Huntington's disease is an inherited neurodegenerative disorder that is caused by the expansion of an N-terminal polyQ stretch in the huntingtin protein. In order to investigate the hypothesis that huntingtin was already involved in development of the nervous system in the last common ancestor of chordates, we isolated and characterised the huntingtin homologue from the amphioxus Branchiostoma floridae. In the present paper the amphioxus general term must be referred to Branchiostoma floridae. RESULTS: In this report, we show that the exon-intron organization of the amphioxus huntingtin gene is highly conserved with that of other vertebrates species. The AmphiHtt protein has two glutamine residues in the position of the typical vertebrate polyQ tract. Sequence conservation is greater along the entire length of the protein than in a previously identified Ciona huntingtin. The first three N-terminal HEAT repeats are highly conserved in vertebrates and amphioxus, although exon rearrangement has occurred in this region. AmphiHtt expression is detectable by in situ hybridization starting from the early neurula stage, where it is found in cells of the neural plate. At later stages, it is retained in the neural compartment but also it appears in limited and well-defined groups of non-neural cells. At subsequent larval stages, AmphiHtt expression is detected in the neural tube, with the strongest signal being present in the most anterior part. CONCLUSION: The cloning of amphioxus huntingtin allows to infer that the polyQ in huntingtin was already present 540 million years ago and provides a further element for the study of huntingtin function and its evolution along the deuterostome branch

Characterization, developmental expression and evolutionary features of the huntingtin gene in the amphioxus Branchiostoma floridae / S. Candiani, M. Pestarino, E. Cattaneo, M. Tartari. - In: BMC DEVELOPMENTAL BIOLOGY. - ISSN 1471-213X. - 7(2007 Nov 15), p. 127.127. [10.1186/1471-213X-7-127]

Characterization, developmental expression and evolutionary features of the huntingtin gene in the amphioxus Branchiostoma floridae

E. Cattaneo
Penultimo
;
M. Tartari
Ultimo
2007

Abstract

Huntington's disease is an inherited neurodegenerative disorder that is caused by the expansion of an N-terminal polyQ stretch in the huntingtin protein. In order to investigate the hypothesis that huntingtin was already involved in development of the nervous system in the last common ancestor of chordates, we isolated and characterised the huntingtin homologue from the amphioxus Branchiostoma floridae. In the present paper the amphioxus general term must be referred to Branchiostoma floridae. RESULTS: In this report, we show that the exon-intron organization of the amphioxus huntingtin gene is highly conserved with that of other vertebrates species. The AmphiHtt protein has two glutamine residues in the position of the typical vertebrate polyQ tract. Sequence conservation is greater along the entire length of the protein than in a previously identified Ciona huntingtin. The first three N-terminal HEAT repeats are highly conserved in vertebrates and amphioxus, although exon rearrangement has occurred in this region. AmphiHtt expression is detectable by in situ hybridization starting from the early neurula stage, where it is found in cells of the neural plate. At later stages, it is retained in the neural compartment but also it appears in limited and well-defined groups of non-neural cells. At subsequent larval stages, AmphiHtt expression is detected in the neural tube, with the strongest signal being present in the most anterior part. CONCLUSION: The cloning of amphioxus huntingtin allows to infer that the polyQ in huntingtin was already present 540 million years ago and provides a further element for the study of huntingtin function and its evolution along the deuterostome branch
chordates ; polyQ tract ; AmphiHtt protein; N-terminal
Settore BIO/14 - Farmacologia
15-nov-2007
Article (author)
File in questo prodotto:
File Dimensione Formato  
1471-213X-7-127.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/40087
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact