In this paper, we present a method for unsupervised digital image enhancement, finalized to the visual analysis of degraded Etruscan wall paintings. In many cases, original Etruscan wall paintings are not well-preserved and the simple photographic acquisition does not allow a successful visual investigation. The use of commercial softwares as image enhancers generally do not lead to satisfactory results. Here, we propose an algorithm based on a computational model of human vision, called Automatic Color Equalization (ACE). ACE allows an unsupervised filtering of the degraded wall paintings; it is able to equalize automatically color and contrast, allowing in this way an easier and more successful visual investigation.

Perceptual enhancement of degraded Etruscan wall paintings / D. Gadia, C. Bonanomi, M. Marzullo, A. Rizzi. - In: JOURNAL OF CULTURAL HERITAGE. - ISSN 1296-2074. - 21(2016 Oct), pp. 904-909.

Perceptual enhancement of degraded Etruscan wall paintings

D. Gadia
Primo
;
C. Bonanomi
Secondo
;
M. Marzullo
Penultimo
;
A. Rizzi
Ultimo
2016

Abstract

In this paper, we present a method for unsupervised digital image enhancement, finalized to the visual analysis of degraded Etruscan wall paintings. In many cases, original Etruscan wall paintings are not well-preserved and the simple photographic acquisition does not allow a successful visual investigation. The use of commercial softwares as image enhancers generally do not lead to satisfactory results. Here, we propose an algorithm based on a computational model of human vision, called Automatic Color Equalization (ACE). ACE allows an unsupervised filtering of the degraded wall paintings; it is able to equalize automatically color and contrast, allowing in this way an easier and more successful visual investigation.
contrast enhancement; cultural heritage; Etruscan tombs; spatial color algorithms
Settore INF/01 - Informatica
ott-2016
apr-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
JCH_Tarquinia_SupplementaryData.pdf

accesso riservato

Descrizione: Supplementary Data
Tipologia: Altro
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S1296207416300486-main.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/386641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact