to be estimated nonparametrically. In addition, we establish joint central limit theorems for the above quantities and the sufficient statistics of features of interest, which allow to construct procedures to make inference on the conditional response distributions. These results are then applied to typical situations concerning Gaussian and binary responses.

Nonparametric covariate-adjusted response-adaptive design based on a functional urn model / G. Aletti, A. Ghiglietti, W.F. Rosenberger. - In: ANNALS OF STATISTICS. - ISSN 0090-5364. - 46:6B(2018 Dec), pp. 3838-3866. [10.1214/17-AOS1677]

Nonparametric covariate-adjusted response-adaptive design based on a functional urn model

G. Aletti
Primo
;
A. Ghiglietti
;
2018

Abstract

In this paper we propose a general class of covariate-adjusted response-adaptive (CARA) designs based on a new functional urn model. We prove strong consistency concerning the functional urn proportion and the proportion of subjects assigned to the treatment groups, in the whole study and for each covariate profile, allowing the distribution of the responses conditioned on covariates to be estimated nonparametrically. In addition, we establish joint central limit theorems for the above quantities and the sufficient statistics of features of interest, which allow to construct procedures to make inference on the conditional response distributions. These results are then applied to typical situations concerning Gaussian and binary responses.
clinical trials; covariate-adjusted analysis; inference; large sample theory; personalized medicine; randomization
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore SECS-S/01 - Statistica
dic-2018
2017
Centro di Ricerca Interdisciplinare su Modellistica Matematica, Analisi Statistica e Simulazione Computazionale per la Innovazione Scientifica e Tecnologica ADAMSS
Article (author)
File in questo prodotto:
File Dimensione Formato  
01_main_Arxiv_incl.pdf

accesso aperto

Descrizione: Articolo principale (main article)
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 396.45 kB
Formato Adobe PDF
396.45 kB Adobe PDF Visualizza/Apri
02_ARXIV_appendix.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 293.91 kB
Formato Adobe PDF
293.91 kB Adobe PDF Visualizza/Apri
AoS_published.euclid.aos.1536631292.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 278.82 kB
Formato Adobe PDF
278.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/460772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact