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ONLINE SUPPLEMENTAL APPENDIX: NONPARAMETRIC
COVARIATE-ADJUSTED RESPONSE-ADAPTIVE DESIGN BASED ON

A FUNCTIONAL URN MODEL

A. Analytic expressions. We now derive some useful analytic expressions for Xn

and Dn. Using (2.3), we can express Xn as follows: on the set {X̄k
n = 1}, k ∈ {1, .., d}, we

have, for any j ∈ {1, .., d},
(A.1)

Xj
n(t) = P

(
j−1∑
i=1

Zin−1(t) < Un ≤
j∑
i=1

Zin−1(t)
∣∣ Fn−1, X̄k

n = 1

)

=

(
min

{∑j
i=1 Z

i
n−1(t);

∑k
i=1 Z

i
n−1(Tn)

}
−max

{∑j−1
i=1 Z

i
n−1(t);

∑k−1
i=1 Z

i
n−1(Tn)

})+
Zkn−1(Tn)

,

where by convention
∑0

i=1(·) = 0. Note that w(Xn(t)) = 1 for all t ∈ τ and Xn(Tn) = X̄n.
The definition of Dn in (2.8) may be simplified when π̂ks , for some s ∈ τ and k ∈

{1, .., d}, is absolutely continuous or discrete. In fact, in the first case the QF is bijective,
i.e. (Q̂ks)

−1(y) ≡ F̂ ks (y) for any y ∈ Sk, and hence from (2.8), on the sets {Tn = s},
{X̄k

n = 1} and {ξkn = y}, Dn reduces to

(A.2) Dij
n (t) = ûij( Q̂jt ( F̂

k
s (y) ) ).

When π̂ks is discrete, for some y ∈ Sk we have π̂ks (y) > 0, and hence

(Q̂ks)
−1(y) =

(
F̂ ks (y−) , F̂ ks (y)

)
,

where y− := (y − ε) with ε > 0 arbitrary small. Thus, from (2.7), on the sets {Tn = s},
{X̄k

n = 1} and {ξkn = y}, Dn reduces to

(A.3)

Dij
n =

(
F̂ ks (y)− F̂ ks (y−)

)−1 ∫ F̂ks (y)

F̂ks (y
−)
ûikt (Q̂jt (v))dv

=
(
π̂ks (y)

)−1 ∫ F̂ks (y)

F̂ks (y
−)
ûikt (Q̂jt (v))dv,

where we recall that π̂ks is the estimator of πks (y) = P(ξkn = y|Tn = s).

B. Proofs. This section is concerned with the proofs of the results presented in Sec-
tion 3.
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B.1. Proof of the first-order asymptotic results. We now prove Theorem 3.1. We first
need to introduce some notation concerning the eigen-structure of H(t).

For any t ∈ τ , H(t) is diagonalizable by (A2). Then there exists a nonsingular matrix
Ũ(t) such that Ũ>(t)H(t)(Ũ>(t))−1 is diagonal with elements λj(t) ∈ Sp(H(t)). Notice

that each column uj(t) of Ũ(t) is a left eigenvector of H(t) associated with λj(t). WLOG,
we set ‖uj‖(t) = 1. Moreover, when the multiplicity of some λj(t) exceeds one, we assume

the corresponding eigenvectors to be orthogonal. Then if we define Ṽ (t) = (Ũ>(t))−1, each
column vj(t) of Ṽ (t) is a right eigenvector of H(t) associated with λj(t) such that

(B.1) u>j vj = 1 and u>h vj = 0, ∀h 6= j.

These constraints, combined with the assumptions in (A2) on H (precisely, nonnegativity,
constant balance and irreducibility) imply, by the Frobenius-Perron Theorem, that, for any
t ∈ τ , λ1(t) = 1 is an eigenvalue of H(t) with multiplicity one, maxj>1<e(λj) < 1 and

u1 = N−1/21, N−1/21>v1 = 1, vj1 > 0 ∀j = 1, .., d.

Because v(t) ∈ S, or equivalently w(v(t)) = 1, in the statement of Theorem 3.1, then
v = N−1/2v1.

In the sequel, we will use U and V to indicate the sub-matrices of Ũ and Ṽ , respectively,
whose columns for any t ∈ τ are the left and the right eigenvectors of H(t) associated with
Sp(H(t)) \ {1}, given by {u2(t), ..,uN (t)} and {v2(t), ..,vN (t)}, respectively.

Now, given the eigen-structure of H presented here, the matrix v1> has real entries and
the following relations hold:

(B.2) V > 1 = U> v = 0, V >U = U>V = I and I = v1> + V U>,

where the identity matrices above have dimensions (d− 1) and d, respectively. As a conse-
quence of (B.2), the matrix U(t)V >(t) has real entries for any t ∈ τ . Moreover, denoting
by Λ(t) the diagonal matrix whose elements are λj(t) ∈ Sp(H(t)) \ {1}, we can decompose
the functional matrix H as follows:

(B.3) H = v1> + V ΛU>.

With this notation in mind, we are now ready to present the proof of the first-order results.

Proof of Theorem 3.1. The structure of the proof of part (a) is analogous to that
in [1, Theorem 4.1]. Consider the urn dynamics expressed in (2.9) as follows: let Y0 = 1
and for any n ≥ 1

(B.4) Yn = Yn−1 + DnXn.

From (B.4), we can derive the following decomposition:

(B.5) Yn = Yn−1 + HZn−1 + ∆MZ,n + RZ,n,

where
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(1) ∆MZ,n := (Dn −Hn)Xn +H(Xn − Zn−1) is a martingale increment, since

E[(Dn −Hn)|Fn−1, Tn, X̄n] = E[(Xn − Zn−1)|Fn−1, Tn] = 0.

(2) RZ,n := (Hn −H)Xn is a remainder term that converges to zero a.s. due to the fact
that, since Xn ∈ S, P(‖Xn‖ ≤ 1) = 1 a.s. and by Assumption (A2).

Let rn := (d + n)−1. By Assumption (A1), w(Yn) = (d + n) with probability one for any
n ≥ 0, and hence Zn = rnYn. Then, multiplying the dynamics (B.5) by rn and using
rnr
−1
n−1 = (1− rn), we obtain

Zn = [I − rn(I −H)]Zn−1 + rn∆MZ,n + rnRZ,n.

Moreover, since (I − H)v = 0 and defining Wn := (Zn − v), we obtain the following
expression:

(B.6) Wn = [I − rn(I −H)]Wn−1 + rn∆MZ,n + rnRZ,n.

Let us consider the (d− 1)-dimensional complex process {WU,n;n ≥ 1} defined as WU,n =
U>Wn. The relation Wn = VWU,n is a consequence of (B.2) and 1>Wn = (1>Zn) −
(1>v) = 0. Hence, to prove that

∫
τ ‖Wn(t)‖ν(dt)

a.s.→ 0, it is enough to show that∫
τ
‖WU,n(t)‖ν(dt)

a.s.→ 0.

To this purpose, we observe that the dynamics of WU,n = U>Wn can be derived from (B.6),
so obtaining

WU,n = [I − rn(I − Λ)]WU,n−1 + rnU
>∆MZ,n + rnU

>RZ,n,

where I here indicates an identity matrix of dimension (d − 1). Hence, using Assump-
tion (A2) and E[∆MZ,n | Fn−1] = 0, we have

E
[
‖WU,n‖2|Fn−1

]
= E

[
W
>
U,n WU,n | Fn−1

]
=

W
>
U,n−1 WU,n−1 − rnW

>
U,n−1

(
2I − Λ− Λ

)
WU,n−1 + rnn

−αψn,

where {ψn;n ≥ 1} is a suitable bounded sequence of Fn−1-measurable random variables.
Now, since Re(λj(t)) < 1 for any λj(t) ∈ Sp(H(t))\{1} and t ∈ τ , the matrix 2I− (Λ(t) +
Λ(t)) is positive definite and hence we can write

E
[∫

τ
‖WU,n(t)‖2ν(dt) | Fn−1

]
≤
∫
τ
‖WU,n−1(t)‖2ν(dt) + O(n−(1+α)).

Since
∑

n n
−(1+α) < +∞, we can conclude that the real stochastic process

∫
τ ‖WU,n(t)‖2ν(dt)

is a positive almost supermartingale and so it converges almost surely, and in mean since
it is also bounded (see [10]).
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In order to prove that the limit is zero, we show the sufficient condition that

E[

∫
τ
‖WU,n(t)‖2ν(dt)]

converges to zero. To this end, we observe that, from the above computations, we obtain

E[‖WU,n‖2] ≤ E[W
>
U,n−1(I − rn(I − Λ))(I − rn(I − Λ))WU,n−1] + n−(1+α)C1

for a suitable constant C1 ≥ 0. Then, we note that the elements of the diagonal matrix
above can be written as follows:

[(I − rn(I − Λ))(I − rn(I − Λ))]jj = 1− 2rn(1−Re(λj)) + r2n |1− λj |2.

Setting aj(t) := 1−Re(λj(t)) and a∗(t) := minj>1 aj(t), we have that

E[W
>
U,n−1(I − rn(I − Λ))(I − rn(I − Λ))WU,n−1] ≤

N∑
j=2

(1− 2ajrn)E[W
j
U,n−1W

j
U,n−1] + C2n

−(1+α) ≤

(1− 2a∗rn)E[‖WU,n‖2] + C2n
−(1+α),

for a suitable constant C2 ≥ 0. Since for any t ∈ τ maxj>1Re(λj(t)) < 1, for any ε > 0
there exists δ > 0 such that ν(Aδ) > 1 − ε, where Aδ := {t ∈ τ, a∗(t) > δ}. Denoting
qδ,n := E[

∫
Aδ
‖WU,n(t)‖2ν(dt)], we have

(B.7) qδ,n ≤ (1− 2δrn)qδ,n−1 + (C1 + C2)n
−(1+α),

which implies limn qδ,n = 0 (see [5]). Hence, for any ε > 0 we have proved

E
[∫

τ
‖WU,n(t)‖2ν(dt)

]
≤ ε + qδ,n → ε.

This concludes the proof of part (a).

Concerning part (b), consider the decomposition (Nt,n/w(Nt,n) − v(t)) = (A1,n(t) +
A2,n(t)), where

A1,n(t) :=

∑n
i=1 1{Ti=t}(X̄i − Zi−1(Ti))∑n

j=1 1{Tj=t}
,

A2,n(t) :=

∑n
i=1 1{Ti=t}(Zi−1(t)− v(t))∑n

j=1 1{Tj=t}
.
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First, using [4, Theorem 1] and the assumption
∑n

j=1 µj−1({t})
a.s.→ ∞, it follows that∑n

j=1 1{Tj=t}
a.s.→ ∞. Hence, we can write that, for any n0 ≥ 1,

lim sup
n→∞

‖A2,n(t)‖ ≤ sup
i≥n0

‖Zi−1(t)− v(t)‖.

Then, ‖A2,n(t)‖ a.s.→ 0 as a consequence of part (a). To deal with the term A1,n(t), consider
the martingale process {Ã1,n(t);n ≥ 1} defined as follows:

Ã1,n(t) :=
n∑
i=1

1{Ti=t}(X̄i − Zi−1(Ti))∑i
j=1 1{Tj=t}

,

and notice that Ã1,n(t) converges a.s. since with probability one its bracket process is
bounded:

∑∞
i=1 E[‖∆Ã1,i(t)‖2|Fi−1] ≤ d

∑∞
i=1 i

−2 <∞. Then, applying the Cesàro Lemma

it follows that ‖A1,n(t)‖ a.s.→ 0.
Concerning part (c), consider the decomposition (Nn/n−

∫
τ µ(dt)v(t)) = (B1,n+B2,n+

B3,n), where

B1,n := n−1
n∑
i=1

(X̄i −
∫
τ
µi−1(dt)Zi−1(t)),

B2,n := n−1
n∑
i=1

∫
τ
(µi−1(dt)− µ(dt))Zi−1(t),

B3,n := n−1
n∑
i=1

∫
τ
(Zi−1(t)− v(t))µ(dt).

To deal with the term B1,n, consider the martingale process {B̃1,n(t);n ≥ 1} defined as
follows:

B̃1,n :=
n∑
i=1

i−1(X̄i −
∫
τ
µi−1(dt)Zi−1(t)),

and notice that B̃1,n converges a.s. since with probability one its bracket process is bounded:∑∞
i=1 E[‖∆B̃1,i‖2|Fi−1] ≤ d

∑∞
i=1 i

−2 < ∞. Then, applying the Cesàro Lemma it follows

that ‖B1,n‖
a.s.→ 0. Notice that, for any n0 ≥ 1,

lim sup
n→∞

‖B2,n‖ ≤ sup
i≥n0

∫
τ
|µi−1(dt)− µ(dt)|,

and hence ‖B2,n‖
a.s.→ 0 using assumption

∫
τ ‖µi−1(dt)−µ(dt)‖ a.s.→ 0. Finally, from part (a)

the third term ‖B3,n‖ converges to zero a.s. by the Bounded Convergence Theorem. This
concludes the proof.
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B.2. Proof of the second-order asymptotic results. This section contains the proofs of
the central limit theorems (CLTs) presented in Section 3, namely Theorem 3.2 and Theo-
rem 3.3. The key idea of these proofs consists in revisiting the functional urn dynamics in the
stochastic approximation (SA) framework, in the same spirit of the recent works [2, 9, 11].
For this reason, we now show some basic tools of SA. The general theory can be found
in [3, 6, 8] (cf. [9, Theorem A.2] and [11, Appendix A]) with different group of conditions.

Consider an Fn-measurable multivariate process {Wn;n ≥ 1} which evolves as follows:

(B.8) ∀n ≥ 1, ∆Wn = − 1

n
f(Wn−1) +

1

n
(∆Mn + Rn),

where f is a differentiable function, ∆Mn is an Fn−1-martingale increment and Rn is a
remainder term. Then, assuming that

Rn
a.s.−→ 0 and sup

n≥1
E
[
‖∆Mn‖2 | Fn−1

]
<∞ a.s.,

we have that the setW of the limiting values of Wn as n→∞ is a.s. a compact connected
set, stable by the flow of ODEf ≡ Ẇ = −f(W).

Moreover, suppose that there exist a constant δ > 0 and a deterministic symmetric
positive semidefinite matrix Γ such that

(B.9) sup
n≥1

E[‖∆Mn‖2+δ|Fn−1] <∞ a.s., E
[
∆Mn∆M>

n |Fn−1
]
a.s.−→ Γ,

and, for any ε > 0, nE[‖Rn‖21{‖Wn−W‖≤ε}] −→ 0. Then, considering an equilibrium point
W of {w : f(w) = 0} such that all the eigenvalues of Df(W) have real parts bigger than

1/2, we have that
√
n(Wn−W)

L−→ N (0,Σ), where Σ =
∫∞
0 eu(I/2−Df(W))Γeu(I/2−Df(W))>du.

Proof of Theorem 3.2. Initially, we need to express in the SA form (B.8) the joint
dynamics of the following processes:

(1) the urn proportion in correspondence of all the covariate profiles,

Zn := (Zn(t), t ∈ τ)>;

(2) the proportion of subjects of all covariate profiles assigned to the treatments,

Ñn := (Ñt,n, t ∈ τ)>, where Ñt,n :=
Nt,n

w(Nt,n)
;

(3) the adaptive estimators of features of interest related with the response distributions
conditioned on each covariate profile,

θ̂n := (θ̂t,n, t ∈ τ)>, where θ̂t,n := (θ̂jt,n, j ∈ {1, .., d})>;
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(4) the proportion of subjects with all covariate profiles observed in the trial,

Qn := (Qt,n, t ∈ τ)>, where Qt,n :=
w(Nt,n)

n
=

1

n

n∑
i=1

1{Ti=t}.

Then, the CLT follows by applying to this joint dynamics the standard theory of the SA.
First using (2.9), we express the joint dynamics of (Zn(t),Nt,n) as follows: let N0 = 0

and Y0 = 1, and for any n ≥ 0

(B.10)

{
Yn(t) = Yn−1(t) + Dn(t)Xn(t),

Nt,n = Nt,n−1 + X̄n1{Tn=t}.

Notice that, by defining rn := (d+n)−1 and using Assumption (A1), rnYn = Yn/w(Yn) =
Zn. Then in (B.10), if we multiply the dynamics of Yn(t) by rn and the dynamics of Nt,n

by w(Nt,n)−1, we obtain

(B.11)


Zn(t)− Zn−1(t) = −rn(Zn−1(t)−Dn(t)Xn(t)),

Nt,n

w(Nt,n)
− Nt,n−1
w(Nt,n−1)

= −
1{Tn=t}

w(Nt,n)

(
Nt,n−1

w(Nt,n−1)
− X̄n

)
,

where in (B.11) we have used the relations rnr
−1
n−1 = (1− rn) and

w(Nt,n−1)

w(Nt,n)
= (1− 1{Tn=t}w(Nt,n)−1).

Then, recalling Ñt,n = Nt,n/w(Nt,n) and adding to (B.11) the dynamics of {θ̂jt,n;n ≥ n0}
expressed in (3.3), we obtain

(B.12)



∆Zn(t) = −rn(Zn−1(t)−Dn(t)Xn(t)),

∆Ñt,n = −
1{Tn=t}

w(Nt,n)

(
Ñt,n−1 − X̄n

)
,

∆θ̂jt,n = −
X̄j
n1{Tn=t}

N j
t,n

(ft,j(θ̂
j
t,n−1)−∆Mt,j,n −Rt,j,n).

Now, let Qt,n := w(Nt,n)/n, where by assumption fµ,t(·) ≥ ε > 0 we have lim infnQt,n ≥
lim infn µn(t) ≥ ε > 0 with probability one. Notice that

r−1n
1{Tn=t}

w(Nt,n)
= r−1n

1{Tn=t}

w(Nt,n−1) + 1
=

1{Tn=t}

Qt,n−1
+
ψ
θjt ,n

n
,

and analogously,

r−1n
X̄j
n1{Tn=t}

N j
t,n

= r−1n
X̄j
n1{Tn=t}

N j
t,n−1 + 1

=
X̄j
n1{Tn=t}

Ñ j
t,n−1Qt,n−1

+
ψNt,n
n

,
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where {ψNt,n;n ≥ 1} and {ψ
θjt ,n

;n ≥ 1} are suitable bounded sequence of Fn-measurable

random variables. Then, using the above relations in (B.12) we obtain

(B.13)



∆Zn(t) = −rn(Zn−1(t)−Dn(t)Xn(t)),

∆Ñt,n = −rn
1{Tn=t}

Qt,n−1

(
Ñt,n−1 − X̄n

)
+ rnRNt,n,

∆θ̂jt,n = −rn
X̄j
n1{Tn=t}

Ñ j
t,n−1Qt,n−1

(ft,j(θ̂
j
t,n−1)−∆Mt,j,n) + rnRθjt ,n

,

where RNt,n,Rθjt ,n
∈ Fn are suitable random variables that converges to zero a.s. and

(E[‖RNt,n‖2]+E[‖R
θjt ,n
‖2]) = o(n). Now, in order to express the dynamics in (B.13) in the

SA form (B.8), we need also to consider the process {Qt,n;n ≥ 1} and to rewrite (B.13) as
follows:

∆Zn(t) = −rnfZ,t(Zn−1(t)) + rn∆MZ(t),n,

∆Ñt,n = −rnfN,t(Zn−1(t), Ñt,n−1, θ̂t,n−1, Qt,n−1) + rn(∆MNt,n + rnRNt,n),

∆θ̂jt,n = −rnfθ,t(Zn−1(t), Ñt,n−1, θ̂t,n−1, Qt,n−1) + rn(∆M
θjt ,n

+ R
θjt ,n

),

∆Qt,n = −rnfQ,t(Ñt,n−1, θ̂t,n−1, Qt,n−1) + rn∆MQt,n,

where
fZ,t(Zn−1(t)) := (I −H(t))Zn−1(t) + v(t)(1>Zn−1(t)− 1),

fN,t(Zn−1(t), Ñt,n−1, θ̂t,n−1, Qt,n−1) :=
µn−1(t)

Qt,n−1

(
Ñt,n−1 − Zn−1(t)

)
,

fθ,t(Zn−1(t), Ñt,n−1, θ̂t,n−1, Qt,n−1) :=
µn−1(t)Z

j
n−1(t)

Ñ j
t,n−1Qt,n−1

ft,j(θ̂
j
t,n−1),

fM,t(Ñt,n−1, θ̂t,n−1, Qt,n−1) := (Qt,n−1 − µn−1(t)),

and

∆MZ(t),n :=(DnXn −HZn−1)(t),

∆MNt,n := (1{Tn=t} − µn−1(t))
(Ñt,n−1 − Zn−1(t))

Qt,n−1
−

1{Tn=t}

Qt,n−1
(X̄n − Zn−1(t)),

∆M
θjt ,n

:= (X̄j
n1{Tn=t} − µn−1(t)Z

j
n−1(t))

ft,j(θ̂
j
t,n−1)

Ñ j
t,n−1Qt,n−1

+
X̄j
n1{Tn=t}

Ñ j
t,n−1Qt,n−1

∆Mt,j,n,

∆MQ,n(t) :=(1{Tn=t} − µn−1(t)),

are martingale increments since E[Dn(t)|Tn, X̄n] = H(t), E[X̄n|Fn−1, Tn] = Zn−1(Tn),
E[∆Mt,j,n|Fn−1, Tn, X̄n] = 0, E[1{Tn=t}|Fn−1] = µn−1(t).
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Let us now introduce the joint processes {Wn, n ≥ 1} defined as Wn := (Zn, Ñn, θ̂n,Qn)>,
and note that its dynamics can be expressed in the SA form (B.8) as follows:

(B.14) ∆Wn = −rnfW (Wn−1) + rn(∆MW,n + RW,n),

where

(i) fW := (fZ , fN , fθ, fQ)>, where fZ := (fZ(t), t ∈ τ)>, fN := (fNt , t ∈ τ)>, fθ :=

(f
θjt
, t ∈ τ, j ∈ {1, .., d})>, fQ := (fQt , t ∈ τ)>;

(ii) ∆MW,n := (∆MZ,n,∆MN,n,∆Mθ,n,∆MQ,n)>, where
∆MZ,n := (∆MZ(t),n, t ∈ τ)>, ∆MN,n := (∆MNt,n, t ∈ τ)>,

∆Mθ,n := (∆M
θjt ,n

, t ∈ τ, j ∈ {1, .., d})>, ∆MQ,n := (∆MQt,n, t ∈ τ)>;

(iii) RW,n := (0,RN,n,Rθ,n,0)>, where RN,n := (RNt,n, t ∈ τ)>,
Rθ,n := (R

θjt ,n
, t ∈ τ, j ∈ {1, .., d})>.

Since RW,n
a.s.−→ 0 and, using (3.4) in (A6a), supn E[‖∆MW,n‖2] < ∞, we have that the

set W of the limiting values of Wn is a stable set by the flow of Ẇ = −fW (W). Notice
that the set {w : fW (w) = 0} is composed only of the element W := (v,v, θ, µ)>, where
v := (v(t), t ∈ τ)> and µ := (µ(t), t ∈ τ)>. Moreover, we recall from Theorem 3.1 that
we have Zn

a.s.−→ v and Ñn
a.s.−→ v, and by (A6a), we have θ̂n

a.s.−→ θ. Since µn(t) =
fµ,t(Ñt,n, θ̂t,n)

a.s.−→ fµ,t(v(t), θt) = µ(t) and Qn −
∑n

i=1 µi−1/n =
∑n

i=1 ∆MQ,n/n
a.s.−→ 0,

we also have Qn
a.s.−→ µ, which implies Wn

a.s.−→W.
In order to show the existence of a stable attracting area which contains a neighborhood

of W, it is sufficient (see [7, p. 1077]) to show that {<e(Sp(DfW (W))) > 0}, where

(B.15) DfW (W) =


DZfZ(W) 0 0 0
−I I 0 0
0 0 Dθfθ(W) 0
0 DNfQ(W) DθfQ(W) I

 ,

and all the terms in (B.15) are block-diagonal matrices, whose tth block is: [DZfZ(W)]tt =
(I−H(t)+v(t)1>), [Dθfθ(W)]tt = diag(Dft,j(θjt ), j ∈ {1, .., d}), [DNfQ(W)]tt = DNfµ,t(W)
and [DNfQ(W)]tt = Dθfµ,t(W). Note from the structure of DfW (W) in (B.15) that
{<e(Sp(DfW (W))) > 0} follows by establishing that for any t ∈ τ and j ∈ {1, .., d}

{<e(Sp(I −H(t) + v(t)1>)) > 0} and {<e(Sp(Dft,j(θjt ))) > 0}.

Since (I −H(t)) = V (t)(I − Λ(t))U(t) from (B.2) and (B.3), we have that

Sp(I −H(t) + v(t)1>) = {1} ∪ {1− λ(t), λ(t) ∈ Sp(H(t)) \ {1}}.

Then {<e(Sp(DfW (W))) > 0} follows by {maxt∈τ Re(λ∗H(t)) < 1/2} from (A5) and
{mint∈τ Re(λ∗

θjt
) > 1/2} from (A6a).
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We now show that the assumptions of the CLT for processes in the SA form are sat-
isfied by the dynamics in (B.14) of the joint process {Wn, n ≥ 1}. First, note that using
the above arguments we obtain {<e(Sp(DfW (W))) > 1/2}. Then, it is immediate to see
that E[‖RW,n‖2] = o(n) and the first condition in (B.9) is satisfied using (3.4) in Assump-
tion (A6a). Concerning the second condition in (B.9), we need to show that there exists a
deterministic symmetric positive semidefinite matrix Γ such that

E[∆MW,n(∆MW,n)>|Fn−1]
a.s.−→ Γ =


ΓZZ ΓZN ΓZθ ΓZQ
Γ>ZN ΓNN ΓNθ ΓNQ
Γ>Zθ Γ>Nθ Γθθ ΓθQ
Γ>ZQ Γ>NQ Γ>θQ ΓQQ

 .

First, note that since (Ñt,n−1 − Zn−1(t))
a.s.−→ 0 and ft,j(θ̂

j
t,n−1)

a.s.−→ 0, these terms do not
contribute to Γ; hence in the following calculations they will be omitted by ∆MNt,n and
∆M

θjt ,n
, respectively. Moreover, let us introduce for any t, s ∈ τ and j ∈ {1, .., d}, a vector

g(t, s, ej) ∈ S such that gk(t, s, ej), k ∈ {1, .., d}, is defined as follows:

(B.16)

(
min

{∑k
i=1 v

i(t);
∑j

i=1 v
i(s)
}
− max

{∑k−1
i=1 v

i(t);
∑j−1

i=1 v
i(s)
} )+

vj(s)
.

Then, before computing the terms in Γ we show that for any t ∈ τ

(B.17) E[‖Xn(t)− g(t1, Tn,Xn)‖|Fn−1, Tn, X̄n]
a.s.−→ 0,

To this end, first note from (A.1) that Xn(t) is a continuous function of {Zn−1(s), s ∈
τ} conditioned on Fn−1, Tn and X̄n; then (B.17) follows by Theorem 3.1 which states
Zn−1(t)

a.s.−→ v(t) for any t ∈ τ , since τ has a finite number of elements. We now compute
the terms in Γ.

Computation of ΓZZ := a.s. − limn E[∆MZ,n(∆MZ,n)>|Fn−1]. For any t1, t2 ∈ τ , we
have

E[∆MZ(t1),n(∆MZ(t2),n)>|Fn−1] = E[Dn(t1)Xn(t1)(∆MZ(t2),n)>|Fn−1]
= E[Dn(t1)Xn(t1)X

>
n (t2)D

>
n (t2)|Fn−1]−H(t1)Zn−1(t1)Z

>
n−1(t2)H

>(t2)

Consider the decomposition Dn(t1)Xn(t1)X
>
n (t2)D

>
n (t2) = (B1n +B2n), where

B1n := Dn(t1)(Xn(t1)X
>
n (t2)− g(t1, Tn, X̄n)g>(t2, Tn, X̄n))D>n (t2)

B2n := Dn(t1)g(t1, Tn, X̄n)g>(t2, Tn, X̄n)D>n (t2).

Using (B.17) and since Dn is a.s. bounded, it follows by the the Dominated Convergence
Theorem that E[B1n|Fn−1]

a.s.−→ 0. In addition, since the probability distribution of the
random variables in B2n, i.e. (Tn, X̄n, ξ̄n), conditioned on Fn−1, converges a.s. as n increases
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to infinity, we obtain E[B2n|Fn−1]
a.s.−→ E[D(t1)g(t1, T, X̄)g>(t2, T, X̄)D>(t2)]. Hence, we

have proved the following:

Γt1t2ZZ := E[D(t1)g(t1, T, X̄)g>(t2, T, X̄)D>(t2)]− v(t1)v
>(t2).

Computation of ΓNN := a.s.−limn E[∆MN,n(∆MN,n)>|Fn−1]. Note that E[∆MNt1 ,n
(∆MNt2 ,n

)>|Fn−1] =

0 = Γt1t2NN for any t1 6= t2, while for t1 = t2 = t we have

E[∆MNt,n(∆MNt,n)>|Fn−1]
= Q−2t,n−1µn−1(t)E[(X̄n − Zn−1(t))(X̄n − Zn−1(t))

>|Fn−1, Tn = t]

= Q−2t,n−1µn−1(t)(diag(Zn−1(t))− Zn−1(t)Z
>
n−1(t))

a.s.−→ ΓttNN := µ−1(t)(diag(v(t))− v(t)v>(t)).

Computation of ΓZN := a.s. − limn E[∆MZ,n(∆MN,n)>|Fn−1]. For any t1, t2 ∈ τ we
have that

E[∆MZ(t1),n(∆MNt2 ,n
)>|Fn−1] = E[Dn(t1)Xn(t1)(∆MNt2 ,n

)>(t2)|Fn−1]

= Q−1t2,n−1µn−1(t2)
(
E[Dn(t1)Xn(t1)X̄

>
n |Fn−1, Tn = t2]−H(t1)Zn−1(t1)Z

>
n−1(t2)

)
.

Note that the above term E[Dn(t1)Xn(t1)X̄
>
n |Fn−1, Tn = t2] can be expressed as follows:

E[E[Dn(t1)|Fn−1, Tn = t2, X̄n]Xn(t1)X̄
>
n |Fn−1, Tn = t2] =

H(t1)E[Xn(t1)X̄
>
n |Fn−1, Tn = t2].

Then, since using (B.17) it follows by the the Dominated Convergence Theorem that

E[Xn(t1)− g(t1, t2, X̄n)|Fn−1, Tn = t2]
a.s.−→ 0,

we can directly consider H(t1)E[g(t1, t2, X̄n)X̄>n |Fn−1, Tn = t2]; then, since the probability
distribution of X̄n conditioned on Fn−1 and Tn converges a.s. as n increases to infinity, we
obtain

E[g(t1, t2, X̄n)X̄>n |Fn−1, Tn = t2]
a.s.−→ E[g(t1, t2, X̄n)X̄>|T = t2].

Hence, we have proved the following:

Γt1t2ZN := H(t1)G(t1, t2)diag(v(t2))− v(t1)v
>(t2).

Computation of Γθθ := a.s. − limn E[∆Mθ,n(∆Mθ,n)>|Fn−1]. Since for any j1 6= j2 or
t1 6= t2 we have E[∆M

θ
j1
t1
,n

(∆M
θ
j2
t2
,n

)>|Fn−1] = 0, we have that Γθθ is a block-diagonal

matrix. In particular, for any t ∈ τ we have that Γttθθ = diag([Γttθθ]
jj , j ∈ {1, .., d})>, where

E[∆M
θjt ,n

(∆M
θjt ,n

)>|Fn−1]

= (Ñ j
t,n−1Qt,n−1)

−2µn−1(t)Z
j
n−1(t)× E[∆Mt,j,n(∆Mt,j,n)>|Fn−1, Tn = t, X̄j

n = 1]
a.s.−→ [Γttθθ]

jj := (vj(t)µ(t))−1E[∆Mt,j(∆Mt,j)
>|T = t, X̄j = 1].
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Computation of ΓZθ. For any t1, t2 ∈ τ and j ∈ {1, .., d} we have that

E[∆MZ(t1),n(∆M
θjt2

,n
)>|Fn−1] = E[Dn(t1)Xn(t1)(∆M

θjt2
,n

)>|Fn−1]

= (Ñ j
t2,n−1Qt2,n−1)

−1µn−1(t2)Z
j
n−1(t2)E[Dn(t1)Xn(t1)(∆Mt2,j,n)>|Fn−1, Tn = t2, X̄

j
n = 1].

Then, since using (B.17) it follows by the the Dominated Convergence Theorem that
E[Xn(t1)− g(t1, t2, ej)|Fn−1, Tn = t2, X̄

j
n = 1]

a.s.−→ 0, we can directly consider

E[Dn(t1)g(t1, t2, ej)(∆Mt2,j,n)>|Fn−1, Tn = t2, X̄
j
n = 1];

then, since the probability distribution of ξ̄n conditioned on Fn−1, Tn and X̄n does not
change, we have proved that

[Γt1t2Zθ ]jj := E[D(t1)g(t1, t2, ej)(∆Mt2,j)
>|T = t2, X̄

j = 1].

Computation of ΓNθ := a.s.− limn E[∆MN,n(∆Mθ,n)>|Fn−1]. For any t1, t2 ∈ τ we have
that

E[∆MNt1 ,n
(∆M

θjt2
,n

)>|Fn−1] = E[∆MNt1 ,n
E[(∆M

θjt2
,n

)>|Fn−1, Tn, X̄n]|Fn−1] = 0 = Γt1t2Nθ .

Computation of ΓQQ := a.s. − limn E[∆MQ,n(∆MQ,n)>|Fn−1]. It is immediate to see
that for any t1 6= t2

E[∆Qt1,n∆Qt2,n|Fn−1] = −µn−1(t1)µn−1(t2)
a.s.−→ Γt1t2QQ := −µ(t1)µ(t2),

while for t1 = t2 = t we have

E[∆Q2
t,n|Fn−1] = µn−1(t)(1− µn−1(t))

a.s.−→ ΓttQQ := µ(t)(1− µ(t)).

