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Abstract. We show that p-adic families of modular forms give rise to certain p-adic Abel-Jacobi maps at
their p-new specializations. We intruduce the concept of differentiation of distributions, using it to give a

new description of the Coleman-Teitelbaum cocycle that arises in the context of the L-invariant.
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1. Introduction

After Serre’s observations involving the family of Eisentein series (see [29]), a theory of p-adic families of
modular forms was systematically developed by Hida in the ordinary case (see [23] and [24]), and by Coleman
in the more general case of finite slope (see [10]). This theory was subsequently encapsulated geomerically via
the eigencurve by Coleman-Mazur (see [11]). Since then, other points of view on p-adic families of modular
forms have been developed; one of the most flexible is the cohomological approach inspired by the theory
of modular symbols and the Eichler-Shimura isomorphism. This approach was developed in a sequence of
papers, see [22, 42], with the development culminating in the authoritative [3]. The connection between this
cohomological approach and original theories of Coleman and Coleman-Mazur approach to p-adic families
was spelled out in [2], the essential input being an overconvergent Eichler-Shimura isomorphism.

When the algebraic group underlying the p-adic families is the group of units of a definite quaternion
algebra, the cohomological approach simplifies, due to the fact that the associated algebraic group is compact-
mod-center at infinity. In this case, one can define p-adic families of modular forms very concretely as in [9].
Such families are similar in spirit to those considered in the first and the third parts of the this paper, while
the arguments of §6 are couched in the language of [3].

There are many ways in which the arithmetic of a modular forms f is determined by the p-adic family
f∞ passing through it. One such example is proof by Greenberg-Stevens [22] of the Mazur-Tate-Teitelbaum
conjecture [27], in which the key point is the identity

(1) Lp (Af ) = −2 (d log ap) (2) .

The quantity on the left hand side, the L-invariant attached to f ∈ S2 (Γ0 (Np))
new

, does not involve the
family f∞ while the right hand side clearly does. The aim of this paper is to highlight other manifestations
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of this phenomenon, whereby a quantity which depends only on on the modular form f is described by one
attached to its deformation f∞. One such manifestation (in fact, a direct analogue of (1)) is Proposition 7.14,
relating the Coleman-Teitelbaum cocycle to another cocycle constructed via a differentiation of measures
operation described in §7. Another phenomenon of this kind is obtained showing that the p-adic Abel-Jacobi
map of an appropriate Shimura curve can be computed by means of the deformations identified with the
tangent space to the the Jacobian of the Shimura curve in question. The result is the formula stated in
Theorem 1.1; its proof is based on computations of Bertolini, Darmon, and Iovita appearing in [4] and [5].
As an application, one may extend their main result [4, Theorem 5.4] by removing the restriction that the
Fourier coefficients of f lie in Q. Our final example is Theorem 6.5, presented in §6 (see also Theorem 1.1).

Suppose that p is a prime, that N+ and N− are coprime integers, and that N− is the squarefree product
of an odd number of primes. Fix a complete subfield E ⊂ Cp. We let

φ ∈ S2

(
pN+, N−

)p-new

be a weight two, p-new, cuspidal eigenform on the definite quaternion algebra B over Q of discriminant
N−∞ and level Γ0 (pN+). Fix a maximal order OB ⊂ B and an Eichler order R0 (pN+, N−) ⊂ B of level

pN+. We choose a local isomorphism ιp : Bp
∼→ GL2 (Qp) and let

Γ̃N+,N− := ιp

(
R0

(
pN+, N−

)
[1/p]

×
)
⊂ GL2 (Qp)

be the arithmetic group attached to R0(pN+, N−). Its subgroup of norm one elements ΓN+,N− ⊂ Γ̃N+,N−

is a Schottky group whose associated Mumford curve

πN+,N− : Hp −→ ΓN+,N−\Hp
is the rigid analytic space associated to the Shimura curve XN+,N−p attached to the indefinite quaternion
algebra over Q of discriminant N−p; the isomorphism is defined over Qp2 , the quadratic unramified extension
of Qp (see [4, §4.1]). Abusing notation slightly, we will frequently identify ΓN+,N−\Hpand XN+,N−p. Write
JN+,N−p for the Jacobian variety of XN+,N−p.

We recall that the rigid analytic p-adic upper halfplane is a tubular neighborhood of the Bruhat-Tits tree
T whose set of edges (resp. vertices) we denote by E (resp. V). The ends of T are identified with P1(Qp)
and the combinatorics of T can be used to conveniently describe the p-adic topology on P1(Qp) as follows:
A basis of compact-open subsets of the topology on the projective line is given by the subsets Ue ⊂ P1(Qp),
where Ue consists of those points associated to ends of T emanating from e. We refer the reader to [31] for
basic notation and facts about the Bruhat-Tits tree. We let Char (E , E) be the space of harmonic cocycles
on T , maps c∗ : E → E such that ce = −ce and

∑
s(e)=v ce = 0 for every v ∈ V.

For a p-adic manifold X we write A (X) be the space of E-valued, locally analytic functions on X, and

D (X) for its strong E-dual (see §7.1). Write A
(
P1(Qp)

)0 ⊂ A (Qp) for the space of locally analytic functions

which are constant at ∞ (see [28, Definition 3.2], for example). We let D
(
P1(Qp)

)0
be its dual and write

D0
(
P1(Qp)

)
for the subspace of D

(
P1(Qp)

)0
consisting of those locally analytic distributions µ such that

µ (1) = 0.
Because φ is p-new, when E contains the eigenvalues of φ one can associated to φ a harmonic cocyle

cφ ∈ Char (E , E)
ΓN+,N− and a rigid analytic modular form fφ on XN+,N−p (see [34, (13)]). There is a unique

distribution µφ ∈ D0
(
P1(Qp)

)ΓN+,N− such that R
(
µφ
)

= cφ, where

(2) R : D0
(
P1(Qp)

)ΓN+,N− −→ Char (E , E)
ΓN+,N−

is defined by the rule R (µ)e := µ
(
χUe

)
, χUe being the characteristic function of Ue.

In order to state our results precisely, we need to introduce a few more spaces of distributions. Setting
W := Q2

p − {0} defines a trivial Q×p -bundle

π : W −→ P1(Qp), π (x, y) := [x : y] .

Let O be an affinoid E-algebra and letω : Z×p → O× be a continuous character; it extends uniquely to

a homomorphism of algebras ω : D
(
Z×p
)
→ O. Write A0 (W ) for the space of E-valued locally analytic
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functions on W such that F (px, py) = F (x, y) and let D0 (W ) be its strong dual. Then D0 (W ) is naturally
a D

(
Z×p
)
-module and, regarding O as a D

(
Z×p
)
-module via ω, we may form the completed tensor product

Dω,0 (W ) := O⊗̂ωD0 (W ) .

If ϕ : O → O′ is a morphism of E-algebras then there is a natural specialization map

(3) Dω,0 (W ) −→ Dω′,0 (W ) , ω′ := ϕ ◦ ω.

(The reader may consult (61) for the precise definition of this map). Recall that continuous characters from
Z×p are parametrized by the weight space X := Homcts

(
Z×p ,Gm

)
. Suppose that ϕ : O (Ω) → E is the

morphism corresponding to 0 ∈ Ω, for an open affinoid Ω ⊂ X containing the weight 0 :=
[
t 7→ t0 = 1

]
. The

inclusion Ω ⊂ X corresponds to a character ω : Z×p → O× and, in this case, we write DΩ,0 (W ) := Dω,0 (W );
we can also consider D0,0 (W ) = Dω′,0 (W ) with ω′ = 0. With this notation, (3) can be written in the form

(4) DΩ,0 (W ) −→ D0,0 (W ) .

The invariance property of F ∈ A0 (W ) implies that F is uniquely determined by its restriction to L′∗ :=

Z2
p−pZ2

p, and one easily checks thatthere is a canonical isomorphism D
(
P1(Qp)

)0
= D0,0 (W ) (see [21, proof

of Lemma 6.2] and [35, Remark 5]). We use this identification to vary µφ in a p-adic family.

Let C (V,DΩ,0 (W ))
Γ̃N+,N− be the space of Γ̃N+,N−-invariant maps c : V → DΩ,0 (W ) (see [34, Proposition

3.5] for a description in terms of lattices). We write V+ for the set of vertices at even distance from v∗ = [L∗].
Then there exists an eigenfamily of distributions µΩ,∗ :=

{
µΩ,v

}
v∈V with the property that, writing µ0,v for

the specialization of µΩ,v at 0 obtained via (4), we have

(5) µ0,v = µφ for every v ∈ V+.

(See [4, Theorem 2.5 and Lemma 2.12] and [34, Theorem 3.7 and subsequent discussion, Proposition 3.8]).
For an element τ ∈ Hur

p := Qur
p −Qp, we write r (τ) ∈ V for its reduction (see [13, Proposition 5.1]) and

consider the quantity

(6)
d

dκ

[
µΩ,r(τ) 〈x− τy〉

κ
]
κ=0
∈ E.

It can be shown that it does not depend on the choice of family µΩ,∗ satisfying (5); the proof is similar to
that of [21, Lemma 7.1].

The Picard variety JN+,N−p is endowed with a canonical morphism

AJ0
XN+,N−p

:
(
Div0XN+,N−p

)
(E) :=

(
Div0XN+,N−p (Cp)

)GQp/E −→ JN+,N−p (E) .

(We write GK′/K for the associated Galois group of K ′/K and GK for GK/K .) For every q - pN , the Hecke

operator tq has degree q + 1 and it follows that, setting tq := (q + 1)− Tq, we have

tq : DivXN+,N−p −→ Div0XN+,N−p.

Let T0

(
JN+,N−p

)
be the tangent space to JN+,N−p at the identity, whose E-points are identified with (apply

[6, Ch. 8, §8.4, Theorem 1] and Serre duality):

(7) T0

(
JN+,N−p

)
(E) = HomE

(
H0
(
XN+,N−p/E ,Ω

1
XN+,N−p/E

)
, E
)

.

The formal logarithm is a map

logJN+,N−p
: JN+,N−p (E) −→ T0

(
JN+,N−p

)
(E) .

Noticing that tq is invertible on T0

(
JN+,N−p

)
we may define the following composite:

(8) logJN+,N−p
AJ := t−1

q ◦ logJN+,N−p
◦AJ0

XN+,N−p
◦tq : DivXN+,N−p −→ T0

(
JN+,N−p

)
.

We remark that this definition is indeed independent of q - pN .

We recall that taking residues of the pull-back toHp of a differential form ω ∈ H0
(
XN+,N−p,E ,Ω

1
XN+,N−p,E

)
yields an identification

H0
(
XN+,N−p,E ,Ω

1
XN+,N−p,E

)
∼−→ Char (E , E)

ΓN+,N− .
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Let ωφ be the differential form whose residues are given by cφ. Changing our point of view slightly, we

assume that ω ∈ H0
(
XN+,N−p,E ,Ω

1
XN+,N−p,E

)
gives rise to cω ∈ Char (E , E)

ΓN+,N− which, in turn, gives a

measure µω ∈ D0
(
P1(Qp)

)ΓN+,N− . We choose a family µωΩ,∗ such that µω0,v = µω for every v ∈ V+.
The main result of the first part of this paper is the following:

Theorem 1.1. Let τ ∈ Hur
p . Writing [τ ] for the natural image of τ in

(
DivXN+,N−p

) (
Qur
p

)
, we have(

logJN+,N−p
AJ
)

([τ ]) (ω) =
d

dκ

[
µωΩ,r(τ) 〈x− τy〉

κ
]
κ=0

.

The first part of the paper is devoted to the proof of this result. Theorem 1.1, specialized to the quotient
JN+,N−p → Ef of JN+,N−p associated to a weight 2 modular form with rational Fourier coefficients, is a key
ingredient in the proof of the main result of [4]. Our results can be viewed as a lift to the Jacobian of the
computations appearing there, yielding generalizations of the corresponding theorems.

In §6 we move to the setting where N− is a squarefree product of an even number of primes. Here, we
first lift the original construction of [12], as generalized in [19]. Our approach is a bit different from related
constructions of of [15] and [26], but the resulting rigid analytic varieties are isogenous. Then we prove the
analogue of Theorem 1.1 in Theorem 6.5. As an application, we can lift the rationality main result of [25] on
rationality of Darmon points to the Jacobians. This result can also be deduced from the rationality result
of [21], specialized to weight 2 modular forms, using §6 to translate the results of loc. cit. to our setting (see
[21, Remarks 1.11 and §1.4]).

Finally, §7 introduces the notion of derivative of a family of distributions in complete generality. This
is employed in order to “differentiate” the family specializing to µφ (possibly of higher, even weight) and

attach to it a cocycle in H1
(
ΓN+,N− ,Vk

)
. As an application, in Proposition 7.14 we get a new description

of the Coleman-Teitelbaum cocycle in terms of differentiation of families of distributions. In particular, an
a priori a new definition of the Teitelbaum L-invariant can be proposed and, possibly, generalized to other
settings. Let us remark that, the formula which appears in Proposition 7.14 is another manifestation of the
phenomenon relating invariants of modular forms (the Coleman cocycle) to quantities defined using p-adic
deformations (the derivative of the family passing through it). It is, thus, of the same nature as (1) and the
formulas appearing in Theorem 1.1 and Theorem 6.5. Because p-adic L-functions are defined in terms of
measures, we hope to apply these notions to the study of derivatives of p-adic L-functions in other settings.

Regarding notation for the various arithmetic group actions appearing in this paper, we follow the con-
vention of [28].

2. L-invariants of rigid analytic tori and formal logarithms

In the literature, L-invariants have been attached to a variaty of objects, e.g., abelian varieties, p-adic
representations, and modular forms. The aim of this section to review the definition of the L-invariant L (A)
(see [22, §3, (3.5) definition]) attached to an abelian variaty, to extend this definition to rigid analytic tori,
and to relate this L-invariant to the formal logarithm map.

We work over our complete field E ⊂ Cp, assumed to be locally compact in this section. We write kE
for the residue field of E. From now on we will write logλ : E× → E for the choice of the p-adic logarithm
determined by logλ (p) = −λ, where λ ∈ E; hence log0 = log (〈·〉) and logλ = log0−λ ord. Recall that, if
A = A/E is as above, then the dual abelian variety B has the same reduction type and, hence, they both
admit a p-adic uniformization (see for example [37, §1] for a short account on p-adic uniformization). Indeed,
there are canonical free Z-modules X and Y of rank dim(A) (the characters groups of B0

/kE
and, respectively,

A0
/kE

) on which GE acts trivially, a Z-linear pairing

j : X ⊗Z Y −→ E×

and exact GE′/E-equivariant sequences

0 −→ X
j−→ Hom

(
Y,E′×

)
−→ A (E′) −→ 0,

0 −→ Y
j−→ Hom

(
X,E′×

)
−→ B (E′) −→ 0
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for every E ⊂ E′ ⊂ E.
A continuous group homomorphism ` : E× → E induces a map ` : Hom (Y,E×) → Hom (Y,E). Taking

E′ = E, we define:

j` := ` ◦ j : X ⊗Z Y −→ E and` := ` ◦ j : X −→ Hom (Y,E) =: T0 (A) (E) .

Set XE := E ⊗Z X and YE := E ⊗Z Y and write j`,E for the corresponding maps

j`,E : XE ⊗E YE −→ E and j`,E : XE → Hom (YE , E) = T0 (A) (E) .

Noticing that jord is non-degenerate, the L-invariant L (A) is defined in [22, §3, (3.5) definition] to be the
unique E-linear endomorphism L (A) : XE → XE such that

(9) jlog0,E (x, y) = jord,E (L (A)x, y) .

On the other hand, since jord,E is non-degenerate, it induces an isomorphism jord,E : XE
∼→ T0 (A) (E)

and there is a unique E-linear endomorphism L′ (A) : T0 (A) (E)→ T0 (A) (E) such that

(10) jlog0,E = L′ (A) ◦ jord,E : XE −→ T0 (A) (E)

If we transport L (A) to XE via jord,E , it is easy to see that (9) and (10) are equivalent, i.e. L′ (A) = L (A).
Furthermore, since XE := E ⊗Z X, (10) is equivalent to

(11) jlog0
= L′ (A) ◦ jord : X → T0 (A) (E) .

We now assume that we are given a rigid analytic torus J = J/E defined by an exact sequence of the form

0 −→ X
j−→ Hom (Y,Gan

m ) −→ J → 0,

where X and Y are free Z-modules of the same rank on which GE acts trivially By the definition of a rigid
analytic torus, j factors through

(12) j : X −→ Hom
(
Y,E×

)
,

identifying X with a lattice in Hom (Y,E×) that is discrete in Hom (Y,Gan
m ), i.e. such that its intersection

with every affinoid is finite (see [36, §4.2]). The underlying E-analytic manifold of J is

J (E) :=
Hom (Y,E×)

X

and the tangent space to J and J (E) at the identity are identified with T0 (J) (E) := Hom (Y,E) (and agree
with T0 (A) (E) when J = Aan is the rigid analytic manifold attached to an abelian variety A over E). Let
us write

logJ : J (E) −→ T0 (J) (E)

for the formal logarithm as defined, for example, in [7, Ch. III, §7, no. 6, Def. 2, Prop. 10 and Prop. 13].
We can define

j` := ` ◦ j : X −→ T0 (J) (E)

using (12) in this lightly more general setting. We take (11) as the definition of the L-invariant L (J) of J ,
i.e. L (J) : T0 (J) (E)→ T0 (J) (E) is the unique E-linear endomorphism such that

(13) jlog0
= L (J) ◦ jord : X −→ T0 (J) (E) .

The following simple result connects L-invariants and formal logarithms.

Lemma 2.1. The formal logarithm is explicitly given by the rule

(14) logJ ([z]) = log0 ◦z − L (J) (ord ◦z) ,

where z ∈ Hom (Y,E×) represents [z] ∈ J (E).

Proof. The formal logarithm is characterized as the unique group homomorphism J (E) −→ T0 (J) (E) that
is locally analytic at the identity with differential the identity (see [7, Ch. III, §7, no. 6, Prop. 10]). Since
log0 has this property and the differential of ord is zero, we can conclude that the differential of the right
hand side of (14) has this property once we have checked that it is well defined on the quotient J . By
definition of j` (x) = ` ◦ j (x), we see that, for every x ∈ X,

log0 ◦j (x)− L (ord ◦j (x)) = jlog0
(x)− L (J) (jord (x))

(13)
= 0. �
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3. Definite multiplicative integrals and the Manin-Drinfeld Theorem

Let C
(
P1(Qp), E×

)
be the space of continuous, E×-valued functions and let Char (E ,Z) be the space of

Z-valued harmonic cocyles. We can define a GL2 (Qp)-equivariant pairing

(15) (−,−) : Char (E ,Z)⊗Z C
(
P1(Qp), E×

)
/E× −→ E×

induced by the rule (cf. [19, §9] and [4, (63)])

(16) (c, f) := lim
T0⊂T

∏
e∈∂T0

f (te,T0)
c(e)

, f ∈ C
(
P1(Qp), E×

)
.

Here, T0 runs over all the net of finite connected subtrees of T , ∂T0 denotes the boundary edges of T0 oriented
towards ∂T = P1(Qp) and te,T0

is an arbitrary point in Ue. The limit exists, it is well defined and induces
(15).

For every τ1, τ2 ∈ Hp, let us consider the function

θτ2−τ1
× (z) :=

z − τ2

z − τ1
, z ∈ P1(Qp).

Write
[
θτ2−τ1
×

]
for its image in C

(
P1(Qp), E×

)
/E×. Define

∆ (E) = (DivHp)
GQp/E and ∆0 (E) =

(
Div0Hp

)GQp/E .

Then we have the following exact sequence:

(17) 0→ ∆0(E)
i−→ ∆(E)

deg−→ E −→ 0.

Define a GL2 (Qp)-equivariant integration pairing

(18) I0
× : Char (E ,Z)⊗Z ∆0 (E)→ E×

by linear extension of the rule I0
× (c, τ2 − τ1) :=

(
c,
[
θτ2−τ1
×

])
.

The integration pairing I0
× gives rise to a morphism

(19) I0
× :
(
∆0 (E)

)
ΓN+,N−

−→ Hom
(
Char (E ,Z)

ΓN+,N− , E×
)

=: TΓN+,N−
(E) .

On the other hand (17) induces the exact sequence

(20) H1

(
ΓN+,N− ,Z

) ∂−→
(
∆0 (E)

)
ΓN+,N−

i−→ (∆ (E))ΓN+,N−

deg→ Z −→ 0

Defining qΓN+,N−
:= Im

(
I0
× ◦ ∂

)
, it follows from that I0

× induces

AJ0 = AJ0
ΓN+,N−

:
(
∆0 (E)

)
ΓN+,N−

−→
TΓN+,N−

(E)

qΓN+,N−

=: JΓN+,N−
(E) .

Proposition 3.1. We have that qΓN+,N−
⊂ TΓN+,N−

(Qp) is Hecke stable and the quotient JΓN+,N−
(E) is

represented by a rigid analytic torus JΓN+,N−
over Qp endowed with an action of the Hecke algebra.

Proof. The fact that qΓN+,N−
is Hecke stable follows from the fact that ∂ and I0

× are Hecke equivariant.

The proof of the other assertions will be given after Lemma 4.1. �

Let

AJ0
XN+,N−p

: Div0XN+,N−p −→ JN+,N−p

be the algebraic Abel-Jacobi map.
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Theorem 3.2. (Manin-Drinfeld) There is a unique isomorphism JΓN+,N−
→ JN+,N−p over Qp2 making the

following diagram commutative for every complete field E ⊂ Cp:

(
∆0 (E)

)
ΓN+,N−

AJ0
Γ
N+,N− //

��

JΓN+,N−
(E)

��(
Div0XN+,N−p

)
(E)

AJ0
X
N+,N−p

// JN+,N−p (E) .

This isomorphism is Hecke equivariant.

Proof. We base our computations on those of [14, §2.2 and §2.3] that we briefly recall. Let us write
TΓN+,N−

:= ΓN+,N−\T for the quotient graph, whose oriented edges are EΓN+,N−
:= ΓN+,N−\E and whose

vertices are VΓN+,N−
:= ΓN+,N−\V (Note that the action of ΓN+,N− is orientation preserving.) Define

Div
(
EΓN+,N−

)
to be the quotient of Div

(
EΓN+,N−

)
by the relations e + e = 0 for every e ∈ EΓN+,N−

.

Sending a vertex v to δs (v) :=
∑
s(e)=v e induces an injective map

0 −→ Div
(
VΓN+,N−

)
δs→ Div

(
EΓN+,N−

)
−→ Divhar

(
EΓN+,N−

)
→ 0,

where Divhar
(
EΓN+,N−

)
is, by definition, the cokernel of δs. It follows that

(21) Char (E ,Z)
ΓN+,N− = Hom

(
Divhar

(
EΓN+,N−

)
,Z
)

.

Consider the canonical morphism

(22) Divhar
(
EΓN+,N−

)
−→

(
Divhar

(
EΓN+,N−

))∨∨
=
(
Char (E ,Z)

ΓN+,N−
)∨

,

where we write X∨ := Hom (X,Z). By abstract nonsense, (22) is canonically the torsion free quotient of

Divhar
(
EΓN+,N−

)
. As explained in [14, §2.3], it is the universal module considered in [14, §2.2] in case

M = Z, and [14, (2.6)] becomes

I0
× :
(
∆0 (E)

)
ΓN+,N−

−→
(
Char (E ,Z)

ΓN+,N−
)∨
⊗ E× = Hom

(
Char (E ,Z)

ΓN+,N− , E×
)

.

Our notation is justified by the fact that I0
× is indeed explicitly given by the morphism (18).

On the other hand, the mapping e 7→ ∂ (e) := t (e)− s (e) induces an exact sequence

0 −→ Divhar

(
EΓN+,N−

)
−→ Div

(
EΓN+,N−

)
∂−→ Div0

(
VΓN+,N−

)
→ 0,

where Divhar

(
EΓN+,N−

)
is defined to be the kernel. As explained in [14, §2.3], there is a natural pairing

(−,−) : Div
(
EΓN+,N−

)
⊗Z Div

(
EΓN+,N−

)
−→ Z,

induced by the pairing on Div
(
EΓN+,N−

)
defined by declaring that e and e′ are orthogonal when e′ 6= e or

e, while (e, e) = (e, e) = −1. As is also observed in loc. cit., e 7→ (e,−) induces an identification

(23) Divhar
(
EΓN+,N−

)
free

∼−→ Hom
(

Divhar

(
EΓN+,N−

)
,Z
)

where Divhar
(
EΓN+,N−

)
free

is the torsion free quotient of Divhar
(
EΓN+,N−

)
. There are natural spectral

sequences in ΓN+,N−-equivariant homology, which degenerate to a long exact sequence from which we extract
the following exact sequence (see [8, Ch. VII, §7, (7.3) and (7.7)] and [31, Ch II, §2.8, Proposition 13]):

(24)
⊕

σ∈VΓ
N+,N−

H1

(
ΓvN+,N− ,Z

)
−→ H1

(
ΓN+,N− ,Z

)
→ Divhar

(
EΓN+,N−

)
−→ 0.

7



Here, ΓvN+,N− ⊂ ΓN+,N− is the (finite) stabilizer of v in ΓN+,N− and H1

(
ΓN+,N− ,Z

)
= Γab

N+,N− , canonically.

It follows that the left-most term of (24) is finite (see [30, Ch. VIII, §2, Corollaries 1 and 2]), implying that
the epimorphism in (24) gives an isomorphism

(25) Hom
(

Divhar

(
EΓN+,N−

)
,Z
)
∼−→ Hom

(
ΓabN+,N− ,Z

)
.

Applying (−) ⊗Z E
× and employing the canonical identification X∨ ⊗Z E

× = Hom (X,E×), we see that
(25) ◦ (23) ◦ (22)free gives

λ : Hom
(
Char (E ,Z)

ΓN+,N− , E×
)

=
(
Char (E ,Z)

ΓN+,N−
)∨
⊗ E×

= Divhar
(
EΓN+,N−

)
free
⊗Z E

× ∼−→
(

ΓabN+,N−

)∨
⊗Z E

× = Hom
(

ΓabN+,N− , E
×
)

We deduce that there is a commutative diagram

(26)
(
∆0 (E)

)
ΓN+,N−

I0
× //

I0,D
× **

Hom
(
Char (E ,Z)

ΓN+,N− , E×
)

λ

��

Hom
(

ΓabN+,N− , E
×
)

where I0,D
× is the left hand side of [14, (2.13)], as the reader may check using its explicit expression [14,

(2.14)]. Let us set qDΓN+,N−
:= Im

(
I0,D
× ◦ ∂

)
so that

JDΓN+,N−
(E) :=

Hom
(

ΓabN+,N− , E
×
)

qDΓN+,N−

is the rigid analytic torus considered in [14]. Writing

AJ0,D :
(
∆0 (E)

)
ΓN+,N−

−→
Hom

(
ΓabN+,N− , E

×
)

qDΓN+,N−

=: JDΓN+,N−
(E)

for the induced morphism, (26) yields the following commutative diagram:

(27)
(
∆0 (E)

)
ΓN+,N−

AJ0
//

AJ0,D

))

JN+,N−(E)

λ

��
JDN+,N−(E)

Thanks to (27), we see that λ identifies our analytic torus with that of [14] and our AJ0 corresponds to the

map AJ0,D induced by the multiplicative integral I0,D
× , the left hand side of [14, (2.13)]. But [14, Proposition

2.3.1] expresses I0,D
× in terms of theta functions and, using this result, the Manin-Drinfeld Theorem takes

the form

AJ0
XN+,N−p

([τ2]− [τ1]) = I0,D
× (τ2 − τ1) mod qDΓN+,N−

= AJ0,D (τ2 − τ1) ,

where τ2, τ1 ∈ Hp, [τ i] is the corresponding point in XN+,N−p (E), and [τ2] − [τ1] ∈
(
Div0XN+,N−p

)
(E)

(see [14, Theorem 2.3.2]). The uniqueness follows by taking E = Cp. �

4. Definite additive integrals

LetD0,b
(
P1(Qp)

)
(resp. Cbhar (E , E)) be the space of bounded distributions inD0

(
P1(Qp)

)
(resp. Char (E , E)).

(They have been considered in [44], [17, §2.3], [28, §3] and [35, Remark 5].) They are defined so that the
morphism the induced map

R : D0,b
(
P1(Qp)

) ∼−→ Cbhar (E , E)
8



is an isomorphism. Furthermore, it is known that

D0,b
(
P1(Qp)

)ΓN+,N− = D0
(
P1(Qp)

)ΓN+,N− and Cbhar (E , E)
ΓN+,N− = Char (E , E)

ΓN+,N−

(see [44, Proposition 9] and [17, §2.3]), so that

(28) D0
(
P1(Qp)

)ΓN+,N− ∼→ Char (E , E)
ΓN+,N− .

Let

(29) ` : E× −→ E

be a continuous group homomorphism, which is therefore locally analytic.

Lemma 4.1. Suppose that µ ∈ D0,b
(
P1(Qp)

)
is such that R (µ) ∈ Char (E ,Z) and that f ∈ C

(
P1(Qp), E×

)
is such that ` ◦ f ∈ A

(
P1(Qp)

)
. Then

µ (` ◦ f) = ` ◦ (R (µ) , f) .

Proof. The boundedness of µ ∈ D0,b
(
P1(Qp)

)
implies that the tautological pairing of a distribution µ against

any f ′ ∈ A0 (Qp) given by

(30) µ (f ′) := lim
T0⊂T

∑
e∈∂T0

µ
(
f ′ (te,T0

)χUe
)

= lim
T0⊂T

∑
e∈∂T0

R (µ) (e) f ′ (te,T0
) .

Here, we may choose te,T0
6=∞ for every e and T0. We remark that we have

R (µ) ∈ Char (E ,Z) ⊂ Cbhar (E , E)
∼←− D0,b

(
P1(Qp)

)
.

Applying (30) with f ′ = ` ◦ f , the claim follows from the fact that ` is a continuous group homomorphism
and from definition (16). �

For every τ1, τ2 ∈ Hp, let us consider the function

θτ2−τ1

` (z) := `
(
θτ2−τ1
× (z)

)
= `

(
z − τ2

z − τ1

)
, z ∈ P1(Q),

whose equivalence class modulo E (constant functions) is denoted
[
θτ2−τ1

`

]
. We may then define a GL2(Qp)-

invariant pairing

(31) I0
` : D0

(
P1(Qp)

)
⊗∆0(E) −→ E

by extending of the rule I0
` (µ, τ2 − τ1) :=

(
µ,
[
θτ2−τ1

`

])
, well defined as µ (1) = 0. As an immediate

consequence of Lemma 4.1 and (28), we deduce the commutativity of the following diagram:

(32)
(
∆0 (E)

)
ΓN+,N−

I0
` //

ι

��

Hom
(
Char (E ,Z)

ΓN+,N− , E×
)

`

��(
E ⊗∆0 (E)

)
ΓN+,N− I0

×

// Hom
(
Char (E ,Z)

ΓN+,N− , E
)

Here, ` is induced by (29). We can now complete the proof of Proposition 3.1 as follows. First, we remark
that, according to [18, §6.4], must prove that
(33)

qΓN+,N−
⊂ Hom

(
Char (E ,Z)

ΓN+,N− ,Q×p
)

ord−→ Hom
(
Char (E ,Z)

ΓN+,N− ,Z
)
⊂ HomR

(
Char (E ,Z)

ΓN+,N− ,R
)

9



has finite kernel K and that its image is a lattice in the classical sense1. Consider the following diagram,
commutativeby (32).

(34) H1

(
ΓN+,N− ,Z

) ∂ //

ι

��

(
∆0 (E)

)
ΓN+,N−

I0
× //

ι

��

Hom
(
Char (E ,Z)

ΓN+,N− , E×
)

`

��

H1

(
ΓN+,N− , E

)
∂
//
(
E ⊗∆0 (E)

)
ΓN+,N− I0

`

// Hom
(
Char (E ,Z)

ΓN+,N− , E
)

We are interested in the case ` = ord and E = Qp. The same formalism as in [28, proof of Theorem 3.11]
applies in this setting with a shift by −1 in the degrees. This reduces the proof of the fact that I0

ord ◦ ∂ is an
isomorphism to the proof that the natural boundary map

δ : Char (E ,Qp)ΓN+,N− −→ H1
(
ΓN+,N− ,Qp

)
is an isomorphism. This is true thanks to [37, discussion before Theorem (3.9)]. By definition we have
qΓN+,N−

:= Im
(
I0
× ◦ ∂

)
and it follows from the commutative diagram (34) and the fact that I0

ord ◦ ∂ is

injective that K ⊂ ker (ι). But according to the Universal Coefficients Theorem, we have

(35) ι : H1

(
ΓN+,N− ,Z

)
−→ H1

(
ΓN+,N− ,Z

)
⊗Z Qp = H1

(
ΓN+,N− ,Qp

)
in (34). In particular we see that # ker (ι) <∞, being the torsion subgroup of the finitely generated abelian
group H1

(
ΓN+,N− ,Z

)
. The finiteness of K follows from the inclusion K ⊂ ker (ι). It remains to show that

ord
(
qΓN+,N−

)
is a lattice. Since

ord
(
qΓN+,N−

)
= Im

(
ord ◦I0

× ◦ ∂
)
⊂ Hom

(
Char (E ,Z)

ΓN+,N− ,Z
)

is finitely generated, we need only show that its rank is the R-dimension of the codomain

HomR

(
Char (E ,Z)

ΓN+,N− ,R
)

= Hom
(
Char (E ,Z)

ΓN+,N− ,Z
)
⊗Z R

of (33) or, equivalently, that it equals the Qp-dimension of HomQp

(
Char (E ,Z)

ΓN+,N− ,Qp
)

. This is true if

and only if the Qp-span of ord
(
qΓN+,N−

)
is

HomQp

(
Char (E ,Z)

ΓN+,N− ,Qp
)

= Hom
(
Char (E ,Z)

ΓN+,N− ,Z
)
⊗Z Qp.

But this is a consequence of the commutativity of (34), the surjectivity of I0
ord ◦ ∂ and (35).

We remark that

I0
ord ◦ ∂, I0

log0
◦ ∂ : H1

(
ΓN+,N− , E

)
−→ T0

(
JΓN+,N−

)
(E)

are Hecke equivariant maps. Because we have proved that I0
log0
◦ ∂ is an isomorphism (and we may take

E = Qp), the following definition makes sense (cf. [28, Corollary 3.13]). Recall that we have

T0

(
JΓN+,N−

)
(E) = Hom

(
Char (E ,Z)

ΓN+,N− , E
)

and we write TQp for the Hecke algebra (with Qp coefficients) acting on T0

(
JΓN+,N−

)
(Qp).

Definition 4.2. The Teitelbaum L-invariant is the unique endomorphism L ∈ EndTQp

(
T0

(
JΓN+,N−

)
(Qp)

)
such that

I0
log0
◦ ∂ = L ◦ I0

ord ◦ ∂.
1Indeed let K be the finite kernel, so that we may write qΓ

N+,N−
= K × q′Γ

N+,N−
with q′Γ

N+,N−
⊂ qΓ

N+,N−
such that

ord is injective on q′Γ
N+,N−

and such that the image is a lattice. Then, according to [18, §6.4],
TΓ

N+,N−
q′Γ
N+,N−

is an analytic torus.

But since K is finite,
TΓ

N+,N−
qΓ
N+,N−

=

(
TΓ

N+,N−
q′Γ
N+,N−

)K
exists (again by [18, §6.4]) and it is also an analytic torus.
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By construction of JΓN+,N−
, we have L = L

(
JΓN+,N−

)
: apply (13) with

j : qΓN+,N−
:= Im

(
I0
× ◦ ∂

)
⊂ Hom

(
Char (E ,Z)

ΓN+,N− , E×
)

and use (32) to deduce that

log0 ◦I0
× ◦ ∂ = I0

log0
◦ ∂ = L ◦ I0

ord ◦ ∂ = L ◦ ord ◦I0
× ◦ ∂,

from which we get jlog0
= L (J) ◦ jord. We deduce from Lemma 2.1 that the formal logarithm

logJΓ
N+,N−

: JΓN+,N−
(E) −→ T0

(
JΓN+,N−

)
(E)

is given by the rule
logJΓ

N+,N−
([z]) = log0 ◦z − L (ord ◦z) ,

where z ∈ Hom
(
Char (E ,Z)

ΓN+,N− , E×
)

represents [z] ∈ JΓN+,N−
(E).

The following result is now a consequence of (34) with ` = ord and ` = log0.

Proposition 4.3. We have:

logJΓ
N+,N−

◦AJ0 = I0
log0
◦ ι− L ◦ I0

ord ◦ ι =: log AJ0 .

5. Definite additive integrals: proof of the main result

We remark that the Hecke action on the Z appearing in the long exact sequence (20) is Eisenstein: for a
prime q - pN , we define tq := (q + 1)−Tq; then tq = 0 on it. It follows that we may regard tq as a morphism

tq : (∆ (E))ΓN+,N−
→
(
∆0 (E)

)
ΓN+,N−

.

Noticing that tq ∈ EndQp

(
T0

(
JΓN+,N−

))
is invertible (because T0

(
JΓN+,N−

)
is cuspidal), we may define

(36) log AJ := t−1
q ◦ log AJ0 ◦tq : (∆ (E))ΓN+,N−

−→ T0

(
JΓN+,N−

)
.

Proposition 5.1. The map log AJ does not depend on the choice of q - pN and is the unique Hecke
equivariant morphism making the following diagram commutative:

(37)
(
∆0 (E)

)
ΓN+,N−

log AJ0

))
i

��
(∆ (E))ΓN+,N− log AJ

// T0

(
JΓN+,N−

)
With the notation introduced before the statement of Theorem 1.1, it is given the formula

(log AJ) (τ) (cω) =
d

dκ

[
µωΩ,r(τ) 〈x− τy〉

κ
]
κ=0

.

Proof. The fact that log AJ is Hecke equivariant follows from the Hecke equivariance of the maps in (36).
The Hecke equivariance of

logAJ : τ 7→ d

dκ

[
µ·Ω,r(τ) 〈x− τy〉

κ
]
κ=0
∈ T0

(
JΓN+,N−

)
can be proved as in [4, Proposition 2.18].

The fact that log AJ makes (37) commute is an easy consequence of the Hecke equivariance of log AJ0.
The fact that logAJ makes (37) commutative can be proved as in [4, Proposition 2.19] or, more explicitly,
using [34, displayed equation after (24)].

It remains to check that there is a unique Hecke equivariant morphism making (37) commutative, from

which independence of q and the equality (log AJ) (τ) = (logAJ) (τ) will follow. Set T := T0

(
JΓN+,N−

)
and

suppose that ∆ ∈ HomT

(
(∆ (E))ΓN+,N−

, T
)

is the difference of two morphisms making (37) commutative,

11



where we write T for the Hecke algebra. (It suffices to consider the Hecke algebra generated by the Tq for
q - pN for our purposes.) Then the restriction ∆|Im(i) of ∆ to Im (i) is zero. It follows from (20) that there
is an exact sequence

0 −→ Im (i) −→ (∆ (E))ΓN+,N−

deg−→ Z −→ 0.

Taking the T -dual yields

0 −→ HomT (Z, T ) −→ HomT

(
(∆ (E))ΓN+,N−

, T
)
−→ HomT (Im (i) , T ) .

But we have HomT (Z, T ) = 0 because tq = 0 on Z while it is invertible on T . Therefore, ∆ 7→ ∆|Im(i) is
injective and ∆ = 0 as claimed. �

Our Theorem 1.1 is now a consequence of Propositions 5.1 and 4.3 and Theorem 3.2 as follows. First,
Theorem 3.2 implies that, up to the identification JΓN+,N−

∼→ JN+,N−p , we have

(38) AJ0
XN+,N−p

([τ2]− [τ1]) = AJ0 (τ2 − τ1)

for every τ2, τ1 ∈ Hp, where [τ i] is the corresponding point in XN+,N−p (E). As explained in §2, the

isomorphism JΓN+,N−
∼−→ JN+,N−p induces an identification T0

(
JΓN+,N−

)
(E)

∼−→ T0

(
JN+,N−p

)
and the

formal logarithms are identified by the characterization appearijg in Lemma 2.1. We deduce from (38) that
we have

(39) logJN+,N−p

(
AJ0

XN+,N−p
([τ2]− [τ1])

)
= logJΓ

N+,N−

(
AJ0 (τ2 − τ1)

)
.

It now follows from Proposition 4.3 and (39) that we have

(40) logJN+,N−p

(
AJ0

XN+,N−p
([τ2]− [τ1])

)
= log AJ0 (τ2 − τ1) .

Recalling the definitions (8) of logJN+,N−p
AJ and (36) of log AJ, we deduce from (40) that we have(

logJN+,N−p
AJ
)

([τ ]) = (log AJ) (τ)

for every τ ∈ Hp. Now Theorem 1.1 follows from the explicit expression of log AJ that appears in Proposition
5.1.

We end this section explaining how the main result of [4], generalized to the case where the modular
form may not have rational Fourier coefficients, follows from our Theorem 1.1. To this end, for a quadratic
Dirichlet character χ, we write S2 (Γ0 (Np))

new
χ(−N)=ωN ,χ(p)=ap

for the space of those modular forms (on GL2)

that are new and such that the eigenvalues of WN and Up acting on f are χ (−N) and χ(p), respectively. Let
Qχ/Q be the extension cut out by the character χ and write Qχp for the p-adic completion at a prime p | p
(determined by a fixed embedding Q ↪→ Cp). The Fourier expansion at the ∞-cusp determines a Q-rational

structure on the space of modular forms using which we may consider S2

(
Γ0 (Np) ,Qχp

)new

χ(−N)=ωN ,χ(p)=ap
.

The conditions

(41) χ (−N) = ωN and χ (p) = ap

cut out a quotient Jnew
χ(−N)=ωN ,χ(p)=ap

of the new part Jnew of the Picard variety J = JpN,1 of the modular
curve.

Let f ∈ S2 (Γ0 (Np))
new
χ(−N)=ωN ,χ(p)=−ωp and we f∞ be the normalized Hida eigenfamily through f and

write Lf∞,χ for the Mazur-Kitagawa p-adic L-function, restricted to the central critical line. Due to the
sign conditions (41), Lf∞,χ vanishes at the weight 0 :=

[
t 7→ t0 = 1

]
to order at least 2 and the association

f 7→ L′′f∞,χ (0) gives rise to a well defined function to

L′′χ (0) : S2

(
Γ0 (Np) ,Qχp

)new

χ(−N)=ωN ,χ(p)=ap
−→ Qχp .

Let us remark that it could also be regarded as a map

L′′χ (0) : H0

(
XNp,1/Qχp ,Ω

1
XNp,1/Qχp

)new

χ(−N)=ωN ,χ(p)=ap

−→ Qχp ,
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it being just log2
Jnew
χ(−N)=ωN,χ(p)=ap

(P ) for every P ∈
(
Q⊗ Jnew

χ(−N)=ωN ,χ(p)=ap
(Qχ)

)χ
.

As a final piece of notation, for a Q
[
GQχ/Q

]
-module V , we write V χ for the χ-component of V , we

write Tnew
χ(−N)=ωN ,χ(p)=−ωp for the (rational) Hecke algebra acting on S2 (Γ0 (Np))

new
χ(−N)=ωN ,χ(p)=ap

and, for

a Tnew
χ(−N)=ωN ,χ(p)=−ωp -module M and f ∈ S2 (Γ0 (Np))

new
χ(−N)=ωN ,χ(p)=ap

with companion class [f ], we write

M[f ] for the [f ]-isotypic component. We recall that the companion class of a modular form is the set of its
Galois conjugates.

We now explain give our generalization of [4, Theorem 5.4].

Theorem 5.2. Suppose that there is a prime q with q ‖ N .

(1) There is an element

Pχ ∈
(
Q⊗ Jnew

χ(−N)=ωN ,χ(p)=ap
(Qχ)

)χ
and a Hecke operator t = tχ ∈ Tnew,×

χ(−N)=ωN ,χ(p)=−ωp such that

(42) L′′χ (0) = t · log2
Jnew
χ(−N)=ωN,χ(p)=ap

(Pχ) .

(2) If

0 6= Pχ[f ] ∈
(
Q⊗ J[f ] (Qχ)

)χ
,

then (
Q⊗ J[f ] (Qχ)

)χ
= T[f ] ⊗Q · Pχ[f ] ' T[f ] ⊗Q,

where Pχ[f ] is the [f ]-component of Pχ.

(3) We have 0 6= Pχ[f ] if and only if L′ (f, χ, 1) 6= 0.

(4) If tf ∈ Q (f) is the f -component of t, then for any quadratic Dirichlet character ε such that

ε (N) = χ (N) , ε (p) = −χ (p) , and L (f, ε, 1) 6= 0,

the following congruence holds

tf ≡ L (f, ε, 1) in Q (f)
×
/Q (f)

×2
.

(Here Q (f) is the field generated by the Fourier coefficients of f .)

Proof. We sketch the required adjustments to the proof of [4, Theorem 5.4]. We will apply our Theorem
1.1 with B = Bq the unique definite quaternion algebra of discriminant q. By the Jacquet-Langlands
correspondence Jnew

χ(−N)=ωN ,χ(p)=ap
appears as a quotient of JN/q,qp over Q; indeed Pχ will be constructed

from a “point” on JN/q,qp. In order to deduce the main formula (42), we extend scalars to a field E containing
the p-adic completion of Q (f). We write ωf for the differential associated to f and ωφ for its pull-back to
JN/q,qp. We need to find an element

Qχ ∈
(
Q⊗ JN/q,qp (Qχ)

)χ
whose image Pχ satisfies

L′′χ,f∞ (0) = t · log2
Jnew
χ(−N)=ωN,χ(p)=ap

(Pχ) (ωf ) = t · log2
JN/q,qp

(Qχ) (ωφ) .

Applying Theorem 1.1 when τ = τΨ corresponds to the Heegner point attached to an embedding Ψ as in
[4, §3.1] and [34, §6], the k0 = 0 case of [34, Theorem 1.1] follows formally. From here, the generalization of
[4, Theorem 4.9 and Corollary 4.10] (which is the k0 = 0 case of [33, Corollaries 5.26 and 5.27]) follows too.
Now the proof of Theorem 5.2 follows the same pattern as that of [4, Theorem 5.4]. (See also the proof of
[33, Theorem 6.1] for the minor adjustments needed to handle the case where the Fourier coefficients need
not to be rational.) �
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6. The analogous results in the indefinite setting

Suppose that p, N+ and N− are pairwise coprime integers, with p prime and N− the squarefree product
of an even number of primes. We write B for the indefinite quaternion algebra over Q of discriminant N−,
we fix a maximal order OB ⊂ B and an Eichler order R0 (pN+, N−) ⊂ B of level pN+, with group of

invertible elements Γ0 (pN+, N−). We choose a local isomorphism ιp : Bp
∼→ GL2 (Qp) and we set

Γ̃N+,N− := ιp

(
R0

(
pN+, N−

)
[1/p]

×
)
⊂ GL2 (Qp) .

Finally, as in the definite setting, we let ΓN+,N− ⊂ Γ̃N+,N− be the subgroup of norm one elements.
Consider the exact sequence

(43) 0 −→ Char (E ,Z) −→ C0 (E ,Z)
δs−→ C (V,Z) −→ 0,

where δs (c) (v) :=
∑
s(e)=v c (e), which induces, taking ΓN+,N− -cohomology and applying Shapiro’s Lemma

(see [28, §2.5]), the exact sequence

0 −→ E −→ H1
(
ΓN+,N− , Char (E ,Z)

)
−→ H1

(
Γ0

(
pN+, N−

)
,Z
)p−new −→ 0,

where

E := coker
(
δs : C0 (E ,Z)

ΓN+,N− −→ C (V,Z)
ΓN+,N−

)
,

H1
(
Γ0

(
pN+, N−

)
,Z
)p−new

:= ker
(
δs : H1

(
ΓN+,N− , C0 (E ,Z)

)
−→ H1

(
ΓN+,N− , C (V,Z)

))
.

The notation is justified by the following lemma and the fact that H1 (Γ0 (pN+, N−) ,Z)
p−new

is identified
with the p-new part ofH1 (Γ0 (pN+, N−) ,Z), because δs corresponds to the degeneracy maps under Shapiro’s
isomorphism. The proof of the next result is easy and left to the reader. For a Hecke module M , we write
M c for its cuspidal part (see [28, §2.4]).

Lemma 6.1. •
(1) We have that tq = 0 on E ' Z

(p+1)Z ⊕ Z for every q - pN while

tq : H1
(
Γ0

(
pN+, N−

)
,Z
)p−new,c → H1

(
Γ0

(
pN+, N−

)
,Z
)p−new,c

is injective on H1 (Γ0 (pN+, N−) ,Z)
p−new,c ' Zg.

(2) There exists E ⊕H ⊂ H1
(
ΓN+,N− , Char (E ,Z)

)
such that tq : H → H is injective for every q - pN ,

H ↪→ H1
(
Γ0

(
pN+, N−

)
,Z
)p−new,c

is Z-free with torsion cokernel, inducing

Q ·H = H1
(
ΓN+,N− , Char (E ,Q)

)c
= Q⊗Z H

∼→ H1
(
Γ0

(
pN+, N−

)
,Q
)p−new,c

.

(3) There exists a unique H which is maximal having the property stated in (2).

We fix from now on any

H ↪→ H1
(
Γ0

(
pN+, N−

)
,Z
)p−new,c

as granted by Lemma 6.1 (2), e.g., the unique maximal H of Lemma 6.1 (3). The integration pairing I0
×

gives rise, for every field E, to a Hecke equivariant morphism

(44) I0
× : H1

(
ΓN+,N−,∆

0 (E)
)
−→ Hom

(
H1
(
ΓN+,N− , Char (E ,Z)

)
, E×

)
−→ TΓN+,N−

(E) ,

where TΓN+,N−
(E) := Hom (H,E×) and the second map is induced by H ⊂ H1

(
ΓN+,N− , Char (E ,Z)

)
. Note

that, since H is Z-free, TΓN+,N−
is indeed a rigid analytic torus, endowed with an action of the p-new Hecke

Q-algebra T acting on the weight two, p-new, level pN+ cusp forms on B. On the other hand (17) induces
the exact sequence

(45) H2

(
ΓN+,N− ,Z

) ∂−→ H1

(
ΓN+,N−,∆

0 (E)
) i−→ H1

(
ΓN+,N−,∆ (E)

)
−→ H1

(
ΓN+,N− ,Z

)
.

Define qΓN+,N−
:= Im

(
I0
× ◦ ∂

)
. The following result is a generalization of [19, Proposition 30] (specialized

to F = Q).
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Proposition 6.2. We have that qΓN+,N−
⊂ TΓN+,N−

(Qp) is Hecke stable and the quotient JΓN+,N−
(E) is

represented by a rigid analytic torus JΓN+,N−
over Qp endowed with an action of the Hecke algebra T.

Proof. The fact that qΓN+,N−
is Hecke stable follows from the fact that ∂ and I0

× are Hecke equivariant.

The proof of the other assertions follows exactly the same pattern as the proof of Proposition 3.1. Indeed,
(28) is replaced by

(46) H1
(
ΓN+,N− ,D0,b

(
P1(Qp)

))c ∼−→ H1
(
ΓN+,N− , Char (E , E)

)c
= E ·H,

which is [28, Theorem 3.5] (the equality follows from Lemma 6.1 (2)). This allows us to define the analoge
of the second line appearing in (32), namely

I0
` : H1

(
ΓN+,N−,E ⊗∆0 (E)

)
−→ HomE

(
H1
(
ΓN+,N− , Char (E ,Z)

)
, E
)
−→ HomE (H,E)

where the second arrow is given by H ⊂ H1
(
ΓN+,N− , Char (E ,Z)

)
. Then Lemma 4.1 and (46) give the

analogue of (32): one need only add one to the co/homology degrees. With this formal adjustment, the
proof proceed along the same lines, replacing [37, discussion before Theorem (3.9)] with [28, Theorem 3.11]
(specialized to the weight 2 case). See also [19, Lemma 32] (specialized to F = Q), which is [28, Theorem
3.11] on the component corresponding to f with rational eigenvalues, in light of I0

ord ◦ ι = ord ◦I0
× (by the

analogous of (32)). �

Here is the analogue of the Manin-Drinfeld theorem in this setting:

Theorem 6.3. There is a Hecke equivariant isogeny JΓN+,N−
→ Jp−new

pN+,N− × Jp−new
pN+,N− over Qp2 , where

Jp−new
pN+,N− is the p-new quotient of the Picard variety of the indefinite Shimura curve attached to an Eichler

order of level pN+ in the indefinite quaternion algebra of discriminant N−.

Proof. The action of the involution at infinity W∞ induces an isogeny JΓN+,N−
→ J+

ΓN+,N−
×J−ΓN+,N−

(over

Qp); it follows from [16], extended to include the required lift to our abelian varieties in [35] (specialized

to the weight 2 case), that the L-invariant of J±ΓN+,N−
equals the L-invariant of Jp−new

pN+,N− , which has split

multiplicative reduction over Qp2
2. By a standard argument exploiting the fact that the abelian varieties

under consideration are endowed with a T-action and their dimension is twice the dimension of T over Q, it
follows that there is an isogeny J±ΓN+,N−

→ Jp−new
pN+,N− over Qp2 . �

Remark 6.4. In [15] and [26], a dual construction of J ′ΓN+,N−
endowed with an isogeny J ′ΓN+,N−

→ Jp−new
pN+,N−×

Jp−new
pN+,N− is described. In particular, JΓN+,N−

and J ′ΓN+,N−
are isogenous.

By definition of qΓN+,N−
, (44) induces

AJ
0

:
H1

(
ΓN+,N−,∆

0 (E)
)

∂
(
H2

(
ΓN+,N− ,Z

)) −→ TΓN+,N−
(E)

qΓN+,N−

=: JΓN+,N−
(E) .

SinceH1

(
ΓN+,N−,,Z

)
is a finite group — it is finitely generated andH1

(
ΓN+,N−,, E

)
= E⊗H1

(
ΓN+,N−,,Z

)
=

0 (by the universal coefficient theorem, in view of [28, Lemma 3.10]) — it has finite exponent h. It follows

from (45) that there is a unique h̃ through which h factors:

h : H1

(
ΓN+,N−,∆ (E)

) h̃−→
H1

(
ΓN+,N−,∆

0 (E)
)

∂
(
H2

(
ΓN+,N−,Z

)) j
↪→ H1

(
ΓN+,N−,∆ (E)

)
.

We define

AJh : H1

(
ΓN+,N−,∆ (E)

) h̃−→
H1

(
ΓN+,N−,∆

0 (E)
)

∂
(
H2

(
ΓN+,N− ,Z

)) AJ
0

−→ JΓN+,N−
(E) .

2Indeed, we have I0
` ◦ ι = ` ◦ I0

× for ` = ord or log0 by the analogue of (32). It follows that the L-invariant of [28] considered

in [35] is the L-invariant of the monodromy module attached to JΓ
N+,N−

, i.e. the L-invariant of JΓ
N+,N−

. Hence, the main

result of [35] gives the required lift of the main result of [16].
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We will need to consider the formal logarithm

logJΓ
N+,N−

: JΓN+,N−
(E)→ T0

(
JΓN+,N−

)
(E) .

By its construction and Lemma 6.1 (2), the target of logJΓ
N+,N−

is identified with

(47) T0

(
JΓN+,N−

)
(E) = HomE (H,E)

∼←− HomE

(
H1
(
ΓN+,N− , Char (E , E)

)c
, E
)

.

On the other hand, let

d

dκ
[−,−]κ=0 : H1

(
ΓN+,N−,C (V,DΩ,0 (W ))

)
⊗H1

(
ΓN+,N−,E ⊗∆ (E)

)
→ E

be the pairing induced by [35, Lemma 17] (which is the faux Abel-Jacobi map of [21, §7.1], up to Shapiro’s
isomorphism, by [21, Proposition 8.1]). It is essentially induced by a rule analogous to (6). There is a

cohomological family cωΩ ∈ H1
(
ΓN+,N−,DΩ,0 (W )

)
passing through every ω ∈ H1

(
ΓN+,N− , Char (E , E)

)c
(see [20, Corollary 11.4]). The following result is the analogue f Theorem 1.1 in this indefinite setting

Theorem 6.5. For every z ∈ H1

(
ΓN+,N−,∆ (E)

)
and ω ∈ H1

(
ΓN+,N− , Char (E , E)

)c
, we have(

logJΓ
N+,N−

AJh

)
(z) (ω) = h · d

dκ
[cωΩ, ι (z)]κ=0 .

Proof. Writing L for the L-invariant of JΓN+,N−
, we have

logJΓ
N+,N−

([x]) := log0 ◦x− L (ord ◦x) .

Since AJ
0

is induced by I0
×, we see that (recall the morphisms I0

` with ` = log0 or ord from (46))

(48) logJΓ
N+,N−

◦AJ
0

= log0 ◦I0
× − L

(
ord ◦I0

×
)

=
(
I0
log0
− LI0

ord

)
◦ ι,

where the second equality follows from (32). We may form the following commutative diagram

H1

(
ΓN+,N−,∆ (E)

) h̃ //

ι

��

H1

(
ΓN+,N−,∆

0 (E)
)

∂
(
H2

(
ΓN+,N−,Z

)) j //

ι

��

H1

(
ΓN+,N−,∆ (E)

)
ι

��
H1

(
ΓN+,N−,E ⊗∆ (E)

)
h̃

// H1

(
ΓN+,N−,E ⊗∆0 (E)

)
∂
(
H2

(
ΓN+,N−,E

))
j
// H1

(
ΓN+,N−,E ⊗∆ (E)

)
.

It follows that

logJΓ
N+,N−

AJh = logJΓ
N+,N−

◦AJ0 ◦ h̃ =
(
I0
log0
− LI0

ord

)
◦ ι ◦ h̃

=
(
I0
log0
− LI0

ord

)
◦ h̃ ◦ ι =

(
I0
log0
− LI0

ord

)
◦ j−1 ◦ j ◦ h̃ ◦ ι

=
(
I0
log0
− LI0

ord

)
◦ j−1 ◦ h ◦ ι = h ◦

(
I0
log0
− LI0

ord

)
◦ j−1 ◦ ι,(49)

the second equality following from (48).
The claim now follows from (49) and [35, Proposition 26] (or [21, Porposition 7.5] and Shapiro’s lemma),

giveing ((
I0
log0
− LI0

ord

)
◦ j−1

)
(ω) (ι (z)) =

d

dκ
[cωΩ, ι (z)]κ=0 .

�
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7. Derivatives of distributions and the Coleman-Teitelbaum cocycle

7.1. Generalities on distributions and locally trivial bundles. Let X be a locally compact, paracom-
pact (⇔ strictly paracompact by [39, Proposition 8.7]) p-adic manifold. For a Banach K-algebra O, we let
A (X,O) be the space of O-valued locally analytic functions on X and let D (X,O) := LO (A (X,O) ,O) ⊂
L (A (X,O) ,O), the strong O-dual of A (X,O). Here L (V,W ) denotes the space of continuous linear maps
between the two locally convex topological spaces V and W , with its strong topology, and LO (V,W ) is its
subspace of O-linear maps, when V and W are given an O-module structure, with the induced topology. If
f : X → Y is a morphism of p-adic manifolds as above, we have maps

f∗O : A (Y,O)→ A (X,O) and f∗ : D (X,O)→ D (Y,O) ,

the first being the pull-back and the second given by duality. We note that

(50) f∗

(
δOx

)
= δOf(x), for every x ∈ X

if δO· : X → D (X,O) denotes the Dirac distribution map.
It can be shown that there are topological identifications3

TOD(X) : O⊗̂D (X)
∼−→ D (X,O)

and
PO1,O2

D(X1),D(X2) : D (X1,O1) ⊗̂ιD (X2,O2)
∼−→ D

(
X1 ×X2,O1⊗̂O2

)
such that

(51) TOD(X)

(
1O⊗̂δx

)
= δOx and PO1,O2

D(X1),D(X2)

(
δO1
x1
⊗̂ιδO2

x2

)
= δO1⊗̂O2

(x1,x2) .

Since the K-span of {δx : x ∈ X} is dense in D (X) (use strict paracompactness in order to reduce to the

compact case [40, Lemma 3.1]), we also deduce that the O-span of
{
δOx : x ∈ X

}
is dense in D (X,O):

(52) O
{
δOx : x ∈ X

}
= D (X,O) .

It follows from (52) that the properties in (50) and (51) characterize the respective maps.
When X is compact, then A (X) is the inductive limit lim

n→
Vn of Banach spaces Vn with injective and

compact transition maps, while D (X) is the inverse limit lim
←n

V ′n of Banach spaces of V ′n by compact and

dense transition maps (namely V ′n = L (Vn,K)). These well known facts can be deduced from [38, Lemma
16.4, Proposition 16.5 and Proposition 16.10], noticing that lim

←n
V ′n → Vn has dense image if the transition

maps have this property. It follows from loc. cit. that both A (X) and D (X) mutually dual, hence reflexive.
We call such a locally convex space V := lim

n→
Vn (resp. V ′ := lim

←n
V ′n) a space of compact type (resp. a

nuclear Fréchet space). Because we may write X =
⊔
iXi where Xi is open and compact, we see that

A (X) =
∏
iA (Xi) (by [39, Proposition 12.5]) and, taking duals, yields D (X) =

⊕
iD (Xi) (the reader

may check that the canonical map
⊕

i L (Vi,W ) → L (
∏
i Vi,W ) is a topological identification, when W is

normed).

Consider the canonical morphism of locally convex spaces 1̂O⊗D(X) : O⊗̂ιD (X) → O⊗̂D (X). Then
D (X) =

⊕
iD (Xi) and we may form the following commutative diagram:⊕

iO⊗̂ιD (Xi)
t //

⊕i1̂O⊗D(Xi)
��

O⊗̂ι
⊕

iD (Xi)
= //

1̂O⊗(⊕iD(Xi))

��

O⊗̂ιD (X)

1̂O⊗D(X)

��⊕
iO⊗̂D (Xi) t

// O⊗̂
⊕

iD (Xi) =
// O⊗̂D (X) .

Since O is a Banach space, it is not difficult to see that the canonical morphisms t are topological identifica-
tions. On the other hand, 1̂O⊗D(Xi) is a topological identification because O and D (Xi) are Fréchet spaces;
therefore, we may apply [38, Proposition 17.6]. We have proved the following remark:

3We write V ⊗ιW (resp. V ⊗W ) to denote V ⊗KW with the inductive (resp. projective) tensor topology. Also, a morphism
V →W is a continuous, K-linear if V and W are locally convex spaces. Completion means Hausdorff completion.
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Remark 7.1. The canonical morphism 1̂O⊗D(X) : O⊗̂ιD (X) → O⊗̂D (X) is a topological O-linear identifi-
cation.

Suppose, from now on, that a locally compact, paracompact, p-adic Lie group T acts on X by means of
a locally analytic map a : T × X → X. The left action of T on D (X) can be extended, with respect to
δ· : T → D (X), to a left action of D (T ) making D (X) a D (T )-module under the convolution product:

(ν · µ) (F ) = PD(T ),D(X)

(
ν⊗̂µ

)
(F ◦ a) , where ν ∈ D (T ) , µ ∈ D (X) and F ∈ A (X) .

More formally, the multiplication is given by the separately continuous morphism

(53) D (T )⊗ι D (X)
PD(T ),D(X)−→ D (T ×X)

a∗→ D (X) .

We note the formula

(54) δt · δx = δtx for t ∈ T and x ∈ X,

characterizes the multiplication law, thanks to (51). Since (54) characterizes the respective maps, upon
setting X = T we obtain a K-algebra structure on D (T ) (with identity element δ1) and that, for a general
X, we get a D (T )-module structure on D (X). Note that, when T and X are compact, the multiplication law
is continuous and, hence, D (T ) is a locally convex K-algebra and D (X) is a locally convex D (T )-module.

We write HomA (T,O×) for the subgroup of Hom (T,O×) consisting ofthose group homomorphisms whose
composition with the inclusion O× ⊂ O belongs to A (T,O); give HomA (T,O×) ⊂ A (T,O) the subspace
topology. We let HomL (D (T ) ,O) ⊂ L (D (T ) ,O) be the subspace consisting of those morphisms of locally
convex spaces that are also morphisms of K-algebras4.

Lemma 7.2. The map CO : HomL (D (T ) ,O) → HomA (T,O×) defined by the rule CO (k) (t) := k (δt) is
a well defined topological identification.

Proof. By [40, Theorem 2.2] we have to prove that CO (k) ∈ HomA (T,O×) if and only if k ∈ HomL (D (T ) ,O)5.
We claim that, for a continuous K-linear morphism k ∈ L (D (T ) ,O) to belong to HomL (D (T ) ,O), it is
necessary and sufficient that k (δ1) = 1 and k (δt1 · δt2) = k (δt1)k (δt2). Indeed we note that both the left
and the right hand sides of the equality k (ν1 · ν2) = k (ν1)k (ν2) are linear in the variables ν1 and ν2.
Furthermore, if we fix one of these variables, the two resulting functions are K-linear and continuous in the
remaining variable thanks to (53), showing that the multiplication law is separately continuous. Hence, the
claimed equality k (ν1 · ν2) = k (ν1)k (ν2) follows from the identity k (δt1 · δt2) = k (δt1)k (δt2) and (52).
Since k (δt1t2) = k (δt1 · δt2) by (54), the claim follows. �

Suppose that we are given a map k ∈ HomL (D (T ) ,O). By Lemma 7.2 its restriction to δ· : T → D (T )

gives rise to a locally analytic group homomorphism (·)k : T → O× sending t to tk := k (δt). We define the
following closed sub O-module of A (X,O)6:

Ak (X) = A (X,k) =
{
F ∈ A (X,O) : F (tx) = tkF (x)

}
.

Viewing both O and D (X) as D (T )-modules by means of k and, respectively, the convolution product, we
may define

Dk (X) := O⊗̂kD (X) and D (X,k) := LO (Ak (X) ,O) .

We assume, further, that X is endowed with a right action by a semigroup Σ with the property that the
mapping σ : X → X is locally analytic for every σ ∈ Σ. There are induced left (resp. right) actions of Σ on the
spaces of locally analytic functions (resp. distributions) defined by the rule (σF ) (x) := σ∗ (F ) (x) = F (xσ)

4Since the multiplication law D (T ) × D (T ) → D (T ) is only separately continuous, D (T ) is not a locally convex algebra.
When T is compact the multiplication law is continuous and HomL (D (T ) ,O) is the space of morphisms of locally convex

algebras.
5We remark that [40, Theorem 2.2] can be refined to a bicontinuous isomorphism and extended to the case where the

manifold is strictly paracompact.
6Suppose that (Fi)→ F is a net in Ak (X) converging to F ∈ A (X,O). If t ∈ T let t : X → X be the locally analytic map

given by left multiplication by t, so that t∗ (Fi)→ t∗ (F ). Since the multiplication in O is separately continuous, G 7→ tk2G is
continuous and tk2Fi → tk2F . Since t∗ (Fi) = tk2Fi we deduce that t∗ (F ) = tk2F for every t ∈ T , meaning that F ∈ Ak (X).
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(resp. (Λσ) (F ) := (σ∗ (Λ)) (F ) = Λ (σF )). We will assume that the right Σ-action is compatible with the
left T -action in the sense that t(xσ) = (tx)σ for all t ∈ T , x ∈ X, and σ ∈ Σ. It follows that Σ acts on
Ak (X), Dk (X) and D (X,k). These spaces of distributions are related by the following lemma.

Lemma 7.3. There is a unique morphism Tk
D(X) of locally convex spaces making the following diagram

commutative:

(55) O⊗̂D (X)

��

TOD(X) // D (X,O)

��
Dk (X)

Tk
D(X)

// D (X,k) .

The morphism Tk
D(X) is (O,Σ)-equivariant.

Proof. We first need to prove that, if α ∈ O, µ ∈ D (X) and ν ∈ D (T ), then

(56) TOD(X)

(
αk (ν) ⊗̂µ

)
= TOD(X)

(
α⊗̂ (ν · µ)

)
on Ak (X) .

By definition F ∈ Ak (X) if and only if

δOtx (F ) = F (tx) = tkF (x) =
(
k (δt) δ

O
x

)
(F ) .

By (54) and (51) we have TOD(X)

(
1⊗̂ (δt · δx)

)
= TOD(X)

(
1⊗̂δtx

)
= δOtx and TOD(X)

(
k (δt) ⊗̂δx

)
= k (δt) δ

O
x .

We deduce, by O-linearity, the identity TOD(X)

(
αk (δt) ⊗̂δRx

)
= TOD(X)

(
α⊗̂ (δt · δx)

)
on Ak (X). We note

that both the left and right hand sides of (56) are linear in the variables µ and ν. Furthermore, if we fix
one of these variables, the two resulting functions are continuous in the remaining variable thanks to (53),
showing that the multiplication law is separately continuous. Hence, (56) follows from (52). The existence
and uniqueness of Tk

D(X) follows. Since O⊗̂D (X) → Dk (X) is surjective and all the arrows other than

Tk
D(X) in (55) are (O,Σ)-equivariant, Tk

D(X) is equivariant as well. �

We note that, writing 1⊗̂kδx ∈ Dk (X) for the image of 1⊗̂δx ∈ O⊗̂D (X) and δkx ∈ D (X,k) for the

evaluation at x morphism (the image of δOx ∈ D (X,O)), (51) implies that the morphism Tk
D(X) appearing

in (55) can be characterized by the formula

Tk
D(X)

(
1⊗̂kδx

)
= δkx for every x ∈ X.

We say that π : X → T\X =: X is a trivial T -bundle if the quotient X := T\X has the structure of a
locally compact, paracompact, p-adic manifold7 and there exists a locally analytic section s : X → X of π
such that the locally analytic mapping h = hs : T ×X → X given by h (t, x) := ts (x) is a locally analytic
isomorphism. Let

s∗ : A (X,O)→ A
(
X,O

)
be the pull-back map on functions. We let k ∈ HomL (D (T ) ,O) in the following discussion.

Lemma 7.4. The map s∗ restricts to an topological identification s∗ = s∗k : Ak (X)
∼→ A

(
X,O

)
.

Proof. Define r = rk : A
(
X,O

)
→ Ak (X) by r (f) (h (t, x)) = tkf (x). We claim that r is the inverse of s∗.

If f ∈ A
(
X,O

)
, F ∈ Ak (X), x ∈ X and t ∈ T , then

s∗ (r (f)) (x) = r (f) (s (x)) = r (f) (h (1, x)) = f (x) and

r (s∗ (F )) (h (t, x)) = tks∗ (F ) (x) = tkF (s (x)) = F (ts (x)) = F (h (t, x)) .

7According to [32, Part II, Ch. III §12 Theorem 1] there exists at most one p-adic manifold structure on X making π : X → X
a topological quotient in such a way that π is a submersion. See [32, Part II, Ch. III §12 Theorem 2] for natural conditions
granting the existence of such a quotient.
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We now claim that r is continuous. Indeed we have(
h−1

)∗ (
CO (k) · f

)
(h (t, x)) =

(
CO (k) · f

)
(t, x) = CO (k) (t) f (x) = tkf (x) = r (f) (h (t, x)) ,

showing that r (f) =
(
h−1

)∗ (
CO (k) · f

)
where

(
h−1

)∗
: A
(
T ×X,O

)
→ A (X,O) is the continuous mor-

phism induced by h−1 : X → T ×X. The claim now follows from the general fact that the multiplication
map

(57) · : A (Y,O)⊗A (Y,O) −→ A
(
Y × Y,O⊗̂O

)
−→ A

(
Y,O⊗̂O

)
−→ A (Y,O)

is continuous for every strictly paracompact manifold Y . Here the first arrow is characterized by the fact
that it maps F1 ⊗ F2 to (y1, y2) 7→ F1 (y1) ⊗̂F2 (y2), the second arrow is obtained by pull-back along the
diagonal and the third is induced by the multiplication map O⊗̂O → O. They are all continuous (and indeed
the first extends to a topological isomorphism on Hausdorff completions), from which we deduce that · is
continuous. �

Recall our assumption that X admits a right action by a semigroup Σ compatible with the left T -action.
For each x ∈ X, there is a unique js (x) ∈ T such that x = js (x) s (π (x)). Note that js : X → T is locally
analytic because h (js (x) , π (x)) = js (x) s (π (x)) = x, implying js = prT ◦ h−1 where prT : T ×X → T is
the canonical projection. In particular,

js (·, ·) : X × Σ −→ T , js (x, σ) := js (s (x)σ)

is such that js (·, σ) : X → T is locally analytic for every fixed σ ∈ Σ because js (·, σ) = js ◦ σ ◦ s. We may
therefore define a left weight k action of Σ on A

(
X,O

)
by the rule

(σ ·k,s f) (x) := js (x, σ)
k
f (xσ) .

Lemma 7.5. The map s∗ : Ak (X)→ A
(
X,O

)
is Σ-equivariant.

Proof. Suppose that F ∈ Ak (X), x ∈ X and σ ∈ Σ. By definition s (x)σ = js (s (x)σ) s (π (s (x)σ)) and,
since π is Σ-equivariant, π (s (x)σ) = π (s (x))σ = xσ. It follows that s (x)σ = js (s (x)σ) s (xσ) and then

s∗ (σF ) (x) = (σF ) (s (x)) = F (s (x)σ) = F (js (s (x)σ) s (xσ)) = js (s (x)σ)
k
F (s (xσ))

= js (s (x)σ)
k
s∗ (F ) (xσ) = (σ ·k,s s∗ (F )) (x) . �

For each σ ∈ Σ, we have defined σ·k,s : A
(
X,O

)
→ A

(
X,O

)
. We note that this map is continuous

because CO (k) (js (·, σ) (x)) = js (x, σ)
k
, so that

σ ·k,s f =
(
CO (k) ◦ js (·, σ)

)
· σ∗ (f)

and the continuity is a consequence of the continuity of (57). It follows that we may define a weight k action
of Σ on D

(
X,O

)
by the rule

(µ ·k,s σ) (f) := µ (σ ·k,s f) .

By Lemmas 7.4 and 7.5 there is an (O,Σ)-equivariant topological identification s∗ : Ak (X)
∼→ A

(
X,O

)
.

Taking the O-duals it yields an (O,Σ)-equivariant topological identification

s∗ = sk∗ : D
(
X,O

) ∼→ D (X,k) .

Proposition 7.6. The morphism Tk
D(X) is a (O,Σ)-equivariant topological identification Tk

D(X) : Dk (X)
∼→

D (X,k).

Proof. We let T act on T × X by the rule t1 (t2, x) := (t1t2, x): since h (t1 (t2, x)) = t1t2s (x) = t1h (t2, x)
we have

hk∗ : O⊗̂kD
(
T ×X

)
→ O⊗̂kD (X) =: Dk (X) .

This map is an O-linear isomorphism by a general functoriality principle, because (1T , h) :
(
T, T ×X

)
→

(T,X) is a locally analytic isomorphism of T -bundles. Indeed, hk∗ is induced by 1⊗̂h∗ and it is characterized
by

(58) hk∗
(
α⊗̂kµ

)
= α⊗̂kh∗ (µ) .
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Consider the topological identification P := PD(T ),D(X) : D (T ) ⊗̂ιD
(
X
)
→ D

(
T ×X

)
. Note that it is

D (T )-linear: indeed, by (54) and (51), we have

P
(
(δt1 · δt2) ⊗̂δx

)
= P

(
δt1t2⊗̂δx

)
= δ(t1t2,x) = δt1(t2,x) = δt1 · δ(t2,x).

Both sides of this equation are linear in the involved variables and, if we fix all but one, the resulting
function is continuous in the remaining variable thanks to (53) showing that the multiplication laws are
separately continuous. The D (T )-linearity follows from this remark and (52) by the above equation. We
deduce that

1O⊗̂kP : O⊗̂ιD
(
X
)

= O⊗̂kD (T ) ⊗̂ιD
(
X
)
−→ O⊗̂kD

(
T ×X

)
is an O-linear topological identification. Finally, we have the O-linear topological identification

1̂−1

O⊗D(X)
: O⊗̂D

(
X
)
−→ O⊗̂ιD

(
X
)

from Remark 7.1.
Setting γk := hk∗ ◦

(
1O⊗̂kP

)
◦ 1̂−1

O⊗D(X)
we now consider the following diagram:

(59) O⊗̂D
(
X
)

γk

�� ��

TOD(X) // D
(
X,O

)
s∗

��
Dk

(
X
)

Tk
D(X)

// D
(
X,k

)
.

Since all the morphisms appearing in the diagram other than Tk
D(X) are O-linear, topological identifications

and Tk
D(X) is (O,Σ)-equivariant, suffices to prove that the diagram is commutative. Indeed, since the arrows

are O-linear ftinuous, by (52) it suffices to show that Tk
D(X)

(
γk
(
1⊗̂δx

))
= s∗

(
TOD(X)

(
1⊗̂δx

))
for every

x ∈ X. We have 1D(T ) = δ1, so that 1̂−1

O⊗D(X)

(
1⊗̂δx

)
= 1⊗̂ιδx = 1⊗̂kδ1⊗̂ιδx, and we see from (51), (58)

and (50) that we have

γk
(
1⊗̂δx

)
= hk∗

((
1O⊗̂kP

) (
1⊗̂kδ1⊗̂ιδx

))
= hk∗

(
1⊗̂kδ(1,x)

)
= 1⊗̂kh∗

(
δ(1,x)

)
= 1⊗̂kδh(1,x) = 1⊗̂kδs(x).(60)

It follows from (55) and (51) that

Tk
D(X)

(
γk
(
1⊗̂δx

))
= δOs(x)|Ak(X) =: δks(x).

On the other hand, TOD(X)

(
1⊗̂δx

)
= δOx by (51), so that

s∗

(
TOD(X)

(
1⊗̂δx

))
(F ) = s∗

(
δOx

)
(F ) = δOx (s∗ (F )) = F (s (x)) = δks(x) (F )

for every F ∈ Ak (X). Hence s∗

(
TOD(X)

(
1⊗̂δx

))
= δks(x) and the claim follows. �

The following result is a formal generalization of [3, Theorem 3.7.4]. If ki ∈ HomL (D (T ) ,Oi) we write

k1
ϕ→ k2 to mean that k2 = ϕ ◦ k1 for some ϕ ∈ HomL (O1,O2) and set Iϕ := ker (ϕ) (with the subspace

topology). There is an induced specialization map

(61) ϕ∗ : Dk1
(X) −→ Dk2

(X) , ϕ∗
(
α⊗̂k1

µ
)

= ϕ (α) ⊗̂k2
µ.

It is easy to see that, viewing Oi as a D (T )-module via ki, the map ϕ : O1 → O2 is D (T )-bilinear. In
particular, Iϕ is a D (T )-sub-bimodule via k1 : D (T )→ O1 and we may form Iϕ⊗̂k1

D (X), which is a (left)
O1-module and a (left) D (T )-module (via k1). The notion of topological left exactness (resp. exactness)
which appears in the statement of the following theorem is recalled just below it for the convenience of the
reader.
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Theorem 7.7. Suppose k1
ϕ→ k2. Then the specialization sequence

(62) 0 −→ Iϕ⊗̂k1
D (X) −→ Dk1

(X)
ϕ∗−→ Dk2

(X)

is topologically left exact. Furthermore, if ϕ is surjective, then ϕ∗ is surjective and the resulting (62) is
topologically exact.

Proof. Recall the D (T )-linear, topological identifications γki : Oi⊗̂D
(
X
)
→ Dki (X) introduced before (59).

Consider the following diagram

0 // Iϕ⊗̂D
(
X
) i // O1⊗̂D

(
X
) ϕ⊗̂1D(X) //

γk1

��

O2⊗̂D
(
X
)

γk2

��
0 // Iϕ⊗̂k1D (X)

j
// Dk1 (X)

ϕ∗
// Dk2 (X) .

Let us assume the following facts, whose validity we be established below: (i) there is a morphism

γk1

| : Iϕ⊗̂D
(
X
)
→ Iϕ⊗̂k1D (X) such the resulting square is commutative and with dense image, (ii) the

square on the right is commutative, and (iii) the first row is topologically left exact (resp. exact when ϕ is

surjective). We claim that, given these facts, the continuous morphism γk1

| : Iϕ⊗̂D
(
X
)
→ Iϕ⊗̂k1

D (X) is a

topological isomorphism; hence the topological left exactness (resp. exactness) of (62) (resp. of (62) when
ϕ is surjective) will follow from the corresponding exactness property of the first line. To prove the claim,

we first remark that, because γk1 ◦ i is injective, γk1

| is too. Suppose now that
(
γk1

| (xi)
)
→ y is a net in

Iϕ⊗̂k1D (X) with xi ∈ Iϕ⊗̂D
(
X
)
. Because j is continuous, we have

(
γk1 (i (xi))

)
=
(
j
(
γk1

| (xi)
))
→ j (y).

Hence
(
γk1 (i (xi))

)
is a convergent net and, because γk1 ◦i is a topological subspace, (xi) is a Cauchy net and

we have, (xi)→ x ∈ Iϕ⊗̂D
(
X
)

by completeness of Iϕ⊗̂D
(
X
)
. But then the continuity of γk1

| implies that(
γk1

| (xi)
)
→ γk1

| (x) and, hence, y = γk1

| (x), because Iϕ⊗̂k1D (X) is separated. This proves that the image

of γk1

| is closed and, because it is dense, we conclude that γk1

| is surjective. Hence γk1

| is a continuous bijection

and the above argument proving the surjectivity of γk1

| shows that, if
(
γk1

| (xi)
)
→ γk1

| (x), then (xi) → x

(because it proves the convergence (xi)→ x′ ∈ Iϕ⊗̂D
(
X
)

and then, by continuity of γk1

| , γk1

| (x) = γk1

| (x′)

implying x = x′). We deduce that γk1

| is a topological isomorphism, as desired.

Proof of (i). Let us consider the following morphism, where the first arrow is µ 7→ 1⊗̂ιµ = δ1⊗̂ιµ:

β : D
(
X
)
−→ D (T ) ⊗̂ιD

(
X
) PK,K
D(T ),D(X)−→ D

(
T ×X

) h∗−→ D (X) .

It follows from (51), (50) and the definition of h that we have β (δx) = δs(x). Hence, setting

γk1

| : Iϕ⊗̂D
(
X
) 1Iϕ ⊗̂β−→ Iϕ⊗̂D (X) −→ Iϕ⊗̂k1

D (X) ,

we see that γk1

|
(
α⊗̂δx

)
= α⊗̂k1

δs(x). It follows from (60) and the fact that γk1 is O1-linear that we also

have γk1
(
α⊗̂δx

)
= α⊗̂k1

δs(x), proving that γk1

| makes the diagram commutative (by density of the K-linear

span of the elements α⊗̂δx with α ∈ Iϕ). Since the K-linear span of the elements of the form α⊗̂k1
δx is

dense in Iϕ⊗̂k1
D (X) (by (52)), suffices to prove that α⊗̂k1

δx with α ∈ Iϕ and x ∈ X belongs to the image

of γk1

| in order to deduce that γk1 has dense image. But because h is surjective, we may write x = ts (x)

and then, by (54), we see that

α⊗̂k1δx = α⊗̂k1δtδs(x) = αk1 (δt) ⊗̂k1δs(x)

= γk1

|
(
αk1 (δt) ⊗̂δx

)
∈ Im

(
γk1

|

)
(because αk1 (δt) ∈ Iϕ).

Proof of (ii). In order to prove the commutativity of the right square, since the arrows are D (T )-linear

and continuous, by (52) it suffices to show that ϕ∗
(
γk1

(
1⊗̂δx

))
= γk2

((
ϕ⊗̂1D(X)

) (
1⊗̂δx

))
. We have

22



(
ϕ⊗̂1D(X)

) (
1⊗̂δx

)
= ϕ (1) ⊗̂δx = 1⊗̂δx and, by (60), γki

(
1⊗̂δx

)
= 1⊗̂kiδs(x). Hence, γk2

((
ϕ⊗̂1D(X)

) (
1⊗̂δx

))
=

1⊗̂k2δs(x) and, by (61),

ϕ∗
(
γk1

(
1⊗̂δx

))
= ϕ∗

(
1⊗̂k1δs(x)

)
= ϕ (1) ⊗̂k2δs(x) = 1⊗̂k2δs(x).

Proof of (iii). The fact that the first line is topologically left exact (resp. exact when ϕ is surjective) is a
consequence of Lemma 7.8 below as follows. Consider the topologically left exact sequence of Banach spaces

0 −→ Iϕ −→ O1
ϕ−→ O2.

We remark that, when ϕ is surjective, it is a topological quotient by the open mapping theorem (see [38,
Proposition 8.6]) and, hence, the above sequence is also topologically right exact. Also, by strictly paracom-
pactness, W = D

(
X
)

is a topological direct sum of nuclear Fréchet spaces. Now apply the lemma. �

Suppose that we are given a sequence

(63) 0 −→ V1
ι−→ V2

π−→ V3 −→ 0

of morphisms of locally convex spaces. We give 0→ ker (π)→ V2 (resp. V → Im (f)→ 0) the initial topology
(resp. final), i.e. the subspace topology (resp. the quotient topology). If π ◦ ι = 0, then Im (ι) ⊂ ker (π) is
always a continuous inclusion. We say that (63) is topologically exact at V2 if it is algebraically exact and
Im (ι) = ker (π) is a topological identification. We say that (63) is topologically left exact (resp. exact) if it is
topologically exact at V1 and V2 (resp. and also at V3). It is not difficult to see that (63) is topologically left
exact if and only if it is algebraically left exact and ι is a topological subspace and that (63) is topologically
exact if and only if it is algebraically exact, ι is a topological subspace and π is a quotient space.

Lemma 7.8. The following facts hold:

(1) If (63) is topologically left exact, then the spaces Vk for k = 1, 2, 3 are Banach spaces, and W =
⊕
Wi

is the sum of the nuclear Fréchet spaces Wi, then (63) ⊗̂W is topologically left exact.
(2) If (63) is topologically exact, then the space V2 is seminormed, and W =

⊕
Wi is the sum of

semimetrizable spaces Wi, then (63) ⊗̂W is topologically exact.

Proof. It is not true that the topological direct sum commutes with V ⊗̂− in general; however, the reader
may verify that this is true when V is seminormed. It follows that Vk⊗̂W =

⊕
i Vk⊗̂Wi for k = 1, 2, 3 and,

hence, we may assume that W is a nuclear Fréchet (resp. semimetrizable) space in the proof of (1) (resp.
(2)).

