We propose a new approach for the study of the quadratic stochastic Euclidean bipartite matching problem between two sets of $N$ points each, $Ngg 1$. The points are supposed independently randomly generated on a domain $Omegasubsetmathbb R^d$ with a given distribution $ ho(mathbf x)$ on $Omega$. In particular, we derive a general expression for the correlation function and for the average optimal cost of the optimal matching. A previous ansatz for the matching problem on the flat hypertorus is obtained as particular case.
Quadratic Stochastic Euclidean Bipartite Matching Problem / S. Caracciolo, G. Sicuro. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 115:23(2015 Dec). [10.1103/PhysRevLett.115.230601]
Quadratic Stochastic Euclidean Bipartite Matching Problem
S. CaraccioloPrimo
;
2015
Abstract
We propose a new approach for the study of the quadratic stochastic Euclidean bipartite matching problem between two sets of $N$ points each, $Ngg 1$. The points are supposed independently randomly generated on a domain $Omegasubsetmathbb R^d$ with a given distribution $ ho(mathbf x)$ on $Omega$. In particular, we derive a general expression for the correlation function and for the average optimal cost of the optimal matching. A previous ansatz for the matching problem on the flat hypertorus is obtained as particular case.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.115.230601.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
194.22 kB
Formato
Adobe PDF
|
194.22 kB | Adobe PDF | Visualizza/Apri |
1510.02320.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
507.14 kB
Formato
Adobe PDF
|
507.14 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.