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Abstract

In a previous paper (1) it was shown how, for a dynamical sys-
tem, the probability distribution function of the sojourn–times in
phase–space, defined in terms of the dynamical orbits (up to a given
observation time), induces unambiguously a statistical ensemble in
phase–space. In the present paper it is shown which is the p.d.f.
of the sojourn–times corresponding to a Tsallis ensemble (this, by
the way, requires the solution of a problem of a general character,
disregarded in paper (1)). In particular some qualitative properties,
such as the fractal dimension, of the dynamical orbits compatible
with the Tsallis ensembles are indicated.

keyword Time–averages, non-equilibrium thermodynamics, Tsallis dis-
tributions

1 Introduction

In the previous paper (1) (see also (2)), a method was introduced to deal
with Statistical Thermodynamics if reference is made to dynamics through
time-averages. This can be useful for example when one has to deal with
metastable states, in which the system remains frozen far from equilibrium
for very long times, so that it is not clear what measure in the phase space
should be used (see however refs. (3) and the discussion given below).
In such cases, apparently, the only statement one can make is that the
macroscopic quantities observed are nothing but the time–averages (up to
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the observation time–scale) of the relevant dynamical variables. This is
in agreement with the opinion expressed by most classics. For example,
in the discussion following paper (4), one finds the statement: “ Such
a conception can be understood only if the meaning of probability of a
state is made clear. Suppose that the system, left free to evolve, passes
through an infinite sequence of states Z1, . . . , Zl in an order whatsoever;
to each state there will correspond a certain frequency of occupation. In
a sufficiently long interval of time T there will be a subinterval τi, during
which the system is in the state Zi. If τi/T tends to a limit when T increases
indefinitely, such a limit will measure the probability of the state Zi and
so on. The probability W of a state is thus defined through its relative
frequency when the system is left free to evolve for an indefinite time. “
The only addition we make here is that there can exist interesting cases
in which the relative frequencies settle down, within a finite observation
time, to some apparently stationary values, although they may possibly
evolve, on much larger time–scales, to the “true” equilibrium values. The
suggestion is thus made that the “physical definition of probability” just
mentioned should be applied also to metaequilibrium states.

Indeed, if the system is ergodic, the time–averages over infinite times
coincide with the Gibbs phase-averages, but there remains open the prob-
lem that nothing is known concerning the time–averages for large but finite
times. For example, in the literature cases are reported (see (5)) in which
the dimensions of the orbits of Hamiltonian system appear to have non–
integer values according to numerical estimates, notwithstanding the fact
that the dimension of the full orbit (involving all times) is proven (see (6))
to actually be an integer. This fact was explained in the paper (7). There
it was shown, for the familiar standard map, that the observed dimension
actually depends on the observation time, and that the attainment of the
“true value” (two in that case) would require an exceedingly large number
of iterations (outside of the computers reach). This, notwithstanding the
fact that, the fractal dimension appears to settle down to a definite non–
integer value on a finite time–scale. It is clear that on time–scales of the
latter type the sojourn-time measure too has to appear very odd, i.e. non
absolutely continuous with respect to the Lebesgue one.

In the paper (1) it was shown that the use of time–averages amounts
to introducing a measure in phase space, suitably defined by the dynamics
of the system. In short (see Section 2 for precise definitions) one has to
determine the statistics of the sojourn–times, and then the coarse–grained
density of the phase–space measure turns out to be nothing but the (log-
arithm of the) Laplace transform of the p.d.f. of the sojourn-time of any
cell. In particular, the usual Gibbs measure is recovered if the dynamics is
very chaotic, i.e. the p.d.f. (of the sojourn–time) is a Poissonian one.

One can imagine that, if one has to deal with a metastable state (i.e. an
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“ergodic behaviour” is granted only on a times–scale much larger than the
available one), then the orbits could exhibit some strange features (such
as a non integer fractal dimension on the observed time–scale) which may
prevent the use of the Gibbs measure. It has been suggested that in some
problems where metastable states show up (as in systems of rotators with
long–range coupling (8), or in galaxies (9)), one has to replace the Gibbs
measure by the Tsallis one (10). In the present paper we show that, if a
system has dynamical time–averages compatible with a Tsallis ensemble,
then, on a certain time–scale, the orbits have a definite non integer fractal
dimension. We also show that the diffusion process of the orbits in phase
space is, in some sense, slower than in the full chaotic case corresponding
to Gibbs measure.

As a matter of fact, in proving such results, it occurred to the present
author to realise that in order to establish a correspondence between dy-
namics and Tsallis distribution one has to solve an analytical problem
that was disregarded in the previous paper (1). This gap is overcome in
the present paper. The point is that an exact correspondence between
dynamics and Tsallis distribution can be given only for continuous–time
dynamical systems and not for mappings. In the case of a mapping, such
a correspondence is obtained by introducing a suitable limiting procedure.

The paper is organized as follows. In Section 2 the method to deal
with time-averages is recalled. In Section 3 the limiting procedure men-
tioned above, necessary to deal with mappings, is discussed. In Section 4
the statistics of the sojourn–times is computed in the case of the Tsallis
distribution. In Section 5 the qualitative properties of the dynamical or-
bits compatible with the Tsallis distributions are derived, and some final
comments are added in Section 6. Two Appendices complete the paper.

2 Time–averages

We recall here, briefly, the method which was introduced in (1) in order
to obtain the relevant thermodynamic functions on the basis of dynam-
ics, namely when use is made of time–averages rather than of ensemble
averages.

Consider a diffeomorphism Φ on a phase–space M, and an orbit xn =
Φ(xn−1), n = 1, . . . , N up to “time” N , determined by an initial value x0.
As a particular case, one can think of the orbits generated by iterations
of the time–τ map induced by the flow of an autonomous Hamiltonian
system. The time–average (up to time N) of a dynamical variable A(x) (a

3



real function on M) is defined by

Ā(x0)
def=

1
N

N∑
n=1

A(xn) .

Such a time–average can also be computed by partitioning the space M
into a large number K of disjoint cells Zj (such that M = ∪Zj), and
reckoning the number of times nj(x0) the orbit {xn} visits any cell Zj (so
that nj/N is the discrete analogue of the sojourn time, see also (11), pp.
20–21). Indeed one has

Ā(x0) '
K∑

j=1

Aj
nj

N
, (1)

where Aj is the value of A at a chosen point x ∈ Zj .
If a certain probability distribution is assigned for the initial data x0,

then nj turns out to be a random variable with a certain cumulative dis-
tribution function Fj(n), which gives the a priori probability that the cell
Zj be visited a number of times nj ≤ n:

p(nj ≤ n) = Fj(n) .

In paper (1) the following hypothesis was introduced:

Hypothesis 1 The quantities nj are independent random variables, con-
ditioned by ∑

nj = N .

One can expect that a diffeomorphism Φ on a large–dimensional phase–
space M should satisfy this hypothesis. In fact, a single cell Zj will be
transformed by Φ into a set which will intersect, in general, a large number
of different cells Zk (in principle 2d of them, if d is the dimension of the
phase–space), so that one can hardly expect a correlation between the
numbers nj and nk. Things are different for low–dimensional maps, even if
they are strongly chaotic: in the one–dimensional case, for example, Φ(Zj)
will intersect at most two other cells, say Zk1 and Zk2 , so that one has
nk1 + nk2 ≥ nj and hypothesis 1 is no more fulfilled.

From the fact that the occupation numbers nj are random variables,
there follows that the time–average Ā(x0) too is a random variable. Notice
that, being the sum of many random variables, by the law of large numbers
with great probability Ā(x0) will take values close to its expectation (see
Appendix 1).

So it is meaningful to consider the expectation of Ā(x0) as the quantity
of interest for Statistical Mechanics. Denoting by < · > the expectation
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with respect to the a priori distribution, the quantity of interest is then
< Ā >, which takes the form

< Ā >=
1
N

K∑
j=1

Aj < nj > . (2)

Actually, in statistical thermodynamics one does not deal directly with the
a priori probability, because it is generally assumed that the time–average
of the energy of the system has a given value, which should play the role of
an independent variable. So we consider the energy of the system, which
we denote by ε, and the corresponding time–average ε̄ =

∑
j εjnj/N , and

we impose on the numbers n1, · · · , nK the further condition

1
N

K∑
j=1

εjnj = U = const .

Thus the quantity of interest is < Ā >U , the a posteriori expectation of Ā
given U .

The problem of computing < Ā >U can be reduced to the computation
of the “generating function”

Z(A,µ) def=
∑′

{nj}

exp(−µ
∑

Ajnj)P ({nj}) , (3)

through the relation

< Ā >U= − 1
N

∂

∂µ
log Z(A,µ)

∣∣∣∣
µ=0

. (4)

Here
∑′ denotes a sum over the possible sequences {nj} constrained by

1/N
∑

nj = N and
∑

εjnj = U . It turns out (see reference (1)) that
the asymptotic expansion of the generating function Z(A,µ) is very simply
computed in the limit of very “large” systems (the ones of interest for
thermodynamics), by using the steepest descent method. If in such an
expansion one retains only the leading term, i.e. one neglects the remainder
(an explicit expression of which could however be given), one finds that
< Ā >U can be computed by making reference to a function χj(z), which
is the logarithm of the Laplace transform of the cumulative p.d.f. Fj(n),
namely is defined by

exp(χj(z)) def=
∫
R

e−nz dFj . (5)
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Indeed one establishes the relation

< Ā >U= − 1
N

∑
j

Ajχ
′
j

(
θεj

N
+ α

)
. (6)

where prime denotes derivative, and θ and α are parameters determined
by the equations  U = − 1

N

∑
j εjχ

′
j

(
εjθ
N + α

)
N = −

∑
j χ′j

(
εjθ
N + α

)
.

In terms of the quantities

νj
def= −χ′j

(εjθ

N
+ α

)
, (7)

the previous relations can be written as

< Ā >U=
1
N

∑
j

Ajνj , U =
1
N

∑
j

εjνj , N =
∑

j

νj ,

and this shows that νj can be interpreted as the mean occupation number
of cell Zj . The quantities νj/N are then the coarse–grained analogues of
the density of the standard equilibrium measures.

In particular, if the process of occupation of any cell is a Poisson one,
i.e. if the successive visits of a given cell are independent events, then one
finds χj = χPoiss, where

χPoiss(z) = p e−z − p , (8)

with a parameter p > 0. In such a case one easily shows that the system
follows a Gibbs statistics. In fact the mean occupation numbers νj are
easily calculated from (7), and turn out to be given by

νj = N
e−θεk/N

Z(θ)
,

where Z(θ) def= eα =
∑

j e−θεj/N is the usual partition function, so that
relation (6) becomes the usual canonical one, with θ/N playing the role of
inverse temperature (see also (2)).

Instead, the Tsallis q–distribution for q > 1, which is the one considered
in this paper, is obtained if the variables nj are distributed in such a way
that χj = χTs, where

χTs(z) = p
(
1 +

z

σ

)−σ

− p ; (9)
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here p and σ are positive parameters, moreover σ is related to the so–called
“entropic index” q by the relation

σ =
1

q − 1
.

Notice that χTs converges to χPoiss for σ → +∞, i.e. for q → 1+. The
case q < 0 could also be dealt with taking χTs(z) = −pzσ, with 0 < σ < 1,
but some analytic techniques different from the ones used here are needed.
So, the discussion of the latter case is left for a future work. For what
concerns the case 0 < q < 1, we have no clear ideas at the moment.

While in the papers (1), (2) the attention was put in determining the
form of the thermodynamic functions when the functions χj are given (in
particular for χj = χTs), in the present paper we address instead the
problem of “going back to the dynamics”. Our aim is indeed to determine
the statistics of the occupation numbers, i.e. the form of the cumulative
p.d.f. Fj(n), when χj = χTs is given.

3 Continuous–time systems and Tsallis statis-
tics

Our aim is thus to invert the procedure followed in the paper (1), which
amounted to determine the ensembles from the dynamical orbits, because
we now aim at determining some statistical properties of the dynamics from
the ensemble. To this end some preliminary considerations are needed.

In fact one could naively assume that the “characteristic” functions
χj(z) are given according to the Tsallis ensemble, i.e. by χj = χTs, and
then try to determine the corresponding probabilities p(nj = n) of the
occupation numbers nj . But this turns out to be impossible, because of a
very well known result (see for example the handbook (12), volume 2nd,
page 342), namely

Theorem 1 (Laplace transform of integer–valued variables) A com-
plex function f̂(z) is the Laplace transform of an integer–valued, infinitely
divisible random variable, if and only if one has

f̂(z) = exp
(
α[g(e−z)− 1]

)
,

where α is a real parameter, and the function g(ζ) satisfies

g(0) = 1 ,
dn

dζn
g(ζ) ≥ 0 ∀ 0 ≤ ζ < 1 and ∀ n ≥ 0 .
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One easily checks that exp(χTs(z)) does not satisfy the hypothesis of The-
orem 1, so that it cannot represent the Laplace transform of any p.d.f
Fj(n). However, even if the Tsallis statistics cannot be applied directly to
the variables nj , nevertheless it can be applied to suitably defined variables
ñj which we now introduce.

To this end we first point out that, as shown in Appendix 2, the function
exp(χTs(z)) can be obtained through a limiting procedure on a family of
functions f̂τ (z) satisfying the requirement of Theorem 1. Precisely one
has to consider the limit in which the mean occupation number < nj >
of each cell diverges. This occurs, for example, when the orbit {xn} of
the considered dynamical system are obtained by iterating the time–τ map
induced by the flow of an autonomous Hamiltonian system, i.e. when one
sets xn = x(nτ), if x(t) denotes the orbits of the continuous–time system.
It is clear that, if one lets τ tend to zero and increases the number of
iterations N in such a way that the total time τN is kept fixed, on the one
hand the occupation numbers nj diverge, while on the other the variables

ñj
def= τnj converge to the value of the “time” spent by the orbit in the cell

Zj . By the way, the quantities ñj coincide with the quantities τj appearing
in the quotation from paper (4) mentioned in the Introduction.

Note that the expectation < Ā > and the conditional expectation <
Ā >U have the same form whether they be expressed in terms of the
variables ñj (see the formulæ given below) or of the variables nj (see the
formulæ (2) and (6) ). In fact for the expectation one has

< Ā >=
1
Ñ

K∑
j=1

Aj < ñj > ,

with Ñ = τN , and for the conditional expectation one has

< Ā >U=
1
Ñ

K∑
j=1

Aj ν̃j ,

where ν̃j are defined, analogously to (7), by

ν̃j
def= −χ̃′j(

(εjθ

Ñ
+ α

)
,

while exp(χ̃j(z)) is the Laplace transform of the p.d.f. F̃j of the random
variables ñj (for notational simplicity, the index τ in ñj , Ñ , χ̃j , is sup-
pressed).

Now, if we are considering distribution functions such that

lim
τ→0

χ̃j(z) = χTs(z) ,
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then in the limit τ → 0 all quantities converge to the ones computed
using the Tsallis distribution.1 Appendix 2 is devoted to exhibit a family
of functions exp(χ̃(z)), depending parametrically on τ , which satisfy the
hypothesis of Theorem 1 and tend to exp(χTs(z)) as τ tends to zero. It
would be of interest to characterize the class of distributions which have
that of Tsallis as a limiting one. For the sake of notational simplicity, the
tilde sign will be omitted in the rest of the paper, and correspondingly the
variables nj have to be thought of as (well approximated by) continuous
ones.

4 The empirical distribution of nj for orbits
obeying the Tsallis statistics.

We now turn to the computation of the probability p(nj = n) of the oc-
cupation numbers nj , having assumed that the functions χj(z) are given
according to the Tsallis ensemble, i.e. with χj = χTs. This will be eas-
ily obtained through the preliminary calculation of the corresponding p.d.f.
fj(n) = fTs(n), where fj(n) is the probability density corresponding to the
cumulative p.d.f. Fj(n). The limiting procedure discussed in the previous
Section will now be understood.

So we have to determine fTs(n) by inverting relation (5) (with dFj =fj dn)
in the case χj = χTs. The asymptotic behaviour of fTs(n) for large n can
be found in (13); instead we concentrate here on the behaviour for small n,
which is the case relevant for our porpouses (as will be shown in the next
Section).

It turns out that fTs(n) doesn’t have a closed expression in terms of
known functions, except for some special cases. An example will be given
later. An expression for fTs(n) can however be given as a series expansion,
namely

fTs(n) = e−pδ(n) +
e−p−σn

n

∑
k≥1

(
pσσnσ

)k

k!Γ(kσ)
, (10)

where Γ(x) is the Euler gamma function.
To this end, one makes reference to well known theorems about the

shift and the scaling of the Laplace transform, from which one gets

fTs(n) = σe−p−σng(σn) ,

1By a well known theorem, the convergence of the Laplace transform also implies the
convergence of the function F̃j to the continuous distribution F Ts of the “time” spent
by the orbit in the cell Zj .
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Figure 1: Plot of fTs(n) for σ = 2 and for σ = 20, with p = 0.004.
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if g(n) satisfies
+∞∫
0

exp(−nz)g(n) dn = exp(pz−σ) .

Then, to compute g(n), one considers the series expansion

exp(pz−σ) = 1 +
∑
k≥1

pk

k!zkσ
,

and uses the fact that 1 is the Laplace transform of the Dirac δ(n), while
1/zkσ is the Laplace transform of nkσ−1/Γ(kσ). So one gets

g(n) = δ(n) +
1
n

∑
k≥1

pknkσ

k!Γ(kσ)
,

i.e. (10).
In particular, if one puts σ = 1, the series entering (10) can be explicitly

evaluated, and one finds

fTs(n) = e−pδ(n) +
√

p

2n
I1

(√
2pn

)
e−p−n ,

where I1(x) is the modified Bessel function of order 1. This provides an
example in which the Tsallis p.d.f can be expressed in terms of known
functions.

The plots of the function fTs(n) given by (10) are reported in Figure 1
for some values of p and σ. In Figure 2 the same plots are given in semilog-
arithmic scale in order to appreciate the behaviour for large values of the
independent variable.

Remember now that the knowledge of the function fj(n) is not suffi-
cient to determine the probability of the occupation numbers, because the
variables nj should satisfy the constraint

∑
nj = N . One easily shows

that, for any p.d.f. f(n), the probability p(nj = n) is given by

p(nj = n) =
f(n)e−αn

exp(χ(α))
, (11)

with α determined by

χ′(α) = −N

K
. (12)

To show this we recall that, according to Hypothesis 1, one has

p(nj = n) = f(nj) · p(
∑
i 6=j

ni = N − nj) ,
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so that

p(nj = n) =
f(nj)

∫ ′ dn1 . . . dnK δ
( ∑

i 6=j ni − (N − n)
)
f(n1) . . . f(nK)∫

dn1 . . . dnK δ
( ∑

i ni −N)
)
f(n1) . . . f(nK)

,

where
∫ ′ at the numerator denotes an integration in which the variable nj

is excluded. Introducing the representation δ(x) =
∫

exp(ikx) dk for the
Dirac function, one finds

p(nj = n) =
f(nj)

∫
dk exp

(
ik(N − n) + (K − 1)χ(ik)

)∫
dk exp

(
ikN + Kχ(ik)

) .

Then, using the stationary–phase method one finds

p(nj = n) ' Cf(n) exp
(
(K − 1)h(N − n/K − 1)−Kh(N/K)

)
' Cf(n) exp

(
− nh′(N/K)

)
,

where h(ν) is the Legendre transform of χ(z). Finally, by the Legendre
duality one has h′(N/K) = α, where χ′(α) = −N/K, and the constant C
is determined by the normalization condition

∫
p(n) dn = 1. This proves

formula (11).

5 The fractal dimensions of the orbits of the
Tsallis processes.

Now, having found the probability distribution (11) for the occupation
numbers nj , one can compute the mean number < m > of visited cells.
This quantity is a very important indicator. As an example, if there exist
some constants of motions the mean number of visited cells is expected to
be much smaller than for an ergodic system. Likewise, one expects that the
mean number of visited cells should scale as some power of K (the total
number of cells) rather than as K itself, if the orbits have some fractal
structure.

In this connection, one has

Theorem 2 (mean number of visited cells) For the Tsallis distribu-
tion, the mean number < m > of visited cells is given by

< m >= K
exp

(
(N/K)

σ
1+σ p

1
1+σ

)
− 1

exp
(
(N/K)

σ
1+σ p

1
1+σ

) . (13)
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Proof. This is a simple computation. First, one has that the probability
p(n > 0) that a cell be visited is given by

p(n > 0) =

∫
n>0

fTs(n)e−αn dn

exp(χTs(α))
.

On the other hand, the presence of the term δ(n) in the expression (10)
for fTs(n) implies the the integral

∫
n≥0

p(n) dn can be written as a sum of
two terms in the following way∫

n≥0

dn p(n) =
e−p +

∫
n>0

dn fTs(n)e−αn

exp(χTs(α))
,

so that, from the normalization condition
∫

n≥0
p(n) dn = 1 one finds

p(n > 0) =
exp(χTs(α) + p)− 1

exp(χTs(α) + p)
.

Thus, remembering the definition (12) of α and the expression (9) for
χTs(z), one gets

α

σ
= −1 +

( N

pK

) 1
1+σ

, (14)

which, together with the relation < m >= Kp(n > 0), proves relation (13).

Obviously relation (13) shows that the mean number < m > of visited
cells is equal to K if the argument of the exponentials is large, which
typically occurs for large times (i.e. for large N). Such an expression
becomes however particularly meaningful for not too large values of that
argument, as occurs in situations in which an orbit starts diffusing into the
phase space before covering all the available space.

So, suppose that
N

K
� 1

p
1
σ

; (15)

in this case one finds that the mean number of visited cells is given by

< m >' N
σ

1+σ
(
pK

) 1
1+σ . (16)

In the case of a very chaotic motion, one can expect that the number of
visited cells increases linearly with time, because the orbit is expected to
visit the cells which were not previously visited. This is indeed the case
for σ = +∞ (corresponding to the Boltzmann–Gibbs case), in which the
process is Poissonian. In the Tsallis case, instead, the number of visited
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Figure 3: Simulation of a Tsallis dynamics for a map of a square of side
1. The occupation numbers nj of the various cells of the square, i.e. the
numbers drawn, are given. Case of a Tsallis distribution near a Poisson
one. Notice that only one–fourth of the surface is reported.
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cells increases more slowly (only as Nσ/1+σ), i.e. the orbits tend to visit
many times the same cell. In fact, the expected number of times na the
orbits visit a given cell (which is surely visited) can be quickly computed
by the relation

< m > na = N ,

which gives

na =
(

N

pK

) 1
1+σ

� N

K
. (17)

Here the inequality can be easily proved from (15), rising both sides to the
power σ/(1 + σ).

We can summarize the previous discussion by saying that for a Tsallis
process a small number of cells is visited a large number of times. Thus the
sojourn–times distribution tends to become very singular. An illustration
of this fact is given in Figures 3 and 4. We have considered a square of
side 1, divided into 104 equal cells (of side ∆l = 10−2). For each cell Zj

one independently draws a number nj with the probability p(nj = n) =
fTs(n)e−αn/exp(χTs(α)), i.e. according to the Tsallis distribution, the
constant α being determined by the constraint

∑
nj = N = 105. In short,

we simulate a realization of a Tsallis process, which should correspond to
a single orbit with initial value taken at random. In the figure we report
the surface built by plotting for each cell the drawn number nj ; remember
that nj/N(∆l)2 gives the density of the sojourn–time measure with respect
to the Lebesgue one. In the case of a very chaotic dynamics the density is
expected to be smooth, because the fluctuation around the mean value is
small for a Poissonian process. In fact Figure 3, which corresponds to the
case p = 0.004 and σ = 20, exhibits a surface considerably smoother than
in Figure 4, which refers to the same value of p but to a smaller value of σ,
namely σ = 2 (remember that a high value of σ implies that the process is
near to a Poisson one). Notice that, in each of the figures, for the sake of
clearness only one fourth of the surface is reported.

Another very interesting result is obtained if the value K of cells is
increased, as N increases, in such a way as to keep the ratio N/K constant.
This corresponds to using a finer partition as the number of iterations is
increased. In this case one has the problem of the values to be given to the
parameter p when K is changed. For the sake of consistency2 one has to

2In fact, by splitting a cell into two cells, i.e. taking Zj = Zj1 ∪ Zj2 , one has
nj = nj1 + nj2 . Thus, having assumed that the occupation numbers are independent,
one has

χj(z) = χj1 (z) + χj2 (z) .

In terms of the parameter p entering χTs through (9), this amounts to the relation
p = 2p′, where p refers to χj and p′ to both χj1 and χj2 . So, by doubling the number
of cells the parameter p is halved.
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Figure 4: Same as Figure 3 for a Tsallis distribution far from a Poisson
one.
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take p proportional to the inverse of the number K of cells, i.e. p ' 1/K,
so that one finds

< m > ' K
σ

1+σ ,

na ' K
1

1+σ .

So, if one uses the box–counting method, the orbit appears as if it had
a dimension smaller than that of the phase–space, precisely it appears to
have a fractal dimension df given by

df =
σ

1 + σ
d ,

where d is the total dimension of the phase–space. Notice that

σ

1 + σ
=

1
q

,

where q is the entropic index, so that the latter can be linked to the fractal
dimension of the orbit by the relation

df =
1
q
d . (18)

Some comments to this relation are deferred to the final Section.
In terms of the sojourn–time measure, one obtains that such a measure

is not absolutely continuous with respect to the Lebesgue one, having a sup-
port with a dimension smaller than that of the phase–space. This shows
that, in order to apply the Tsallis statistics, the orbits must have charac-
teristics very different from those corresponding to uniform chaoticity (as
in Anosov systems) usually considered in Statistical Mechanics.

6 Final comments.

We have shown how it is possible to determine some properties of the orbits
which are compatible with the Tsallis ensemble. Particularly interesting in
this connection is, in our opinion, formula (18), namely df = d/q, which re-
lates the entropic index q of the Tsallis distribution to the fractal dimension
df of the corresponding orbits (d being the dimension of the phase–space).
Relations of such a type may be expected, because it is true that, in a
sense, the very problem of the existence of entropies different from the
Boltzmann–Gibbs–Shannon one did originate in the context of the fractal
geometry (see for example (14)). However, to the author’s knowledge, in
the literature one can find only a few papers devoted to a precise statement
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on the relation between entropic index and fractal dimension. In particu-
lar, the papers (15) seem to adopt a point of view close to ours, although
obtaining a relation different from ours, because they give df = qd instead
of df = d/q. In this connection one can remark that, as in this paper one
deals with the case q > 1, the formula df = qd gives a fractal dimension
larger than the total one, while our formula (18) gives, coherently, a fractal
dimension smaller than the total one. We plan to clarify in a future work
the relation between our paper and the just mentioned ones.

There are other papers in the literature which consider the relation
between entropic index q and fractal dimension, but they deal just with
low–dimensional mappings, to which our method hardly applies. In any
case, the comparison with their results seems to be non trivial.

An interesting problem is the physical meaning of the relation (18).
Maybe this simply implies that the system behaves as if it had a smaller
number of degrees of freedom (d/q instead of d), the other one remaining
frozen. The important point is that a fractal structure of the orbits seems
to imply that the thermodynamical functions of the system (entropy, free
energy, etc.) are different from the ones computed using the Gibbs statis-
tics.

A final comment of a general character concerns the “right” measure to
be used in presence of metastable states. In the literature (see for example
the papers (3)) one finds the prescription that one should use the Gibbs
measure restricted to the phase-space region in which the metastable state
is localized. At first sight this seems to be in contrast with the prescription
of using the Tsallis measure on the whole phase-space. However, in the
end it may turn out the two approaches are not so different, if the domain
D in which the metastable state is localized presents a fractal structure.
Indeed it can then happen that, at least for some macroscopic observables,
the mean value computed with the Gibbs measure restricted to D coincide
with the mean value computed in the whole phase–space with a different
smooth measure (for example the Tsallis one). This is in fact what has
been shown in the present paper, namely that computing averages with
respect to the Tsallis measure is equivalent to computing averages in a
fractal region carrying a constant measure. The latter measure is actually
nothing but the quantity na/N , with na given in formula (17).

Appendix 1

We want to show that the time–average Ā, as defined by (1), has a variance
which is small, and that correspondingly its p.d.f is peaked about its mean.
In fact, the variance δ2

nj
of the random variable nj can be computed from
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the expression (11) for its p.d.f., and one finds

δ2
nj

= χ′′j (α) .

In the case of Tsallis, recalling the expressions (9) for χTs(z) and (14) for
α, one gets

δ2
nj

=
1 + σ

σ

N

K

(
N

pK

)1/1+σ

.

Then, the variance δ2
Ā

of the time–average Ā, is simply computed by adding
the variances of each nj , and one finds

δ2
Ā =

1 + σ

σ

1
(pK)1/1+σNσ/1+σ

1
K

∑
Ā2

j

' 1 + σ

σ

1
(pK)1/1+σNσ/1+σ

∫
Ā2 dµ .

Now, as previously recalled, one has to keep p proportional to the inverse of
K, so that pK has to be considered essentially constant. So, if (

∫
Ā2 dµ)1/2

is of the same order of magnitude as < Ā >, one gets

δĀ '
1

Nσ/1+σ
< Ā > ,

which implies that, as N grows large, the deviation becomes negligible.
This in turn implies that Ā takes values very close to < Ā >, almost
surely.

Appendix 2

We want to show that there exists a family of p.d.f.’s Fτ (n) concentrated
at τn, n = 0, 1, · · · , which converges, as τ → 0, to the Tsallis distribution.
Consider the function g(ζ) defined by

g(ζ) = (a− bζ)−σ ,

with a, b ∈ R, a > b > 0. One has

dn

dζn
g(z) = σ(1 + σ) · · · (n− 1 + σ)bn(a− bζ)−σ−n > 0 ,

for all 0 < ζ < 1 and for n ≥ 0. Then the function

f̂(z) = exp
(
(a− be−z)−σ − (a− b)−σ

)
,

satisfies the hypothesis of Theorem 1, and so is the Laplace transform of a
p.d.f. F (n) concentrated on the integers, for every choice of a and b. Then
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the p.d.f. Fτ (n) def= F (τn) will be concentrated at τn, n = 0, 1, · · · , and its
Laplace transform will be given by

f̂τ (z) = exp
(
(a− be−τz)−σ − (a− b)−σ

)
=

= exp
(
(a− b)−σ(1 +

b(1− e−τz)
a− b

)−σ − (a− b)−σ
)

.

Now, if one chooses a and b as functions of τ in such a way that b/(a−b) =
1/qτ , while the difference a− b

def= p is independent of τ , i.e. if one sets

a =
p−1/σ(1 + στ)

στ
, b =

p−1/σ

στ
,

one finds

f̂τ (z) = exp
(
p(1 +

(1− e−τz)
στ

)−σ − p
)

.

Then, letting τ → 0, one gets

f̂τ (z) → exp
(
p(1 +

z

σ
)−σ − p

)
= exp(χTs(z)) .

In such a way, if n is a random variable with p.d.f. F (n), then ñ = lim τn
will be distributed according to Tsallis.
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