We call a finitely complete category algebraically coherent if the change-of-base functors of its fibration of points are coherent, which means that they preserve finite limits and jointly strongly epimorphic pairs of arrows. We give examples of categories satisfying this condition; for instance, coherent categories, categories of interest in the sense of Orzech, and (compact) Hausdorff algebras over a semi-abelian algebraically coherent theory. We study equivalent conditions in the context of semi-abelian categories, as well as some of its consequences: including amongst others, strong protomodularity, and normality of Higgins commutators for normal subobjects, and in the varietal case, fibre-wise algebraic cartesian closedness.
Algebraically coherent categories / A.S. Cigoli, J.R.A. Gray, T. Van der Linden. - In: THEORY AND APPLICATIONS OF CATEGORIES. - ISSN 1201-561X. - 30(2015 Dec 08), pp. 1864-1905.
Algebraically coherent categories
A.S. CigoliPrimo
;
2015
Abstract
We call a finitely complete category algebraically coherent if the change-of-base functors of its fibration of points are coherent, which means that they preserve finite limits and jointly strongly epimorphic pairs of arrows. We give examples of categories satisfying this condition; for instance, coherent categories, categories of interest in the sense of Orzech, and (compact) Hausdorff algebras over a semi-abelian algebraically coherent theory. We study equivalent conditions in the context of semi-abelian categories, as well as some of its consequences: including amongst others, strong protomodularity, and normality of Higgins commutators for normal subobjects, and in the varietal case, fibre-wise algebraic cartesian closedness.File | Dimensione | Formato | |
---|---|---|---|
30-54.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
479.89 kB
Formato
Adobe PDF
|
479.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.