It has long been suspected that analysis of correlated amino acid substitutions should uncover pairs or clusters of sites that are spatially proximal in mature protein structures. Accordingly, methods based on different mathematical principles such as information theory, correlation coefficients and maximum likelihood have been developed to identify co-evolving amino acids from multiple sequence alignments. Sets of pairs of sites whose behaviour is identified by these methods as correlated are often significantly enriched in pairs of spatially proximal residues. However, relatively high levels of false-positive predictions typically render such methods, in isolation, of little use in the ab initio prediction of protein structure. Misleading signal (or problems with the estimation of significance levels) can be caused by phylogenetic correlations between homologous sequences and from correlation due to factors other than spatial proximity (for example, correlation of sites which are not spatially close but which are involved in common functional properties of the protein). In recent years, several workers have suggested that information from correlated substitutions should be combined with other sources of information (secondary structure, solvent accessibility, evolutionary rates) in an attempt to reduce the proportion of false-positive predictions. We review methods for the detection of correlated amino acid substitutions, compare their relative performance in contact prediction and predict future directions in the field.

Correlated substitution analysis and the prediction of amino acid structural contacts / D.S. Horner, W. Pirovano, G. Pesole. - In: BRIEFINGS IN BIOINFORMATICS. - ISSN 1467-5463. - 9:1(2008), pp. 46-56.

Correlated substitution analysis and the prediction of amino acid structural contacts

D.S. Horner
Primo
;
G. Pesole
Ultimo
2008

Abstract

It has long been suspected that analysis of correlated amino acid substitutions should uncover pairs or clusters of sites that are spatially proximal in mature protein structures. Accordingly, methods based on different mathematical principles such as information theory, correlation coefficients and maximum likelihood have been developed to identify co-evolving amino acids from multiple sequence alignments. Sets of pairs of sites whose behaviour is identified by these methods as correlated are often significantly enriched in pairs of spatially proximal residues. However, relatively high levels of false-positive predictions typically render such methods, in isolation, of little use in the ab initio prediction of protein structure. Misleading signal (or problems with the estimation of significance levels) can be caused by phylogenetic correlations between homologous sequences and from correlation due to factors other than spatial proximity (for example, correlation of sites which are not spatially close but which are involved in common functional properties of the protein). In recent years, several workers have suggested that information from correlated substitutions should be combined with other sources of information (secondary structure, solvent accessibility, evolutionary rates) in an attempt to reduce the proportion of false-positive predictions. We review methods for the detection of correlated amino acid substitutions, compare their relative performance in contact prediction and predict future directions in the field.
correlated mutation analysis ; amino acid contacts ; functional correlation ; phylogeny
Settore BIO/11 - Biologia Molecolare
2008
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/39747
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 48
social impact