In this research we have analyzed functional magnetic resonance imaging (fMRI) signals of different networks in the brain under resting state condition. To such end, the dynamics of signal variation, have been conceived as a stochastic motion, namely it has been modelled through a generalized Langevin stochastic differential equation, which combines a deterministic drift component with a stochastic component where the Gaussian noise source has been replaced with α-stable noise. The parameters of the deterministic and stochastic parts of the model have been fitted from fluctuating data. Results show that the deterministic part is characterized by a simple, linear decreasing trend, and, most important, the α-stable noise, at varying characteristic index α, is the source of a spectrum of activity modes across the networks, from those originated by classic Gaussian noise (α = 2), to longer tailed behaviors generated by the more general Lévy noise (1 ≤ α < 2). Lévy motion is a specific instance of scale-free behavior, it is a source of anomalous diffusion and it has been related to many aspects of human cognition, such as information foraging through memory retrieval or visual exploration. Finally, some conclusions have been drawn on the functional significance of the dynamics corresponding to different α values.

The Foraging Brain : Evidence of Lévy Dynamics in Brain Networks / T. Costa, G. Boccignone, F. Cauda, M. Ferraro. - In: PLOS ONE. - ISSN 1932-6203. - 11:9(2016 Sep 01). [10.1371/journal.pone.0161702]

The Foraging Brain : Evidence of Lévy Dynamics in Brain Networks

G. Boccignone
Secondo
;
2016

Abstract

In this research we have analyzed functional magnetic resonance imaging (fMRI) signals of different networks in the brain under resting state condition. To such end, the dynamics of signal variation, have been conceived as a stochastic motion, namely it has been modelled through a generalized Langevin stochastic differential equation, which combines a deterministic drift component with a stochastic component where the Gaussian noise source has been replaced with α-stable noise. The parameters of the deterministic and stochastic parts of the model have been fitted from fluctuating data. Results show that the deterministic part is characterized by a simple, linear decreasing trend, and, most important, the α-stable noise, at varying characteristic index α, is the source of a spectrum of activity modes across the networks, from those originated by classic Gaussian noise (α = 2), to longer tailed behaviors generated by the more general Lévy noise (1 ≤ α < 2). Lévy motion is a specific instance of scale-free behavior, it is a source of anomalous diffusion and it has been related to many aspects of human cognition, such as information foraging through memory retrieval or visual exploration. Finally, some conclusions have been drawn on the functional significance of the dynamics corresponding to different α values.
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Settore M-PSI/02 - Psicobiologia e Psicologia Fisiologica
Settore FIS/03 - Fisica della Materia
1-set-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
2016_The Foraging Brain_PONE.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/431761
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact