
High-rate compression of ECG signals by an accuracy-driven sparsity model

relying on natural basis

Giuliano Grossi, Raffaella Lanzarotti, Jianyi Lin∗

Department of Computer Science, University of Milan

Via Comelico 39, 20135 Milan, Italy

Abstract

Long duration recordings of ECG signals require high compression ratios, in particular when storing on portable

devices. Most of the ECG compression methods in literature are based on wavelet transform while only few of them

rely on sparsity promotion models. In this paper we propose a novel ECG signal compression framework based on

sparse representation using a set of ECG segments as natural basis. This approach exploits the signal regularity, i.e.

the repetition of common patterns, in order to achieve high compression ratio (CR). We apply k-LiMapS as fine-

tuned sparsity solver algorithm guaranteeing the required signal reconstruction quality (PRD). Extensive experiments

of our method and of four competitors (namely ARLE, Rajoub, SPIHT, TRE) have been conducted on all the 48

records of MIT-BIH Arrhythmia Database. Our method achieves average performances that are 3 times higher than

the competitor results. In particular the compression ratio gap between our method and the others increases with the

PRD growing.
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1. Introduction

ECG signals are essential in the diagnosis of heart diseases. Their acquisition consists in applying about 5-7

electrodes on the body and, for long recordings, the signals can be acquired even over 24 h, thus producing a large

volume of data. In addition, the progress in technology allows an improvement of the acquisition precision (e.g.

sampling rate, resolution), leading to a further grow of the amount of digital ECG data. Considering the limited5

amount of storage space and bandwidth, an efficient ECG data compression plays a crucial role in the implementation

of electrocardiogram acquisition systems. Clearly, a constraint of the compression solution is to maintain the ECG

characteristics such as heart rate, P-wave, QRS-complex, T-wave, etc., which constitute important evidences for

medical diagnosis [27].

The pioneer ECG compression methods aimed at analyzing and removing the redundancy from the time-domain10

signals to achieve data compression (e.g. AZTEC and CORTES) [12]. Such methods produce small reconstruction

error but also low compression. More recently, transform-based methods have demonstrated their superiority in

compressing EGC signals, converting the signal to another representation more suitable to detect and remove the

redundancies. Among them, the wavelet transforms [15, 25, 13] have been extensively used because of their properties

of good location in time and frequency domains. Nowadays a new paradigm, namely Compressed Sensing (CS), has15

gained increasing attention, having proven its effectiveness [16, 14]. Researches in this field have been focused

on two key aspects, namely the sparse coding techniques and the dictionary construction. The first concerns with

the algorithm to find the sparse representation (SR) of a sample, as for instance Basic Pursuit (BP) [6], Orthogonal

Matching Pursuit (OMP) [19], Least Absolute Shrinkage and Selection Operator (LASSO) [26], k-LiMapS[1], each
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one adopting a peculiar metric that conditions both the efficacy and the efficiency of the method [8]. The second20

aspect concerns with the construction of a proper dictionary to be referred by the SR algorithm when searching sparse

solutions. As deepened in [24], earlier works made use of Fourier or wavelet dictionaries, which are simple to use

and perform well. However, these dictionaries are not well suited for representing complex natural data for which

major flexibility is required. To overcome this issue, in the ECG domain, dictionaries collecting chunks of records

were developed [9].25

In this paper we propose an ECG compression method framed in the sparse representation field, whose early

stage has been presented in [3]. In such a work the problem of succinctly representing heart beats is recast into

a regularization problem with approximate constraints. These constraints are expressed by a dictionary built on

normalized initial transient of the original ECG record. In particular, for each patient his/her own dictionary is built,

collecting and aligning the R-R intervals of the first part of the ECG signals (about 5-10 min), while compressing the30

remaining ones. The problem is hence tackled by the k-LiMapS sparsity solver, which is essentially an iterative scheme

aimed at finding the sparsest solution of the dictionary-based linear system. The present contribution introduces major

improvements in the core of the k-LiMapS algorithm toward two directions: on the one hand the reconstruction quality