(2) We leave to the reader the verification that −⊗W is a topologically exact operation for every locally
convex space W . We deduce that

0 −→ V1 ⊗W −→ V2 ⊗W −→ V3 ⊗W −→ 0

is a topologically exact sequence of seminormed spaces. Hence, the claim can be deduced from the more
general assertion that, if

(64) 0 −→W1
ι−→W2

π−→W3 −→ 0

is a topologically exact sequence of semimetrizable spaces, then taking the completion preserves the topologi-
cal exactness. Let L be a family of lattices which forms a basis at 0 for the topology of W2 which is countable.
Writing OK for the ring of integers of K, we may form the following exact sequences of OK-modules

0 −→ W1

ι−1 (L)

ι−→ W2

L

π−→ W3

π (L)
−→ 0.

Because
{

W1

ι−1(L)

}
L∈L

is an inverse system with surjective transition maps and L is countable and directed,

taking the inverse limit over L ∈ L yields the exact sequence

(65) 0 −→ lim
←L∈L

W1

ι−1 (L)

ι−→ lim
←L∈L

W2

L

π−→ lim
←L∈L

W3

π (L)
−→ 0.

But because (64) is topologically exact, we know that
{
ι−1 (L) : L ∈ L

}
(resp. {π (L) : L ∈ L}) is a family

of lattices that forms a basis at 0 for the topology of W1 (resp. W3). Hence, by the explicit construction of
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the completion c : W → Ŵ as an inverse limit (see, e.g., [38, proof of Proposition 7.5]), we have (65) = (̂64),

proving the exactness of (̂64). The topological exactness follows from that of (64), using the fact that the

association L 7→ c (L) establishes a bijection between the sets of open lattices in the locally convex space W

and those in its completion Ŵ (with inverse L̂ 7→ c−1
(
L̂
)

, see [38, proof of Proposition 7.5]).

(1) We can split the topologically left exact sequence (63) in the topologically exact sequence

0 −→ V1 −→ V2 −→
V2

V1
−→ 0

and the continuous inclustion V2

V1
→ V3 of Banach spaces. Applying (2) we deduce that

0 −→ V1⊗̂W −→ V2⊗̂W −→
V2

V1
⊗̂W −→ 0

is topologically exact. The following result implies that V2

V1
⊗̂W → V3⊗̂W is again a continuous inclusion,

proving our claim.
Sublemma. Suppose that U1 → U2 is an injective morphism of Hausdorff and complete locally convex

spaces and that W is a nuclear Fréchet space. Then U1⊗̂W → U2⊗̂W is again an injective morphism.
Proof of the sublemma. Because W is a nuclear Fréchet space, L (W,K) is of compact type (see [38,

Proposition 16.5]). But because it is an inductive limit of Banach spaces, L (W,K) is bornological (see [38,
pag. 39 Example 2]) and, by [38, Proposition 16.10], it is reflexive. Since L (W,K) is bornological and
reflexive, L (L (W,K) , U) is (Hausdorff and) complete for every Hausdorff and complete locally convex space
U (see [38, Proposition 7.16]). We can now apply [38, Proposition 18.2] to deduce that there is a canonical
isomorphism

L (L (W,K) ,K) ⊗̂U ∼−→ CC (L (W,K) , U) ,

with CC ⊂ L the closure of the space of maps having finite image. Applying the reflexivity of W (see [38,
Proposition 16.5]), we deduce the canonical identification

W ⊗̂U ∼−→ CC (L (W,K) , U) .

But it is clear that CC (L (W,K) ,−) preserves injections, proving the claim. �

7.2. Derivatives of distributions. Suppose that k1
ϕ→ k2 with ki ∈ HomL (D (T ) ,Oi). We write Der (ϕ)

to denote the space of morphisms of locally convex spaces ∂ : O1 → O2 such that

∂ (αβ) = ∂ (α)ϕ (β) + ϕ (α) ∂ (β) .

We may therefore consider the following morphism of locally convex spaces:

∂D(X) : Iϕ⊗̂D (X) −→ O1⊗̂D (X)
∂⊗̂1D(X)−→ O2⊗̂D (X) .

Note that ∂D(X) is left D (T )-linear:

∂D(X)

(
k1 (ν)α⊗̂µ

)
= ∂ (k1 (ν)α) ⊗̂µ = ∂ (k1 (ν))ϕ (α) ⊗̂µ+ ϕ (k1 (ν)) ∂ (α) ⊗̂µ
= k2 (ν) ∂ (α) ⊗̂µ = k2 (ν) ∂D(X)

(
α⊗̂µ

)
for every ν ∈ D (T ), α ∈ Iϕ and µ ∈ D (X). Recall that X is endowed with a right action of a semigroup Σ
compatible with the T -action. Then ∂D(X) is Σ-equivariant, being the composition of Σ-equivariant maps.
The proof of the following result, left to the reader, is an easy consequence of the fact that ∂ (αβ) = ∂ (α)ϕ (β)
when α ∈ Iϕ and β ∈ O1.

Lemma 7.9. If k1
ϕ→ k2 and ∂ ∈ Der (ϕ), then there is a unique morphism of locally convex spaces

∂ϕ = ∂ϕ,D(X) making the following diagram commutative, which is (D (T ) ,Σ)-equivariant:

Iϕ⊗̂D (X)
∂D(X) //

��

O2⊗̂D (X)

��
Iϕ⊗̂k1

D (X)
∂ϕ

// Dk2
(X) .
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Until the end of this subsection, assume that π : X → X is a trivial T -bundle. Let k1
ϕ→ k2 and let

∂ ∈ Der (ϕ). Then we may define

∂ϕ,s : Dk1
(X) −→ Dk2

(X)

by means of the following commutative diagram

O1⊗̂D
(
X
) ∂⊗̂1D(X) //

γk1

��

O2⊗̂D
(
X
)

γk2

��
Dk1

(X)
∂ϕ,s

// Dk2
(X) ,

where we recall that we have

γki = γkis : Oi⊗̂D
(
X
) T

Oi
D(X)−→ D

(
X,Oi

) s
ki
∗−→ D (X,ki)

(
T

ki
D(X)

)−1

−→ Dki (X) .

We define

∂ϕ,s : Ak1
(X) −→ Ak2

(X)

by means of the following commutative diagram

Ak1
(X)

∂ϕ,s //

s∗k1

��

Ak2
(X)

s∗k2

��
A
(
X,O1

)
∂∗

// A
(
X,O2

)
,

where ∂∗ (f) := ∂ ◦ f .

Proposition 7.10. If µ ∈ Dk1
(X) and F ∈ Ak1

(X), we have the formula

∂
(
Tk1

D(X) (µ) (F )
)

= Tk2

D(X) (∂ϕ,s (µ)) (ϕ∗ (F )) + Tk2

D(X) (ϕ∗ (µ)) (∂ϕ,s (F )) ,

where ϕ∗ (F ) := ϕ ◦ F .

Proof. If α ∈ O1, x ∈ X and f ∈ A
(
X,O1

)
, by (51) we have, setting ∂D(X) := ∂⊗̂1D(X), ϕD(X) :=

ϕ⊗̂1D(X) and ϕ∗ (f) := ∂ ◦ f ,

∂

(
TO1

D(X)

(
α⊗̂δx

)
(f)

)
∂
(
αδO1

x (f)
)

= ∂ (α)ϕ
(
δO1

x (f)
)

+ ϕ (α) ∂
(
δO1

x (f)
)

= ∂ (α)ϕ (f (x)) + ϕ (α) ∂ (f (x)) ,

TO2

D(X)

(
∂D(X)

(
α⊗̂δx

))
(ϕ∗ (f)) = TO2

D(X)

(
∂ (α) ⊗̂δx

)
(ϕ∗ (f)) = ∂ (α) δO2

x (ϕ∗ (f)) = ∂ (α)ϕ (f (x))

TO2

D(X)

(
ϕD(X)

(
α⊗̂δx

))
(∂∗ (f)) = TO2

D(X)

(
ϕ (α) ⊗̂δx

)
(∂∗ (f)) = ϕ (α) δO2

x (∂∗ (f)) = ϕ (α) ∂ (f (x)) .

By K-linearity, continuity and density of the span of the Dirac distributions we deduce

∂

(
TO1

D(X)
(µ) (f)

)
= TO2

D(X)

(
∂D(X) (µ)

)
(ϕ∗ (f)) + TO2

D(X)

(
ϕD(X) (µ)

)
(∂∗ (f)) , µ ∈ O1⊗̂D

(
X
)

.

In particular, with f = s∗k1
(F ) and µ =

(
γk1
)−1

(µ), we deduce

∂

(
TO1

D(X)

((
γk1
)−1

(µ)
) (
s∗k1

(F )
))

= TO2

D(X)

(
∂D(X)

((
γk1
)−1

(µ)
)) (

ϕ∗
(
s∗k1

(F )
))

+TO2

D(X)

(
ϕD(X)

((
γk1
)−1

(µ)
)) (

∂∗
(
s∗k1

(F )
))

.(66)
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By the commutative diagram (59), TO1

D(X)
◦
(
γk1
)−1

=
(
sk1
∗
)−1 ◦Tk1

D(X), so that TO1

D(X)

((
γk1
)−1

(µ)
)

=(
sk1
∗
)−1

(
Tk1

D(X) (µ)
)

and, since sk1
∗ is the dual of s∗k1

,

(67) TO1

D(X)

((
γk1
)−1

(µ)
) (
s∗k1

(F )
)

= Tk1

D(X) (µ)
((
s∗k1

)−1
s∗k1

(F )
)

= Tk1

D(X) (µ) (F ) .

We also have, by definition, ∂D(X)

((
γk1
)−1

(µ)
)

=
(
γk2
)−1

(∂ϕ,s (µ)) so that, again using TO2

D(X)
◦(

γk2
)−1

=
(
sk2
∗
)−1 ◦Tk2

D(X), we find TO2

D(X)

(
∂D(X)

((
γk1
)−1

(µ)
))

=
(
sk2
∗
)−1

(
Tk2

D(X) (∂ϕ,s (µ))
)

; since sk2
∗

is the dual of s∗k2
,

TO2

D(X)

(
∂D(X)

((
γk1
)−1

(µ)
)) (

ϕ∗
(
s∗k1

(F )
))

= Tk2

D(X) (∂ϕ,s (µ))
((
s∗k2

)−1 (
ϕ∗
(
s∗k1

(F )
)))

.

We now remark that, as in the proof of Lemma 7.4, rki = (s∗,ki)
−1

with rki (f) (h (t, x)) = ki (δt) f (x), so
that

rk2

(
ϕ∗
(
s∗k1

(F )
))

(h (t, x)) = k2 (δt)ϕ∗
(
s∗k1

(F )
)

(x) = ϕ (k1 (δt))ϕ
(
s∗k1

(F ) (x)
)

= ϕ
(
k1 (δt) s

∗
k1

(F ) (x)
)

= ϕ
(
rk1

(
s∗k1

(F )
)

(h (t, x))
)

= ϕ (F (h (t, x))) = ϕ∗ (F ) (h (t, x)) .

It follows that
(
s∗k2

)−1 (
ϕ∗
(
s∗k1

(F )
))

= ϕ∗ (F ) and we deduce

(68) TO2

D(X)

(
∂D(X)

((
γk1
)−1

(µ)
)) (

ϕ∗
(
s∗k1

(F )
))

= Tk2

D(X) (∂ϕ,s (µ)) (ϕ∗ (F ))

We have, by definition, ∂∗
(
s∗k1

(F )
)

= s∗k2
(∂ϕ,s (F )). Since TO2

D(X)
=
(
sk2
∗
)−1 ◦Tk2

D(X) ◦γ
k2 and sk2

∗ is the

dual of s∗k2
, we see that

TO2

D(X)

(
ϕD(X)

((
γk1
)−1

(µ)
)) (

∂∗
(
s∗k1

(F )
))

= TO2

D(X)

(
ϕD(X)

((
γk1
)−1

(µ)
)) (

s∗k2
(∂ϕ,s (F ))

)
=
(
sk2
∗
)−1

(
Tk2

D(X)

(
γk2

(
ϕD(X)

((
γk1
)−1

(µ)
)))) (

s∗k2
(∂ϕ,s (F ))

)
=
(
Tk2

D(X)

(
γk2

(
ϕD(X)

((
γk1
)−1

(µ)
))))((

s∗k2

)−1 (
s∗k2

(∂ϕ,s (F ))
))

=
(
Tk2

D(X)

(
γk2

(
ϕD(X)

((
γk1
)−1

(µ)
))))

(∂ϕ,s (F )) .

Recalling that ϕD(X) = ϕ⊗̂1D(X) we have shown in the proof of Theorem 7.7 that γk2◦ϕD(X)◦
(
γk1
)−1

= ϕ∗.

We deduce

(69) TO2

D(X)

(
ϕD(X)

((
γk1
)−1

(µ)
)) (

∂∗
(
s∗k1

(F )
))

= Tk2

D(X) (ϕ∗ (µ)) (∂ϕ,s (F )) .

The claim now follows from (66), (67), (68) and (69). �

Proposition 7.11. If α ∈ O1 and µ ∈ Dk1
(X), then

∂ϕ,s (αµ) = ∂ (α)ϕ∗ (µ) + ϕ (α) ∂ϕ,s (µ) .

Proof. Suppose, first, that this formula holds when µ = 1⊗̂k1
δx. Since ϕ∗

(
β⊗̂k1

δx
)

= ϕ (β)ϕ∗
(
1⊗̂k1

δx
)

by
(61), we see that

∂ϕ,s
(
α · β⊗̂k1

δx
)

= ∂ϕ,s
(
αβ · 1⊗̂k1

δx
)

= ∂ (αβ)ϕ∗
(
1⊗̂k1

δx
)

+ ϕ (αβ) ∂ϕ,s
(
1⊗̂k1

δx
)

= ∂ (α)ϕ (β)ϕ∗
(
1⊗̂k1

δx
)

+ ϕ (α) ∂ (β)ϕ∗
(
1⊗̂k1

δx
)

+ ϕ (α)ϕ (β) ∂ϕ,s
(
1⊗̂k1

δx
)

= ∂ (α)ϕ∗
(
β⊗̂k1δx

)
+ ϕ (α)

(
∂ (β)ϕ∗

(
1⊗̂k1δx

)
+ ϕ (β) ∂ϕ,s

(
1⊗̂k1δx

))
= ∂ (α)ϕ∗

(
β⊗̂k1

δx
)

+ ϕ (α) ∂ϕ,s
(
β⊗̂k1

δx
)

.
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Since the K-linear span of the elements α⊗̂k1δx is dense in Dk1 (X), the claim then follows by the K-linearity
and continuity of the maps involved. We must therefore prove that

(70) ∂ϕ,s
(
α⊗̂k1

δh(t,x)

)
= ∂ (α)ϕ∗

(
1⊗̂k1

δh(t,x)

)
+ ϕ (α) ∂ϕ,s

(
1⊗̂k1

δh(t,x)

)
.

According to (60), γki
(
1⊗̂δx

)
= 1⊗̂kiδs(x) and then, by D (T )-linearity of γki ,

γki
(
ki (δt) ⊗̂δx

)
= ki (δt) γ

ki
(
1⊗̂δx

)
= ki (δt) ⊗̂kiδs(x) = 1⊗̂kiδt · δs(x) = 1⊗̂kiδh(t,x),

where δt · δs(x) = δts(x) = δh(t,x) follows from (54) and the definition of h. We deduce γki
(
αki (δt) ⊗̂δx

)
=

α⊗̂kiδh(t,x) by Oi-linearity of γki . It follows that

∂ϕ,s
(
α⊗̂k1δh(t,x)

)
= γk2

(
∂D(X)

((
γk1
)−1 (

α⊗̂k1δh(t,x)

)))
= γk2

(
∂D(X)

(
αk1 (δt) ⊗̂δx

))
.

We compute

∂D(X)
(
αk1 (δt) ⊗̂δx

)
= ∂ (αk1 (δt)) ⊗̂δx = ∂ (α)ϕ (k1 (δt)) ⊗̂δx + ϕ (α) ∂ (k1 (δt)) ⊗̂δx

= ∂ (α)k2 (δt) ⊗̂δx + ϕ (α) ∂ (k1 (δt)) ⊗̂δx
=

(
γk2
)−1 (

∂ (α) ⊗̂k2δh(t,x)

)
+ ϕ (α) ∂ (k1 (δt)) ⊗̂δx,

implying that we have

(71) ∂ϕ,s
(
α⊗̂k1

δh(t,x)

)
= ∂ (α) ⊗̂k2

δh(t,x) + γk2
(
ϕ (α) ∂ (k1 (δt)) ⊗̂δx

)
.

Furthermore, setting α = 1, we see that

(72) ∂ϕ,s
(
1⊗̂k1

δh(t,x)

)
= γk2

(
∂ (k1 (δt)) ⊗̂δx

)
According to (61) ϕ∗

(
1⊗̂k1δh(t,x)

)
= 1⊗̂k2δh(t,x), so that

(73) ∂ (α) ⊗̂k2δh(t,x) = ∂ (α)ϕ∗
(
1⊗̂k1δh(t,x)

)
.

On the other hand, by O2-linearity of γk2 , γk2
(
ϕ (α) ∂ (k1 (δt)) ⊗̂δx

)
= ϕ (α) γk2

(
∂ (k1 (δt)) ⊗̂δx

)
so that

(72) gives

(74) γk2
(
ϕ (α) ∂ (k1 (δt)) ⊗̂δx

)
= ϕ (α) ∂ϕ,s

(
1⊗̂k1δh(t,x)

)
.

The claimed (70) follows from (71), (73) and (74). �

The following result implies, in view of the equality Iϕ⊗̂k1D (X) = ker (ϕ∗) ⊂ Dk1 (X) of Theorem 7.7,
that ∂ϕ,s|ker(ϕ∗)

does not depend on the choice of s.

Corollary 7.12. We have ∂ϕ,s = ∂ϕ : Iϕ⊗̂k1
D (X) = ker (ϕ∗)

∂ϕ→ Dk2
(X).

Proof. Since the K-linear span of the elements α⊗̂k1
µ with α ∈ Iϕ is dense in Iϕ⊗̂k1

D (X), it suffices to

check that ∂ϕ,s
(
α⊗̂k1

µ
)

= ∂ϕ
(
α⊗̂k1

µ
)

for these elements. According to Proposition 7.11 we have

∂ϕ,s
(
α⊗̂k1

µ
)

= ∂ (α)ϕ∗
(
1⊗̂k1

µ
)

+ ϕ (α) ∂ϕ,s
(
1⊗̂k1

µ
)

= ∂ (α)ϕ∗
(
1⊗̂k1

µ
)

.

Thanks to (61), ϕ∗
(
1⊗̂k1

µ
)

= 1⊗̂k2
µ and then, by Lemma 7.9,

∂ (α)ϕ∗
(
1⊗̂k1µ

)
= ∂ (α) ⊗̂k2µ = ∂ϕ

(
α⊗̂k1

µ
)

.

�

We end this subsection expressing the operator ∂ϕ,s on functions in terms of the usual derivative. Recall
the locally analytic locally analytic function js : X → T characterized by the rule x = js (x) s (π (x)). Define

∂ logk1 : T −→ O2

by the rule

(∂ logk1) (t) :=
∂ (k1 (δt))

ϕ (k1) (δt)
=
∂ (k1 (δt))

k2 (δt)
.
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Consider the maps

∂∗ : Ak1 (X) −→ A (X,O2) , ∂∗ (F ) := ∂ ◦ F
ϕ∗ : Ak1 (X) −→ Ak2 (X) , ϕ∗ (F ) := ϕ ◦ F .

Lemma 7.13. If F ∈ Ak1
(X), then

∂∗ (F ) = εs,∂,k1,ϕ∗(F ) + ∂ϕ,s (F )

where ε := εs,∂,k1,ϕ∗(F ) is the function

ε (x) = (∂ logk1) (js (x))ϕ∗ (F ) (x)

on X.

We end this section with the following remark. Suppose that a : T ×X → X has the property that there
exists a set I such that X =

⊔
i∈I Xi, each Xi being T -stable. Then

X := T\X =
⊔
i∈I T\Xi =:

⊔
i∈I Xi

We say that X is a locally trivial T -bundle if every Xi → Xi is a trivial T -bundle, i.e. Xi has the structure
of a locally compact, paracompact, p-adic manifold and there are locally analytic sections si : Xi → Xi

such that the locally analytic maps hi = hsi : T ×Xi → Xi given by hi (t, x) := tsi (x) are locally analytic
isomorphisms. We call the triple (T,X,S) with S :=

{
si : Xi → Xi

}
a split locally trivial T -bundle. This

notion isn’t a generalization of what we have proved so far because we could give X the structure of a locally
compact, paracompact, p-adic manifold making the Xis open in it and then define s : X → X by the rule
s (x) := si (x) if x ∈ Xi, which is indeed locally analytic and realizes X → X as a trivial T -bundle.

7.3. The relation with the Coleman-Teitelbaum cocycle. In this subsection we will apply the notions
and results of the previous §7.1 and §7.2 as follows. We take X = W , T = Q×p , and let π : X → X be the

map π : W → P1(Qp) defined by π (x, y) := [x : y]. To see that the above results apply, we explain why this
map is a trivial T -bundle. By the remark at the end of §7.2, it suffices to show that π is a locally trivial
Q×p -bundle. To this end, let us identify Qp ⊂ P1(Qp) with the set of elements of the form z = [z : 1], so that

π (x, y) = x/y ∈ Qp for y 6= 0 and π (x, 0) = ∞. Set X0 := Zp, X∞ := P1 (Qp) − Zp and Xi := π−1
(
Xi

)
,

which are Q×p -stable by construction. Explicitly, we have

X0 = {(x, y) : y 6= 0 and x/y ∈ Zp} ,

X∞ = {(x, y) : y 6= 0 and x/y ∈ Qp − Zp} ∪ {(x, 0)}
= {(x, y) : x 6= 0 and y/x ∈ pZp} .

Then the functions s0 ([z : 1]) := (z, 1) for [z : 1] ∈ X0 and s∞ ([1 : z]) = (1, z) for [1 : z] ∈ X∞ do the job.
From now on we fix an integer k ≥ 0.

Let us write the elements of Q×p (resp. Z×p ) uniquely in the form t = pordp(t) [t] 〈t〉 (resp. t = [t] 〈t〉)
using the decomposition Q×p = pZ × F×p × (1 + pZp) (resp. Z×p = F×p × (1 + pZp)). Suppose that O is
an affinoid E-algebra, write Ak (W ) for the space of E-valued locally analytic functions on W such that
F (px, py) = pkF (x, y) and let Dk (W ) be its strong dual. Then Dk (W ) is naturally a D

(
Z×p
)
-module and,

for a continuous character ω : Z×p → O×, we may form

(75) Dω,k (W ) := O⊗̂ωDk (W ) .

Alternatively, if k : Q×p → O× is the character k (t) = pkordp(t)ω ([t] 〈t〉), then Dω,k (W ) = Dk (W ) (this is
an easy application of Proposition 7.6).

Because Homcts (1 + pZp,Gm) ' Sp (E 〈S〉) if we work over the field E (a finite extension of Qp), there
is an open affinoid neighbourhood Ω = Ωk ⊂ Homcts

(
Z×p ,Gm

)
of k which parametrizes the characters

of the form t 7→ [t]
k 〈t〉s. The inclusion Ω ⊂ Homcts

(
Z×p ,Gm

)
corresponds to a continuous character

ω = ωk : Z×p → O× with O := O (Ω). Setting tk := pkordp(t)ω ([t] 〈t〉) defines a continuous character

k : Q×p → O× which parametrizes the characters of the form t 7→ pordp(t) [t]
k 〈t〉s. Writing ϕ : k→ k for the

evaluation at s = k specialization map, we have ∂ := d
ds

∣∣
s=k
∈ Der (ϕ). We will apply the results of §7.1 and

§7.2 with K = E and k1 = k→ k = k2.
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Let C (V,Dk (W ))
Γ̃N+,N− be the space of Γ̃N+,N− -invariant maps c : V → Dk (W ) (see [34, Proposition

3.5] for a description in terms of lattices and note the twist of the action in the weight k > 0 case) and

suppose that µφ ∈ Dk
(
P1(Qp)

)ΓN+,N− is p-new, as in the introduction, of higher even weight k + 2 ≥ 2.

Here, Dk
(
P1(Qp)

)
, the higher weight analogous of the space D0

(
P1(Qp)

)
, is defined as follows. Write

A
(
P1(Qp)

)k ⊂ A (Qp) for the space of locally analytic functions which may have a pole of order ≤ k at ∞
(see [28, Definition 3.2], for example). Writing Pk for the space of two variable, homogeneous polynomials

of degree k with coefficients in E, we have Pk ⊂ A
(
P1(Qp)

)k
. We let D

(
P1(Qp)

)k
be the E-dual of

A
(
P1(Qp)

)k
and write Dk

(
P1(Qp)

)
for the subspace of those locally analytic distributions µ ∈ D

(
P1(Qp)

)k
such that µ (P ) = 0 for every P ∈ Pk. Then there exists a family µk,∗ :=

{
µk,v

}
v∈V with the property that,

writing µk,v for the specialization of µk,v at k obtained by ϕ, we have, as in (5),

µk,v := ϕ∗
(
µk,v

)
= µφ for every v ∈ V+.

(See [4, Theorem 2.5 and Lemma 2.12] and [34, Theorem 3.7, the subsequent discussion and Proposition
3.8]).

Let Vk be the E-dual of Pk. Given the family µk,v ∈ C (V,Dk (W ))
Γ̃N+,N− as above such that µk,v = µφ

and τ ∈ Hur
p such that r (τ) ∈ V+, we define

c
µk,∗
τ (γ) (P ) := ∂s,ϕ

(
µk,r(τ)

)
(P )− ∂s,ϕ

(
µk,γr(τ)

)
(P ) , γ ∈ ΓN+,N− and P ∈ Pk.

On the other hand, we recall that, thanks to Teitelbaum’s Poisson kernel formula (see [44]), the Coleman
cocycle attached to φ can be expressed by the formula

Pτ
(
µφ
)

(γ) :=

∫
W

log

(
x− γτy
x− τy

)
P (x, y) dµφ (x, y) .

We recall from the introduction that µφ ∈ D0
(
P1(Qp)

)ΓN+,N− is zero on Pk.

Proposition 7.14. We have c
µk,∗
τ ∈ Z1

(
ΓN+,N− ,Vk

)
and c

µk,∗
τ = Pτ

(
µφ
)

in H1
(
ΓN+,N− ,Vk

)
.

Proof. Set Θτ,P (x, y) := 〈x− τy〉s−k P (x, y) ∈ Ak (W )8, so that ∂∗ (Θτ,P ) = log (x− τy)P (x, y) =: θτ,P
and then, by Lemma 7.13,

∂ϕ,s (Θτ,P ) = ∂∗ (Θτ,P )− εs,∂,ω,ϕ(Θτ,P ) = θτ,P − εs,∂,ω,P .

(For the last equality, notice that ϕ (Θτ,P ) = P ). Then we see that, by Proposition 7.10,

∂
(
µk,v (Θτ,P )

)
= ∂ϕ,s

(
µk,v

)
(ϕ (Θτ,P )) + ϕ∗

(
µk,v

)
(∂ϕ,s (Θτ,P ))

= ∂ϕ,s
(
µk,v

)
(P ) + µφ (θτ,P − εs,∂,ω,P ) .(76)

Define a function J : Hurp → Vk by the rule J (τ) (P ) := ∂
(
µk,r(τ) (Θτ,P )

)
. Then one checks that, since

ϕ∗
(
µk,v

)
= µφ is zero on Pk (by p-newness of φ), J (γτ) (P ) = (γJ (τ)) (P ), so that

bτ (γ) := J (γτ)− J (τ) = γJ (τ)− J (τ) ∈ B1 (Γ,Vk) .

8We have indeed

Θτ,P (tx, ty) : = 〈tx− τty〉s−k P (tx, ty) = tk 〈t〉s−k 〈x− τy〉s−k P (x, y)

= pkordp(t) [t]k 〈t〉k 〈t〉s−k 〈x− τy〉s−k P (x, y)

= pkordp(t) [t]k 〈t〉s 〈x− τy〉s−k P (x, y) = tkΘτ,P (x, y) .
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Writing (76)τ,v for the equation (76) applied to (τ , v), we see that

bτ (γ) (P ) = (76)γτ,r(γτ)=γr(τ) − (76)τ,r(τ)

= ∂ϕ,s

(
µk,γr(τ)

)
(P ) + µφ (θγτ,P − εs,∂,ω,P )

−∂ϕ,s
(
µk,r(τ)

)
(P )− µφ (θτ,P − εs,∂,ω,P )

=
(
∂ϕ,s

(
µk,γr(τ)

)
− ∂ϕ,s

(
µk,r(τ)

))
(P )

+µφ (θγτ,P − εs,∂,ω,P + εs,∂,ω,P − θτ,P )

= −cµk,∗
τ (γ) (P ) + µφ (θγτ,P − θτ,P ) .

But we have

θγτ,P − θτ,P = log (x− γτy)P (x, y)− log (x− τy)P (x, y)

= log

(
x− γτy
x− τy

)
P (x, y) ,

so that

µφ (θγτ,P − θτ,P ) = Pτ
(
µφ
)

as claimed. �
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