Remaining terms in Γ. Finally, we have that for any t1 6= t2,

E[∆MZ(t1),n∆MQt2 ,n
|Fn−1] = E[E[∆MZ(t1),n|Fn−1, Tn]∆MQt2 ,n

|Fn−1] = 0 = Γt1t2ZQ ,

E[∆MNt1 ,n
∆MQt2 ,n

|Fn−1] = E[E[∆MNt1 ,n
|Fn−1, Tn]∆MQt2 ,n

|Fn−1] = 0 = Γt1t2NQ,

E[∆Mθt1 ,n
∆MQt2 ,n

|Fn−1] = E[E[∆Mθt1 ,n
|Fn−1, Tn]∆MQt2 ,n

|Fn−1] = 0 = Γt1t2θQ .

Since the assumptions are all satisfied, we can apply the CLT of the SA to the dynam-
ics (B.14), so obtaining a Gaussian asymptotic distribution for the process {Wn;n ≥ 1},
with asymptotic variance

Σ :=

∫ ∞
0

eu(
I
2
−DfW (W))Γeu(

I
2
−DfW (W))>du.

This concludes the proof.
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Proof of Theorem 3.3. The structure of this proof is analogous to the proof of The-
orem 3.2. In particular, we initially need to express in the SA form (B.8) the joint dynamics
of the following processes:

(1) the urn proportion in correspondence of all the covariate profiles,

Zn := (Zn(t), t ∈ τ)>;

(2) the proportion of subjects assigned to the treatments in the study, Ñn := Nn/n;
(3) the adaptive estimators of features of interest related with the family of response

distributions conditioned on the covariates, β̂n := (β̂jn, j ∈ {1, .., d})>.

Then, the CLT follows by applying the standard theory of the SA to the joint dynamics.
Using analogous arguments to the proof of Theorem 3.2, we can obtain from (2.9)

and (3.6) the following joint dynamics:

(B.18)



∆Zn(t) = −rn(Zn−1(t)−Dn(t)Xn(t)),

∆Ñn = −rn
(
Ñn−1 − X̄n

)
+ rnRNt,n,

∆β̂jn = −rn
X̄j
n

Ñ j
n−1

(fj(β̂
j
n−1)−∆Mj,n) + rnRβj ,n,

where RNt,n,Rβj ,n ∈ Fn are suitable random variables that converges to zero a.s. and
(E[‖RNt,n‖2] + E[‖Rβj ,n‖2]) = o(n). Now, in order to express the dynamics in (B.18) in
the SA form (B.8), we need to rewrite it as follows:

(B.19)


∆Zn(t) = −rnfZ,t(Zn−1(t)) + rn∆MZ(t),n,

∆Ñn − rnfN (Zn−1, Ñn−1, β̂n−1) + rn(∆MN,n + RN,n),

∆β̂jn = −rnfβj (Zn−1(t), Ñn−1, β̂
j
n−1) + rn(∆Mβj ,n + Rβj ,n),

where
fZ,t(Zn−1(t)) := (I −H(t))Zn−1(t) + v(t)(1>Zn−1(t)− 1),

fN (Zn−1, Ñn−1, β̂n−1) :=

(
Ñn−1 −

K∑
s=1

µn−1(s)Zn−1(s)

)
,

fβj (Zn−1, Ñn−1, β̂
j
n−1) :=

∑K
s=1 µn−1(s)Zn−1(s)

Ñ j
n−1

fj(β̂
j
n−1),

and
∆MZ(t),n :=(DnXn −HZn−1)(t),

∆MN,n := (X̄n −
K∑
s=1

µn−1(s)Zn−1(s)),

∆Mβj ,n := (X̄n −
K∑
s=1

µn−1(s)Zn−1(s))
fj(β̂

j
n−1)

Ñ j
n−1

+
X̄j
n

Ñ j
n−1

∆Mj,n,
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are martingale increments since E[Dn(t)|Tn, X̄n] = H(t), E[X̄n|Fn−1] = Zn−1(Tn),
E[∆Mj,n|Fn−1, Tn, X̄n] = 0, E[1{Tn=t}|Fn−1] = µn−1(t).

Let us now introduce the joint processes {Wn, n ≥ 1} defined as Wn := (Zn, Ñn, β̂)>,
and note that its dynamics can be expressed in the SA form (B.8) as follows:

(B.20) ∆Wn = −rnfW (Wn−1) + rn(∆MW,n + RW,n),

where

(i) fW := (fZ , fN , fβ)>, where fZ := (fZ,t, t ∈ τ)> and fβ := (fβj , j ∈ {1, .., d})>;
(ii) ∆MW,n := (∆MZ,n,∆MN,n,∆Mβ,n)>, where ∆MZ,n := (∆MZ(t),n, t ∈ τ)> and

∆Mβ,n := (∆Mβj ,nj ∈ {1, .., d})>;
(iii) RW,n := (0,RN,n,Rβ,n)>, where Rβ,n := (Rβj ,n, j ∈ {1, .., d})>.

Since RW,n
a.s.−→ 0 and, using (3.4) in (A6b), supn E[‖∆MW,n‖2] <∞, we have that the set

W of the limiting values of Wn is a set stable by the flow of Ẇ = −fW (W). Notice that
by (A7b) the set {w : fW (w) = 0} is composed only by the element W := (v,x0, β)>,
where v := (v(t), t ∈ τ)>. Moreover, by (A6b) we have β̂n

a.s.−→ β, and from Theorem 3.1
we have Zn

a.s.−→ v and Ñn
a.s.−→ x0 =

∑K
s=1 fµ,s(x0, β)v(s) =

∑K
s=1 µ(s)v(s), which implies

Wn
a.s.−→W.

In order to show the existence of a stable attracting area which contains a neighborhood
of W, it is sufficient (see [7, p. 1077]) to show that {<e(Sp(DfW (W))) > 0}, where

(B.21) DfW (W) =

DZfZ(W) 0 0
DZfN (W) DNfN (W) DβfN (W)

0 0 Dβfβ(W)

 ,

and

(i) DZfZ(W) is a block-diagonal matrix, whose tth block is
[DZfZ(W)]tt = (I −H(t) + v(t)1>);

(ii) DZfN (W) := −(µ(1)I, .., µ(K)I);
(iii) DNfN (W) := I −

∑K
s=1 v(s)DNfµ,s(W)>;

(iv) DβfN (W) := −
∑K

s=1 v(s)Dβfµ,s(W)>;
(v) Dβfβ(W) is a block-diagonal matrix, whose jth block is

[Dβfβ(W)]jj = Dfj(βj).

Note from the structure of DfW (W) in (B.21) that {<e(Sp(DfW (W))) > 0} follows by
establishing that for any t ∈ τ and j ∈ {1, .., d}

{<e(Sp(I −H(t) + v(t)1>)) > 0}, and {<e(Sp(Dfj(βj))) > 0},

and {<e(Sp(
∑K

s=1 v(s)DNfµ,s(W)>)) < 1}. Analogous to the proof of Theorem 3.2, the
first two conditions follow from (A5) and (A6b), respectively, while the last condition
follows from (A7b).
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We now show that the assumptions of the CLT for processes in the SA form are sat-
isfied by the dynamics in (B.20) of the joint process {Wn, n ≥ 1}. First, note that using
the above arguments we obtain {<e(Sp(DfW (W))) > 1/2}. Then, it is immediate to see
that E[‖RW,n‖2] = o(n) and the first condition in (B.9) is satisfied using (3.4) in Assump-
tion (A6b). Concerning the second condition in (B.9), we need to show that there exists a
deterministic symmetric positive semidefinite matrix Γ such that

E[∆MW,n(∆MW,n)>|Fn−1]
a.s.−→ Γ =

ΓZZ ΓZN ΓZβ
Γ>ZN ΓNN ΓNβ
Γ>Zβ Γ>Nβ Γββ

 .

As in the proof of Theorem 3.2, note that since fj(β̂
j
n−1)

a.s.−→ 0, this term does not con-
tribute to Γ; hence in the following calculations they will be omitted by ∆Mβj ,n. We now
proceed with the computation of the terms in Γ. The calculations that follow by (B.17)
are here omitted since they are analogous in the proof of Theorem 3.2.

Computation of ΓZZ := a.s.− limn E[∆MZ,n(∆MZ,n)>|Fn−1]. For any t1, t2 ∈ τ

Γt1t2ZZ := E[D(t1)g(t1, T, X̄)g>(t2, T, X̄)D>(t2)]− v(t1)v
>(t2),

where g ∈ S is a d-multivariate function defined in (B.16).
Computation of ΓNN := a.s.− limn E[∆MN,n(∆MN,n)>|Fn−1]. Note that

E[∆MN,n(∆MN,n)>|Fn−1]

= diag

(
K∑
s=1

µn−1(s)Zn−1(s)

)
−

(
K∑
s=1

µn−1(s)Zn−1(s)

)(
K∑
s=1

µn−1(s)Zn−1(s)

)>

a.s.−→ ΓNN := diag

(
K∑
s=1

µ(s)v(s)

)
−

(
K∑
s=1

µ(s)v(s)

)(
K∑
s=1

µ(s)v(s)

)>
.

Computation of ΓZN := a.s.− limn E[∆MZ,n(∆MN,n)>|Fn−1]. For any t ∈ τ

E[∆MZ(t),n(∆MN,n)>|Fn−1] = E[Dn(t)Xn(t)(∆MN,n)>|Fn−1]

=
K∑
s=1

µn−1(s)
(
E[Dn(t)Xn(t)X̄>n |Fn−1, Tn = s]−H(t)Zn−1(t)Z

>
n−1(s)

)
a.s.−→ ΓtZN :=

K∑
s=1

µ(s)
(
H(t1)G(t1, s)diag(v(s))− v(t1)v

>(s)
)
,

where G(t1, s) is a matrix whose columns are {g(t1, s, ej); j ∈ {1, .., d}}.
Computation of Γββ := a.s. − limn E[∆Mβ,n(∆Mβ,n)>|Fn−1]. Since for any j1 6= j2 we

have E[∆Mβj1 ,n(∆Mβj2 ,n)>|Fn−1] = 0, Γββ is a block-diagonal matrix. In particular, for
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any j ∈ {1, .., d} we have

E[∆Mβj ,n(∆Mβj ,n)>|Fn−1] =

(Ñ j
n−1)

−2

(
K∑
s=1

µi−1(s)Z
j
i−1(s)

)
E[∆Mj,n(∆Mj,n)>|Fn−1, X̄j

n = 1]

a.s.−→ Γjjββ :=

(
K∑
s=1

µ(s)vj(s)

)−1
E[∆Mj(∆Mj)

>|X̄j = 1].

Computation of ΓZβ := a.s. − limn E[∆MZ,n(∆Mβ,n)>|Fn−1]. For any t ∈ τ and j ∈
{1, .., d}, we have that

E[∆MZ(t),n(∆Mβj ,n)>|Fn−1] = E[Dn(t)Xn(t)(∆Mβj ,n)>|Fn−1]

= (Ñ j
n−1)

−1(

K∑
s=1

µi−1(s)Z
j
i−1(s))E[Dn(t)Xn(t)(∆Mj,n)>|Fn−1, X̄j

n = 1]

a.s.−→ ΓtjZβ := E[D(t)g(t, T, ej)∆M>
j |X̄j = 1].

Computation of ΓNβ := a.s. − limn E[∆MN,n(∆Mβ,n)>|Fn−1]. It can immediately be
seen that, for any j ∈ {1, .., d},

E[∆MN,n(∆Mβj ,n)>|Fn−1] = E[∆MN,nE[∆Mβj ,n|Fn−1, Tn, X̄n]|Fn−1] = 0 = ΓjNβ .

Since the assumptions are all satisfied, we can apply the CLT of the SA to the dynam-
ics (B.20), so obtaining a Gaussian asymptotic distribution for the process {Wn;n ≥ 1},
with asymptotic variance

Σ :=

∫ ∞
0

eu(
I
2
−DfW (W))Γeu(

I
2
−DfW (W))>du.

This concludes the proof.
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