A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu2+/Cu+ redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl- ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I-/I3- electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles.

Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells / M. Magni, R. Giannuzzi, A. Colombo, M.P. Cipolla, C. Dragonetti, S. Caramori, S. Carli, R. Grisorio, G.P. Suranna, C.A. Bignozzi, D. Roberto, M. Manca. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - 55:11(2016 Jun), pp. 5245-5253. [10.1021/acs.inorgchem.6b00204]

Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells

M. Magni
;
A. Colombo;C. Dragonetti;D. Roberto
Penultimo
;
2016

Abstract

A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu2+/Cu+ redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl- ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I-/I3- electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles.
inorganic chemistry; physical and theoretical chemistry
Settore CHIM/03 - Chimica Generale e Inorganica
   Dispositivi Solari a Coloranti di Nuova Generazione: Sensibilizzatori e Conduttori Nano-Ingegnerizzati (DSSCX)
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   20104XET32_002
giu-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
78)Inorg. Chem. 2016.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Inorg. Chem 2016.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/432461
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 57
social impact