In this article we construct a Galois and Hecke equivariant morphism connecting the first cohomology group on Faltings’ site of a formal strict neighborhood of the ordinary locus in a formal modular curve of level prime to p, with coefficients in the analytic distributions of a certain analytic weight k on the p-adic Tate module of the universal elliptic curve to the overconvergent modular forms of weight k+2k+2 . We prove that this morphism is an isomorphism on the finite slope parts.

A 0.5 (half) overconvergent Eichler-Shimura isomorphism / F. Andreatta, A. Iovita, G. Stevens. - In: ANNALES MATHÉMATIQUES DU QUÉBEC. - ISSN 2195-4755. - 40:1(2016), pp. 121-148.

A 0.5 (half) overconvergent Eichler-Shimura isomorphism

F. Andreatta;
2016

Abstract

In this article we construct a Galois and Hecke equivariant morphism connecting the first cohomology group on Faltings’ site of a formal strict neighborhood of the ordinary locus in a formal modular curve of level prime to p, with coefficients in the analytic distributions of a certain analytic weight k on the p-adic Tate module of the universal elliptic curve to the overconvergent modular forms of weight k+2k+2 . We prove that this morphism is an isomorphism on the finite slope parts.
Overconvergent modular forms; Modular curves; Faltings’ site; Modular symbols; Hecke operators
Settore MAT/02 - Algebra
Settore MAT/03 - Geometria
ANNALES MATHÉMATIQUES DU QUÉBEC
Article (author)
File in questo prodotto:
File Dimensione Formato  
Glenn-Fest-10-02-2015.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 277.15 kB
Formato Adobe PDF
277.15 kB Adobe PDF Visualizza/Apri
art%3A10.1007%2Fs40316-015-0048-0.pdf

non disponibili

Tipologia: Publisher's version/PDF
Dimensione 651.51 kB
Formato Adobe PDF
651.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/386864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact