Long duration recordings of ECG signals require high compression ratios, in particular when storing on portable devices. Most of the ECG compression methods in literature are based on wavelet transform while only few of them rely on sparsity promotion models. In this paper we propose a novel ECG signal compression framework based on sparse representation using a set of ECG segments as natural basis. This approach exploits the signal regularity, i.e. the repetition of common patterns, in order to achieve high compression ratio (CR). We apply k-LiMapS as fine-tuned sparsity solver algorithm guaranteeing the required signal reconstruction quality PRDN (Normalized Percentage Root-mean-square Difference). Extensive experiments have been conducted on all the 48 records of MIT-BIH Arrhythmia Database and on some 24 hour records from the Long-Term ST Database. Direct comparisons of our method with several state-of-the-art ECG compression methods (namely ARLE, Rajoub's, SPIHT, TRE) prove its effectiveness. Our method achieves average performances that are two-three times higher than those obtained by the other assessed methods. In particular the compression ratio gap between our method and the others increases with growing PRDN.

High-rate compression of ECG signals by an accuracy-driven sparsity model relying on natural basis / G. Grossi, R. Lanzarotti, J. Lin. - In: DIGITAL SIGNAL PROCESSING. - ISSN 1051-2004. - 45(2015 Oct), pp. 1789.96-1789.106. [10.1016/j.dsp.2015.06.006]

High-rate compression of ECG signals by an accuracy-driven sparsity model relying on natural basis

G. Grossi
Primo
;
R. Lanzarotti
Secondo
;
J. Lin
2015-10

Abstract

Long duration recordings of ECG signals require high compression ratios, in particular when storing on portable devices. Most of the ECG compression methods in literature are based on wavelet transform while only few of them rely on sparsity promotion models. In this paper we propose a novel ECG signal compression framework based on sparse representation using a set of ECG segments as natural basis. This approach exploits the signal regularity, i.e. the repetition of common patterns, in order to achieve high compression ratio (CR). We apply k-LiMapS as fine-tuned sparsity solver algorithm guaranteeing the required signal reconstruction quality PRDN (Normalized Percentage Root-mean-square Difference). Extensive experiments have been conducted on all the 48 records of MIT-BIH Arrhythmia Database and on some 24 hour records from the Long-Term ST Database. Direct comparisons of our method with several state-of-the-art ECG compression methods (namely ARLE, Rajoub's, SPIHT, TRE) prove its effectiveness. Our method achieves average performances that are two-three times higher than those obtained by the other assessed methods. In particular the compression ratio gap between our method and the others increases with growing PRDN.
cardiac arrhythmia; ECG compression; high compression ratio; PRDN guaranteed; Sparse representation; signal orocessing; electrical and electronic engineering
Settore INF/01 - Informatica
Article (author)
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 862.83 kB
Formato Adobe PDF
862.83 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/426367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact