In this article we construct a Galois and Hecke equivariant morphism connecting the first cohomology group on Faltings’ site of a formal strict neighborhood of the ordinary locus in a formal modular curve of level prime to p, with coefficients in the analytic distributions of a certain analytic weight k on the p-adic Tate module of the universal elliptic curve to the overconvergent modular forms of weight k+2k+2 . We prove that this morphism is an isomorphism on the finite slope parts.
A 0.5 (half) overconvergent Eichler-Shimura isomorphism / F. Andreatta, A. Iovita, G. Stevens. - In: ANNALES MATHÉMATIQUES DU QUÉBEC. - ISSN 2195-4755. - 40:1(2016), pp. 121-148. [10.1007/s40316-015-0048-0]
A 0.5 (half) overconvergent Eichler-Shimura isomorphism
F. AndreattaPrimo
;
2016
Abstract
In this article we construct a Galois and Hecke equivariant morphism connecting the first cohomology group on Faltings’ site of a formal strict neighborhood of the ordinary locus in a formal modular curve of level prime to p, with coefficients in the analytic distributions of a certain analytic weight k on the p-adic Tate module of the universal elliptic curve to the overconvergent modular forms of weight k+2k+2 . We prove that this morphism is an isomorphism on the finite slope parts.File | Dimensione | Formato | |
---|---|---|---|
Glenn-Fest-10-02-2015.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
277.15 kB
Formato
Adobe PDF
|
277.15 kB | Adobe PDF | Visualizza/Apri |
art%3A10.1007%2Fs40316-015-0048-0.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
651.51 kB
Formato
Adobe PDF
|
651.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.