We show that p-adic families of modular forms give rise to certain p-adic Abel-Jacobi maps at their p-new specializations. We introduce the concept of differentiation of distributions, using it to give a new description of the Coleman-Teitelbaum cocycle that arises in the context of the LL -invariant.
p-adic families of modular forms and p-adic Abel-Jacobi maps / M. Greenberg, M.A. Seveso. - In: ANNALES MATHÉMATIQUES DU QUÉBEC. - ISSN 2195-4755. - 40:2(2016 Aug), pp. 397-434. [10.1007/s40316-016-0060-z]
p-adic families of modular forms and p-adic Abel-Jacobi maps
M.A. Seveso
2016
Abstract
We show that p-adic families of modular forms give rise to certain p-adic Abel-Jacobi maps at their p-new specializations. We introduce the concept of differentiation of distributions, using it to give a new description of the Coleman-Teitelbaum cocycle that arises in the context of the LL -invariant.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
p-adic families of modular forms and p-adic Abel-Jacobi maps.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
569.35 kB
Formato
Adobe PDF
|
569.35 kB | Adobe PDF | Visualizza/Apri |
art%3A10.1007%2Fs40316-016-0060-z.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
853.56 kB
Formato
Adobe PDF
|
853.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.