(PRD) requirements are intrinsically included into the sparsity recovery scheme, thus resulting into a PRD guaranteed

method; on the other hand we introduce at the end of the sparsity recovery a step of least-squares projection yielding35

the optimal point within the subspace spanned by the atoms selected by k-LiMapS. As minor improvement, we have

introduced Tikhonov regularization into the sparsity solver in order to make it more robust against zero-padding

normalization. Moreover, we tackle the rare cases of non-sparsifiable ECG segments, i.e. segments requiring too

many dictionary atoms for their reconstruction. To this end we resort to a backup procedure that uses standard wavelet

transforms.40

The performance of the proposed algorithm is evaluated on the whole MIT-BIH Arrhythmia Database (48 records)

in terms of Compression Ratio (CR) and Percentage Root-mean-square Difference (PRD). Furthermore, direct com-

parisons with four state-of-the-art ECG compression methods, namely ARLE [4], Rajoub [22], TRE [5], SPIHT [15],

are conducted. In summary, the results show that, for low PRD values, our method achieves superior CR with respect

to the competitors on three quarters of the dataset, while for higher PRD values, our method considerably outperforms45

the others on the whole dataset.

The rest of the paper is organized as follows: in Section 2 we describe the proposed framework; in Section 3

we present the details of our sparsity model; experimental analysis and comparative results are shown in Section 4;

finally, in Section 5 we draw some conclusions and sketch possible future works.

2. The framework50

The overall ECG compression method proposed here is sketched in the block diagram of Fig. 1.

It consists of four stages, described below:

i) signal preprocessing through standard filtering for wandering removal, R-peaks detection and normalization

based on zero-padding of centered RR-segments

ii) dictionary construction over natural basis extracted from the initial transient of the normalized record55

iii) online sparse decomposition via the sparsity solver k-LiMapS combined to the least-squares projection (LSP)

and resorting to the DWT in case of either long or non-sparsifiable segments

iv) quantization and compression of the coefficients carried out both by the sparsity process and (possibly) by DWT

using the arithmetic coding.

2.1. Signal Preprocessing60

First of all, the original ECG record is filtered by both a high-pass filter and a notch filter in order to remove signal

wandering due to human breathing and standard noise. Then the ECG record has to be segmented and normalized in

order to obtain a collection of basic waveforms used both to build a natural-basis dictionary (see Sec. 2.2) and to feed

the sparsification process (see Sec. 2.3). The segmentation step consists in isolating the R-peaks of the ECG record by
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Figure 1: Block diagram of the ECG signal compression process, showing the principal elements of our framework.

a standard peak detection technique [17], so as to subdivide the entire signal into RR-segments (or simply segments),65

denoted by si; clearly every segment si has a different length ni = |si|.

The preprocessing step aims at obtaining normalized segments S = {y1, ..., yM} with zero mean (centering) and a

common length n sufficiently large. Specifically, it is performed by subtracting from each segment si its average value

µ(si) and then extending the obtained zero-mean segment by inserting zi = n − ni many zeros in the middle (zero-

padding). To fix the length n, since a heart beat occurs in about a second, a reference parameter could be the sampling70

frequency Fs. However, in order to deal with high variability in the heart beat intervals, we set n = γFs, where γ > 1

is a constant that does not affect the sparsity model, provided that it is chosen sufficiently large. Occasionally, there

may happen that few RR-segments still exceed n, and in this case the segment is processed separately by means of a

simple backup procedure (see Sec. 3.3).

This preprocessing allows our method to achieve higher compression ratios than aligning the R-peaks in the center,75

and interpolating the block to attain a desired length as in [20].

2.2. Design of the dictionary

Aim of the sparse modelling applied to the ECG compression task is to capture the essential characteristics of

ECG signals with only a few coefficients. Another desired property is to provide wide flexibility so as to adapt the

coding process to both near-periodic and highly irregular signals.80

The requirements mentioned above are the reasons behind the sparse model adopted here which relies on a dictio-

nary Φ ∈ Rn×m naturally extracted from the signal at hand. This is done by concatenating in a column-wise fashion a

suitable amount of normalized RR-segments picked from an initial transient of about 5-10 minute duration. Since spar-

sity modelling requires overcomplete dictionaries, the number of columns of the matrix Φ must respect the constraint

m > n = γFs. In other words, the dictionary Φ = [φ1|φ2| · · · |φm] ∈ Rn×m is a collection of atoms φ j ∈ Rn, j = 1, ...,m,85

arranged as columns and corresponding to the m normalized RR-segments taken from the initial transient interval of

the record.

Once the dictionary is created, the remaining normalized segments S = {y1, ..., yM} ⊂ R
n of the record are com-

pressed using the sparse representation model, as formulated in the following subsection.

We observe that, this dictionary design approach is convenient when the ECG data are recorded for a long duration90

with respect to the transient interval allocated to the dictionary, that is M >> m.

2.3. Sparse Approximation

A vector α ∈ Rm is said to be k-sparse iff its pseudo-norm ‖α‖0 := # supp(α) = #{i : αi , 0} ≤ k, i.e. the number of

non-null elements is at most k, which is called the sparsity (or sparsity level) of α. Let Σk = {x ∈ R
m : # supp(x) ≤ k}
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denotes the collection of k-sparse vectors in R
m. A k-sparse representation of any vector y ∈ Rn×1 by the dictionary

Φ is the equality

y = α1φ
1 + α2φ

2 + · · · + αmφ
m (1)

with suitable α ∈ Σk, or equivalently in matrix form Φα = y s.t. ‖α‖0 ≤ k. This means that y can be represented in

a subspace generated by k atoms of Φ. Clearly, when k ≥ n the k-sparse representation always exists for a full-rank

matrix Φ, whilst if a k-sparse α exists with a small k ≪ n = |y|, it can be considered as a compact representation95

of the signal y ∈ R
n×1, which essentially turns out to be useful for compression purposes, since y can be exactly

reconstructed from α.

In fact, in many applications like signal compression, a reconstruction error is accepted, and hence instead of

requiring the equality (1), one fixes an ε > 0 and searches for the sparsest vector α ∈ R
m that satisfies the error

constraint ‖Φα − y‖ ≤ ε, where ‖ · ‖ denotes the Euclidean norm. This leads to formulate the classical sparsest100

approximation problem [8]:

α̂ = argmin
α∈Rm

‖α‖0 subject to ‖Φα − y‖ ≤ ε (2)

In practice, this problem is well-known to be NP-hard [18]. As mentioned in the introduction, there are various

heuristics for finding an approximate solution to this problem. Briefly, the BP method finds signal representations

in overcomplete dictionaries by convex optimization, obtaining the decomposition that minimizes the ℓ1-norm of the

coefficients occurring in the representation. The OMP method [19] consists in a greedy search for the subspace of105

R
n generated by progressively adding more atoms such that the residual given by the projection in the orthogonal

complement space is minimum at each iteration. The LASSO algorithm [26] minimizes the residual sum of squares

trying to select the atoms subject to the sum of absolute values of the coefficients being less than a constant. The

k-LiMapS algorithm, proposed in [1], is a sparsity recovery method that consists in a fixed-point iteration scheme that

promotes the sparsity of partial solutions by suitable non-linear projections.110

In this work we develop a framework based on the k-LiMapS algorithm that has already proven its effectiveness

in ECG compression [3] and also in the field of face recognition [2]. We stress that here we use an enhanced version

of k-LiMapS as described in Sec. 3.

2.4. Encoding

After constructing the dictionary Φ, every normalized segment yi ∈ S , corresponding to the RR-segment si to be

compressed, is represented by a sparse vector α̂i ∈ R
m , solving problem (2) as describe in Sec. 3. The collection

of these vectors has to be quantized and then compressed. The quantization is carried out as follows. Given the

coefficient vectors α̂1, ..., α̂L ∈ R
m corresponding to the L ≤ M segments s1, ..., sL well-sparsifiable by k-LiMapS, let

ki = ‖α̂i‖0, i = 1, ..., L, be their number of non-null coefficients. Hence, we have to quantize a sequence of K =
∑

ki

non-null coefficients that we denote with c1, ..., cK ∈ R. To this end, we use a delta encoding with a uniform q-bit

quantization with suitable q ∈ Z, so that the set of c j’s is encoded by the level-indices of the quantized deltas

∆
Q

j
=

[

∆ j − ∆min

∆max − ∆min

(2q − 1)

]

∈ {0, 1, ..., 2q − 1}

where ∆ j = c j − c j−1, and ∆min, ∆max are respectively the minimum and the maximum among the ∆ j’s. Clearly, the115

coefficients c1,∆min,∆max has to be stored apart. In addition, we need to quantize the mean value µi = µ(si) of each

segment si.

Together with the non-null coefficients of the vectors α̂i, i = 1, . . . , L, we have to store i) their support, i.e. the

relative positions within each vector, ii) the number zi = n − ni of zeros inserted during padding and iii) their sparsity

level ki. These elements are stored using the delta encoding. Notice that with all the quantized information listed up120

to this point, it is straight-forward to compute the approximated reconstruction α̃i of the α̂i, and hence the normalized

segments ỹi = Φα̃i. In order to compute the reconstructed segment s̃i, that is an error-controlled approximation of si,

it is sufficient to remove zi padded coefficients and re-centering with µi from ỹi.

As compression technique we use the arithmetic coding [7], mainly for its capability to better cope with the sym-

bol probabilities arising from the encoding process described above.125
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In order to measure the effectiveness of our ECG compression technique on a given record x = (s1, ..., sM) we use

the standard Compression Ratio (CR) defined as follows:

CR =
# bits of x

# bits of C(x)

where C(x) is the sequence of compressed codewords for x produced after the arithmetic coding. The number of

bits of C(x) obviously amounts to the arithmetic codeword lengths, while if a record x has Ns samples with a qR-bit

quantization depth, the number of bits for x is simply calculated as Ns · qR.

3. The sparse decomposition stage130

In this section, after having briefly recalled the core of the adopted sparse decomposition method (namely k-

LiMapS), we highlight the four key contributions introduced in this work. The first point is the integration with the

least squares optimization to find the solutions having minimum errors within the subspace spanned by α̂’s support;

the second aspect concerns with the iterative search procedure to get the sparsest solution with guaranteed PRD;

thirdly, the method is integrated with a Backup procedure to manage effectively non-sparsifiable segments; the last135

point consists in the implementation of the Tikhonov regularization to face the problem of ill-conditioned dictionaries.

3.1. The k-LiMapS algorithm and the least squares minimization step

• The k-LiMapS algorithm

The main goal of the proposed framework is to gain compression by promoting the sparsity of the solutions to

problem (2). To this aim we use the k-LiMapS method, that is a thresholding-based iterative process for model140

selection as described in details in [1]. It essentially relies on a parametric family of uniformly Lipschitzian

nonlinear mappings Fλ : Rm → Σk such that ‖Fλ(x)‖ < ‖x‖, ∀λ > 0 and where the parameter λ controls the

shrinking effects, i.e. leads the search towards the sparsest solutions. After the shrinking, the pseudo-inverse1

Φ† of the dictionary Φ is used to restore the feasibility at each iteration step.

Thus, for a given normalized segment yi and a fixed sparsity level k, we have the fundamental sparsification145

statement:

α̂i ← k-LiMapS(yi,Φ,Φ
†, k). (3)

The aim of step (3) is to identify the k most suitable atoms in Φ giving a good approximate sparse solution α̂i

s.t. Φα̂i ≈ yi.

• The least squares optimization

In order to reduce the error ‖Φα̂i − yi‖, we introduce a least-squares projection in the subspace spanned by the k

atoms selected by α̂i, thus identifying the closest representation preserving the sparsity level reached in (3). In

other words, by denoting with Si = supp(α̂i) the support of α̂i, let ΦSi
be the submatrix collecting the atoms in

Φ whose column-indices are in Si. The solution of the problem

β∗i = argmin
x∈Rk

‖ yi − ΦSi
x ‖

corresponds to the point closest to α̂i in the subspace spanned by its atoms, with respect to the Euclidean150

distance. The effective computation can be performed through the projection given by the pseudo-inverse of the

matrix ΦSi
, i.e.

β∗i =

(

(

ΦT
Si
ΦSi

)−1
ΦT
Si

)

yi = Φ
†

Si
yi ∈ R

k

1Give a matrix A, its Moore-Penrose pseudo-inverse is uniquely identified by A† = (AT A)−1AT or A† = AT (AAT )−1 according to whether AT A

or AAT is invertible.
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Then we build a new vector α∗
i
∈ Rm with the same support of α̂i, assigning to its j-th non-null element the j-th

element of β∗
i
. This step is summarized by the statement:

α∗i ← LSP(Φ, α̂i). (4)

3.2. Sparsity led by PRD guaranteed

Driven by the accuracy desired for the reconstructed signal, we derive a method that tunes the sparsity level k in

order to keep the error under control. To evaluate the quality of the reconstruction, we use the classical measures,

namely the percentage root-mean-square difference (PRD) and its normalized version (PRDN):

PRD(x, x̂) =
‖x − x̂‖

‖x‖
100, PRDN(x, x̂) =

‖x − x̂‖

‖x − µ(x)‖
100.

where µ(x) is the temporal mean of the signal x. Note that, in order to guarantee a maximum reconstruction error

PRDmax > 0 for a given segment si, the constraint PRD(s, ŝ) ≤ PRDmax can be rewritten as

‖s − ŝ‖ ≤
‖s‖

100
PRDmax.

Since ‖s − ŝ‖ ≤ ‖y − ŷ‖ = ‖y − Φα̂‖, a solution α̂ of the problem (2) with ε :=
‖s‖

100
PRDmax is sufficient to meet the

requirement for the reconstruction error of ŝ, i.e. the problem turns out to be

α̂ = argmin
α∈Rm

‖α‖0 subject to ‖Φα − y‖ ≤
‖s‖

100
PRDmax

This problem suggests that the hardest part of the combinatorial search for an optimal ℓ0 solution is committed to the

sparsity solver algorithm, which in turn means finding the subspace on which the sparsest solution satisfying the error155

requirement lies. Once the subspace is found, it remains to determine the optimal solution on it. This easier task is

accomplished by the least square convex optimization computed through the pseudo-inverse of the sub-dictionary.

3.3. Non-sparse ECG segments

It is natural to ask what happens when the search for a sufficiently sparse solution fails, that is the goal of finding

a good approximation of the segment would require a too large support. Although this should be an exceptional160

condition, it is useful to manage these cases by a separate procedure. More precisely, given the normalized segment

yi of si, if the sparsity solver produces a support with more than σ coefficients (namely, non-sparsifiable segment), we

compress si applying a backup procedure as in the statement:

ξi ← BackUp Procedure(si)

We choose to develop such a procedure by standard discrete wavelet transform (DWT), because of its time lo-

calization property that allows us to select the parts of the segment to drop or to maintain. Since the signal energy165

of a RR-segment is concentrated near the two R-peaks, i.e. at the segment extrema in our normalization, some cen-

tral detail coefficients can be dropped. In particular, the PRD requirement is met decomposing the segment si using

Daubechies mother wavelet into two levels at most, and discarding the central values of the detail coefficients thus

obtaining D̂1 or D̂2. Hence, for every segment either 1st level coefficients A1, D̂1 or 2nd level coefficients A2, D̂2 have

to be coded. The coding scheme is again a quantization, with a sufficient number of bits, concatenated with a delta170

encoding and arithmetic compression.
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Putting together all the steps, namely sparsification, least-squares optimization and backup procedure, and then

iterating on sparsity k, we have the algorithm, called NSER (which stands for Natural Sparse Encoding Representa-

tion), sketched in Algorithm 1.175

Algorithm 1: NSER

Input: Matrices Φ and Φ†, segment si, normalized segment yi, initial guess k0, error PRDmax, max sparsity σ

Output: either sparse solution α∗
i

or DWT encoding ξi
ki ← k0

α̂i ← k-LiMapS(yi,Φ,Φ
†, ki)

α∗
i
← LSP(Φ, α̂i)

if PRD(yi,Φα
∗
i
) > PRDmax then

while PRD(yi,Φαi) > PRDmax do
ki ← ki + 1

α̂i ← k-LiMapS(yi,Φ,Φ
†, ki)

α∗
i
← LSP(Φ, α̂i)

if ki > σ then
ξi ← BackUp Procedure(si)

break
end

end

else

while PRD(yi,Φα
∗
i
) < PRDmax do

ki ← ki − 1

αi ← k-LiMapS(yi,Φ,Φ
†, ki)

αOLD ← α
∗
i

α∗
i
← LSP(Φ, α̂i)

end

α∗
i
← αOLD

end

Remark: ill-conditioned dictionary and problem regularization

A key point to discuss when applying both our sparsity or linear algebra techniques is whether the problem is

well-conditioned or not. In this subsectin we addresses this aspect with regard to the derivation of pseudo-inverses

involved in steps (3) and (4) respectively.180

In the two above computational steps (3) and (4) we are faced with the computation of Φ† and Φ
†

Si
, that are the

pseudo-inverse of Φ ∈ R
n×m (with n < m) and ΦSi

∈ R
n×k (with k ≪ n) respectively. Both the matrices may be

affected by rank deficiency due to the zero-padding normalization provided in the dictionary construction preliminary

task. As a consequence, they may have a very high condition number2, potentially inducing arbitrarily large errors

in the solution found [11]. To avoid this drawback we perform a Tikhonov regularization step: exploiting the fact185

that Φ† = limδ→0Φ
T (ΦΦT + δI)−1, in order to calculate an approximate pseudo-inverse Φ† of the dictionary, say

Φ
†

R
= ΦT (ΦΦT + δI)−1, we have to set a perturbation δ > 0 sufficiently small (2 or 3 order of magnitude smaller

with respect to Φ’s entries). Performing this regularization, the error due to the approximation Φ
†

R
Φ ≈ I significantly

decreases, hence giving sound and competitive performances (see Sec. 4).

190

2In numerical analysis the condition number of a matrix A is defined as

κ(A) = ‖A‖ ‖A†‖ =
σmax(A)

σmin(A)

with A† being the Moore-Penrose pseudo-inverse, σmax and σmin being the maximum and minimum singular values respectively, and ‖ · ‖ being a

suitable matrix norm, usually the induced 2-norm. It is understood that κ(A) = ∞ if σmin(A) = 0. The condition number of a matrix A is a measure

of sensitivity of the solution of the linear problem Ax = y to small perturbations of the data; in fact when κ(A) is very large the problem is said to

be ill-conditioned, while it is said to be well-conditioned when κ(A) ≈ 1.
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As for the worst-case computational complexity analysis of the proposed algorithm, the k-LiMapS sparsity solver

requires O(m(n + log m)) as explained in [3]. The least squares projection requires computing the pseudo-inverse

for a rank-k submatrix (with k taking the values of the loop-variable ki in the algorithm), that is calculated with a

Singular Value Decomposition in O(n2k) time [21]. The number of iterations of the while loops is bounded by the

sparsity threshold σ since the loop-variable ki is monotonic (and k0 ≪ σ by simply assigning it a moving average195

value). Therefore the total computational complexity is given by a number of floating-point arithmetic operations

equal to TNSER(n,m, σ) =
∑σ

k=1 O(m(n + log m) + n2k) = O(m(n + log m)σ + n2σ2). Notice that the backup procedure

implemented with the DWT filter banks needs O(n) multiplications/additions [23] since the filter length is ℓ ≪ n, and

hence its time is negligible.

200

4. Experimental results

We have made extensive experiments of our and competitor algorithms on the records in MIT-BIH Arrhythmia

Database obtained from PhysioNet [10]. This database consists of 48 half-hour excerpts of two-channel ambulatory

ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory. The recordings were digitized

at Fs = 360 samples/second per channel with unipolar ADC of 11-bit resolution over a ±5 mV range (with 1024205

corresponding to the baseline 0 Volt), and are labelled with numbers in the interval 100 – 234. The tests have been

conducted using the software MATLAB R2013a running on top of an Intel Core i7-4770K@3.5GHz with 32GB

memory and operating system Ubuntu 14.04 LTS.

4.1. Comparative results

For comparison, we experimented also the compression of the same records with the following four methods210

known in literature, preserving the parameter settings reported in the original papers. Briefly, [4] proposed ARLE

(adaptive run length encoding), a wavelet-based compression method that encodes runs of same symbols with an

adaptive number of quantization bits; in ARLE the number of decomposition levels was set to η = 6, retention tol-

erance is ε = 1% and quantization tolerance is εq = 10%. Rajoub’s method [22] is based on retaining coefficients

given by wavelet decomposition with a required EPE (energy packing efficiency) and then compressing the coefficient215

significance map using a variable-length encoding scheme; the wavelet decomposition is performed up to the 5th level

using BiorSpline (bior4.4); thresholds were set in order to retain a 99.9% EPE for A5 coefficients and 97% EPE for

D5 coefficients, while thresholds for level 1 to level 4 coefficients were set to retain various EPE, from 85% to 99%;

retained coefficients were stored in 7 bit signed representation. Benzid et al. [5] proposed another wavelet transform

based method that uses a bisection algorithm to reach the user-specified PRD and the quantization of retained coef-220

ficients by TRE (two-role encoder); transformation was done up to level 5 with mother wave bior4.4, the tolerance

for PRD loss due to coefficient thresholding was 1%, while the tolerance for PRD loss after quantization was 10%.

Another algorithm we tested is SPIHT (set partitioning in hierarchical trees) [15], which consists in an encoder based

on a set partitioning ordering defined on lists of significant wavelet coefficients that exploits the temporal orientation

tree structure of the coefficients and self-similarity across different layers. The wavelet used in SPIHT was bior4.4225

with 5 levels of decomposition.

For sake of uniformity, all methods were tested excluding the initial part of the records (used to construct the

dictionaries for the k-LiMapS method), and compressing the remaining part (more than 20 min).

After the experiments, the results corresponding to PRD ranging in the interval 0.2 – 0.6 and PRDN ranging in230

2 – 10 were collected. We report in Fig. 2 the average CR-vs-PRD and CR-vs-PRDN curves computed from the

experiment results obtained on all 48 MIT-BIH records. More in details, given a set of PRD values regularly chosen in

the mentioned interval, we compute for each record a curve linearly interpolating the obtained pairs (PRD,CR). Then

the plotted curve of each method is derived by averaging over all computed curves. Notice that our proposed method

achieves a CR higher than the competitors over both PRD and PRDN intervals. Moreover, this gap increases linearly235

as the PRD requirement gets larger; this is due to the sparsity model taking advantage of a few atoms representation

when the error constraints are weakened.

As a second type of analysis, we inspect more into details the results for every record by subdividing the PRD

range into the four bins 0.2 – 0.3, 0.3 – 0.4, 0.4 – 0.5, 0.5 – 0.6, and we group the results of each record according
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Figure 2: Average Compression Ratio among all 48 MIT-BIH Arrhythmia records versus various PRDs and PRDNs obtained by k-LiMapS and the

4 alternative methods. Points with different PRDs and PRDNs are extrapolated within the same record (blue: ARLE, red: Rajoub, yellow: SPIHT,

green: TRE, black: k-LiMapS).

to this binning. Then, for each record and for each bin, we calculate the average CR. The numerical results of240

this analysis are plotted in Fig. 3, where points are sorted and connected for sake of readability. It is evident that,

especially in the last three intervals, our method is much more effective than the 4 alternative algorithms; concerning

the first interval, our method NSER performs well on half of the record set (records on the right) and outperforms the

alternative algorithms on the remaining half. This behaviour of NSER with tight PRD can be explained by the fact

that when the compressed part deviates largely from the atoms in the referred dictionary - as it happens with those245

particularly irregular records - a high number of sparsity coefficients are necessary to guarantee the required precision.

It can be interesting to view also qualitatively the reconstruction fidelity corresponding to various PRD values

from 0.2 to 0.6 through our compression process. To this aim, we depict in Fig. 4 a sample of few second irregular

interval extracted from record 201, that is the most compressed record by the competitor methods over all PRD values,

as it can be seen from Fig. 3. Notice that, despite the high compression ratio we obtain from NSER, the error remains250

rather limited even increasing the PRD requirement, showing the effectiveness of our method. In particular, notice

from bottom right of Fig. 4 that although the absolute error in this irregular interval is very small, namely almost

below 20 corresponding to about 2%, the CR is significantly high (> 50).

4.2. Sparsity levels

In this subsection we analyze more in depth the dependence of the system performance on both the sparsity level255

of the solutions α̂ and the number of non-sparsifiable segments: provided a target PRD, they turn out to influence

considerably the final compression ratio.

Clearly, the level of sparsity achieved by the solution of equation (2) plays a crucial role in determining the

performance of the framework. The sparsity threshold σ ∈ Z has been introduced in order to distinguish non-sparse

segments. This parameter is in fact useful for keeping under control the average complexity (i.e. number of non-zeros)260

of the vectors α̂ produced by the sparsity technique. Indeed, we have observed that, forcing a sparse solution for non-

sparsifiable segments entails an increase of the number of non-null coefficients that have to be stored producing an

inefficient encoding.

On the other hand, the Compression Ratio generally increases as the sparsity threshold σ gets larger (i.e. more

segments successfully processed by the sparsity model) as it can be viewed in Figure 5, where we draw the behaviour265

in a range where there is a sensible variation of CR, that corresponds to low values forσ. This motivates the preference

on using the sparsity model rather than the wavelet representation when convenient.

The resulting mean sparsity of coefficients α̂ obviously depends also on the PRD constraint, since stricter re-

quirements for PRDmax are met only increasing the sparsity level of the representation (i.e. taking more atoms in

the dictionary). For this reason we set empirically the sparsity threshold σ so that it is inversely proportional to the

9
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Figure 3: Comparison of the Compression Ratio obtained by all tested algorithms on the whole collection of MIT-BIH Arrhythmia Database. For

every algorithm the CRs obtained by each record were grouped according to the PRD bin and then averaged. For convenience, in each graph the

records (abscissae) were sorted based on the descending order of CR obtained by k-LiMapS; for the sake of readability the points were connected

with a coloured solid line (blue: ARLE, red: Rajoub, yellow: SPIHT, green: TRE, black: our method).

PRDmax:

σ =

[

m

2.5
(1 − PRDmax)

]

. (5)

We now give some details of the compression process, reporting in Table 1 some inner statistics obtained on the

sample records 100, 112, 205 and 234 setting various PRDmax.

It is noteworthy to see that, for representing a segment, a very small number of non-null coefficients (using the270

sparsity model) is sufficient in average, even if a segment has hundreds of samples. We also have confirmation that the

compression rate is directly correlated to the average sparsity of the solutions α̂i obtained for the sparse approximation

of a record. This is an expected behaviour since the less sparse the representation is, the more non-null coefficients

have to be compressed by the arithmetic coding.

We also notice that, with the wavelet transform model the number of coefficients to be stored is an order of mag-275

nitude greater than those needed with the sparsity. It can be seen from the table that, with the sparsity threshold σ set

as in eq. (5), the framework produces a quantity of non-sparsifiable segments that is negligible, since the records of

MIT-BIH Arrhythmia contain approximately 1500 − 2000 segments.

Finally, we notice that although the sparsity process meets the PRDmax requirement for ŝi, i = 1, ...,M, this might280

not be true for the reconstructed segments s̃i due to the quantization of delta-encoded sparse coefficients, mean values

10
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Figure 4: Qualitative view of our reconstruction fidelity corresponding to various maximum PRD values from 0.2 to 0.5, for an irregular interval

extracted from sample record 201, that results to be the most compressed record by competitor methods. For each PRD we report the corresponding

obtained CR on top of 3 graphs: the original signal x from the database, the version x̂ reconstructed after compressing with our NSER method, and

its absolute error (x − x̂). Ticks on abscissa axis are marked each 500 samples, or equivalently 500/Fs ≃ 1.389s.

and wavelet coefficients. To overcome this PRD degradation, the framework increases the quantization bits q until

reaching the target PRDmax. To show the feasibility of this step, in Figure 6 we plot the dependency of the final PRD

from different values of q for the sample records 100, 102, 112 and 119.

5. Conclusions285

In this work we have proposed an online compression technique based on the sparsity solver k-LiMapS, and

compared its performances in terms of CR and PRD with other wavelet-based compression algorithms known in liter-

ature: ARLE, Rajoub, SPIHT, TRE. Conducting extensive experiments on all the 48 records of MIT-BIH Arrhythmia

Database, we have shown that our proposed algorithm is able to compress the tested signals achieving a ratio, that

is on average 3 times higher, while respecting demanding reconstruction quality requirements. It is also evident that290

with the sparsity model the number of raw coefficients to be stored in memory is significantly reduced, especially

when representing quasi-regular segments.

However the proposed framework is not purely sparsity-based, since in few cases of non-sparsifiable ECG seg-

ments the process resorts to a backup procedure. A natural continuation of the work should be to treat non-sparsifiable

segments within the sparse framework while adding some adaptive mechanism being able to cope with irregular and295

unforeseen heart beats.

Considering the emergence of powerful processors for embedded systems, a possible research line should aim at

developing a real-time version of the proposed technique oriented to portable devices. Another interesting direction
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Figure 5: Curve of Compression Ratio plotted versus the sparsity threshold σ, with a reconstruction error requirement set to PRDmax = 0.5, for

sample records 100, 102, 112 and 119. The σ has been chosen in a low range where there’s a sensible variation of CR. A very high range of σ

leads to a loss of compression rate due to forcing non-sparsifiable segments to be coded by the sparsity model.

Information 100 112 205 234

Record’s sample frequency Fs [Hz] 360 360 360 360

Total duration in dictionary Φ [min] 7.61 6.72 6.24 6.26

Compressed signal duration [min] 22.48 23.36 23.83 23.82

Normalized segment length n [samples] 540 540 540 540

# atoms/columns in dictionary Φ 576 576 576 576

Sparsity of solution α̂ (avg±std) 5.74±5.55 17.77±19.86 18.23±18.97 4.11±8.19

Sparsity threshold σ 161.28 161.28 184.32 103.68

# non-sparsifiable segments 3 48 46 6

Avg.# stored DWT coeffs. per segment 199.33 147.58 286.65 90

# quantization bits q 6 7 9 6

Total sparsity solver time [s] 92.4 306.1 295.7 127.8

Reconstruction PRD 0.286 0.297 0.2 0.473

Reconstruction PRDN 7.225 6.975 5.094 8.201

CR 66 21.3 17.5 78.1

Table 1: Insight quantities of our proposed framework related to sparsity and coefficients to be compressed. Information on sample records 100,

112, 205 and 234 are shown.

of investigation is the learning of over-complete dictionaries containing non-patient-specific prototype signal-atoms

by means of sparsity-based dictionary construction methods such as KSVD.300
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