We show that p-adic families of modular forms give rise to certain p-adic Abel-Jacobi maps at their p-new specializations. We introduce the concept of differentiation of distributions, using it to give a new description of the Coleman-Teitelbaum cocycle that arises in the context of the LL -invariant.

p-adic families of modular forms and p-adic Abel-Jacobi maps / M. Greenberg, M.A. Seveso. - In: ANNALES MATHÉMATIQUES DU QUÉBEC. - ISSN 2195-4755. - 40:2(2016 Aug), pp. 397-434. [10.1007/s40316-016-0060-z]

p-adic families of modular forms and p-adic Abel-Jacobi maps

M.A. Seveso
2016

Abstract

We show that p-adic families of modular forms give rise to certain p-adic Abel-Jacobi maps at their p-new specializations. We introduce the concept of differentiation of distributions, using it to give a new description of the Coleman-Teitelbaum cocycle that arises in the context of the LL -invariant.
Nous associons certaines applications p-adiques d’Abel-Jacobi aux familles analytiques de formes modulaires à ses poids nouveaux en p. Nous introduisons le concept de la dérivée d’une distribution. Utilisant ce concept, nous donnons une nouvelle perspective sur le cocycle de Coleman-Teitelbaum dans le contexte de l’invariant LL .
Settore MAT/03 - Geometria
Settore MAT/02 - Algebra
ago-2016
7-apr-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
p-adic families of modular forms and p-adic Abel-Jacobi maps.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 569.35 kB
Formato Adobe PDF
569.35 kB Adobe PDF Visualizza/Apri
art%3A10.1007%2Fs40316-016-0060-z.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 853.56 kB
Formato Adobe PDF
853.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/387882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact