In a previous paper [A. Carati, Physica A 348 (2005) 110-120] it was shown how, for a dynamical system, the probability distribution function of sojourn-times in phase-space, defined in terms of the dynamical orbits (up to a given observation time), induces unambiguously a statistical ensemble in phase-space. In the present paper, the p.d.f. of the sojourn-times corresponding to a Tsallis ensemble is obtained (this, by the way, requires the solution of a problem of a general character, disregarded in paper [A. Carati, Physica A 348 (2005) 110-120]). In particular some qualitative properties, such as the fractal dimension, of the dynamical orbits compatible with the Tsallis ensembles are indicated.

On the fractal dimension of orbits compatible with the Tsallis statistics / A. Carati. - In: PHYSICA. A. - ISSN 0378-4371. - 387:7(2008 Mar), pp. 1491-1503.

On the fractal dimension of orbits compatible with the Tsallis statistics

A. Carati
Primo
2008

Abstract

In a previous paper [A. Carati, Physica A 348 (2005) 110-120] it was shown how, for a dynamical system, the probability distribution function of sojourn-times in phase-space, defined in terms of the dynamical orbits (up to a given observation time), induces unambiguously a statistical ensemble in phase-space. In the present paper, the p.d.f. of the sojourn-times corresponding to a Tsallis ensemble is obtained (this, by the way, requires the solution of a problem of a general character, disregarded in paper [A. Carati, Physica A 348 (2005) 110-120]). In particular some qualitative properties, such as the fractal dimension, of the dynamical orbits compatible with the Tsallis ensembles are indicated.
Non-equilibrium thermodynamics; Time-averages; Tsallis distributions
Settore MAT/07 - Fisica Matematica
mar-2008
Article (author)
File in questo prodotto:
File Dimensione Formato  
tzallis_proc.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 378.53 kB
Formato Adobe PDF
378.53 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/34369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact