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We propose a new approach for the study of the quadratic stochastic Euclidean bipartite matching
problem between two sets of N points each, N ≫ 1. The points are supposed independently randomly
generated on a domain Ω ⊂ Rd with a given distribution ρðxÞ on Ω. In particular, we derive a general
expression for the correlation function and for the average optimal cost of the optimal matching. A previous
ansatz for the matching problem on the flat hypertorus is obtained as a particular case.

DOI: 10.1103/PhysRevLett.115.230601 PACS numbers: 05.90.+m, 02.10.Ox, 05.50.+q

The Euclidean bipartite matching problem (EBMP) was
firstly introduced and studied by Monge [1] in 1781. It is an
assignment problem in which an underlying geometric
structure is present. Assignment problems are of paramount
importance in theoretical computer science [2,3] and a
polynomial-time algorithm, the celebrated Hungarian algo-
rithm [4–6], is available for their solution. In the EBMP two
sets of N points, let us call them R ≔ frigi¼1;…;N and
B ≔ fbigi¼1;…;N , are considered on a domain Ω⊆Rd in d
dimensions. The problem, in its quadratic version, asks for
the permutation π ∈ SN , SN symmetric group of N
elements, such that the cost functional

EN ½π� ≔
1

N

XN
i¼1

∥μπðiÞðiÞ∥2 ð1Þ

is minimized. In the previous formula we have introduced

μjðiÞ ≔ bj − ri ð2Þ

and we have denoted by ∥•∥ the Euclidean norm in Rd.
Matching problems appear in many different physical,

biological, and computational applications. The (linear)
EBMP, for example, was introduced by Monge to optimize
the transport cost of soil from N mining sites to N
construction sites. The problem of covering a given lattice
with dimers can also be reformulated as a matching
problem [7], whereas, in computational biology, matching
techniques are applied to pattern recognition problems [8].
In the computer vision, the quadratic EBMP is at the basis
of many image stitching and stereographic reconstruction
algorithms [9]. Finally, the quadratic cost functional in
Eq. (1) plays a special role in physical applications. Indeed,
it was used by Tanaka [10] in the study of the Boltzmann
equation, and by Brenier [11] in his variational formulation
of Euler incompressible fluids.

In many applications, however, the parameters (for
example, the positions of the points) are affected by
uncertainty, and the matching problem is a stochastic
(or random) optimization problem. In this case, the average
properties of the solution are of some interest.
Many analytical and numerical techniques, derived from

statistical physics [12,13], were successfully applied to the
study of stochastic optimization problems. In particular, in
the random assignment problem (RAP), the quantities
∥μjðiÞ∥ are considered independent and identically distrib-
uted random variables and the Euclidean structure is com-
pletely neglected. The RAP was one of the first stochastic
optimization problems to be solved using the theory of
disordered systems by Mézard and Parisi [14]. Their results,
obtained for N → ∞, were rigorously derived years later by
Aldous [15]. Subsequently, Linusson andWästlund [16] and
Nair et al. [17], in two remarkable papers, proved independ-
ently Parisi’s conjecture [18] about the average optimal cost
at finite N. They were able to prove also the more general
Coppersmith-Sorkin conjecture [19] regarding the average
optimal cost in the so-called k-assignment problem.
In the present Letter we deal with the stochastic EBMP

(sEBMP). In the sEBMP the two sets of N elements,R and
B, respectively (the instance of the problem), are obtained
extracting 2N points independently with a given probability
distribution density ρðxÞ on the domain Ω. We are
interested in the average properties of the optimal match-
ing, and, in particular, in the optimal matching cost and in
correlation functions. In contrast with the RAP, in our case
a Euclidean correlation appears among different values
∥μjðiÞ∥. This correlation is due to the underlying geometric
structure. Denoting by •̄ the average over all instances, the
average optimal cost (AOC) is

EN ≔ min
π
EN ½π�: ð3Þ

This problem was studied perturbatively, under the assump-
tions ρðxÞ ¼ 1 and Ω≡ ½0; 1�d, by Mézard and Parisi [20],
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using the RAP as a mean field approximation. Their pre-
dictions were later confirmed numerically [21,22]. In
Ref. [23] a proper scaling ansatz was adopted to evaluate
directly the AOC and its finite size correction in any
dimension, assuming a uniform distribution on the hyper-
torus. The one dimensional problem, again under the
hypothesis of uniform distribution, was exactly solved in
Refs. [24,25].
Inspired by the celebrated Monge–Kantorovič theory of

optimal transportation [26,27], we propose here a very
general framework for the solution of the problem. Under
the hypothesis that the points are generated using the same
probability distribution density, we can indeed write down
a quadratic functional in the large N limit. This functional
can be used to compute every correlation function of the
optimal solution of the quadratic sEBMP and to evaluate
the scaling of the AOC.
Let us first consider a bounded d-dimensional domain

Ω ⊂ Rd. Let R ≔ frigi¼1;…;N and B ≔ fbigi¼1;…;N , be
two sets, each one consisting of N points independently
generated with the same probability distribution density
ρðxÞ > 0 on Ωn∂Ω, ∂Ω boundary of Ω. We introduce the
following empirical measures:

ρRðxÞ ≔
1

N

XN
i¼1

δðdÞðx − riÞ; ð4aÞ

ρBðxÞ ≔
1

N

XN
i¼1

δðdÞðx − biÞ: ð4bÞ

We define also the functional

E½μ� ≔
Z
Ω
∥μðxÞ∥2ρRðxÞdx ð5Þ

for a map μ∶Ω → Rd. The previous functional provides a
correct matching cost, Eq. (1), if, and only if, μðriÞ ¼
bπðiÞ − ri for a certain permutation π ∈ SN . This additional
constraint implies

Z
Ω
δðdÞ½x − y − μðyÞ�ρRðyÞdy ¼ ρBðxÞ: ð6Þ

We can write down a “partition function” for our problem
introducing a proper Lagrange multiplier φðxÞ to impose
the constraint in Eq. (6),

ZðβÞ ∝
Z

½Dμ�
Z þi∞

−i∞
½Dφ�e−βS½μ;φ�; ð7Þ

the optimal solution being recovered for β → þ∞. The
exponent in the functional integral is

S½μ;φ�≔ 1

2
E½μ�þ

Z
Ω
fφðxÞρBðxÞ−φ½xþμðxÞ�ρRðxÞgdx

¼−
Z
Ω
½φðxÞϱðxÞþρRðxÞμðxÞ ·∇φðxÞ�dx

þ1

2
E½μ�þ s½μ;φ�; ð8Þ

where s½μ;φ� ¼ Oð∥μ∥2φÞ are higher order nonlinear terms
in the fields obtained from the Taylor series expansion of
φðxþ μÞ around μ ¼ 0. We introduced also

ϱðxÞ ≔ ρRðxÞ − ρBðxÞ: ð9Þ

Observing that ρRðxÞ is almost surely zero everywhere on
the boundary, the Euler-Lagrange equations are

ϱðxÞ ¼ ∇ · ½ρRðxÞμðxÞ� −
δs½μ;φ�
δφðxÞ ; ð10aÞ

ρRðxÞμðxÞ ¼ ρRðxÞ∇φðxÞ − δs½μ;φ�
δμðxÞ : ð10bÞ

It is well known that in the N → ∞ limit, the empirical
measures ρRðxÞ and ρBðxÞ both converge (in a weak sense)
to ρðxÞ. In this limit the optimal field μ� is trivially
μ�ðxÞ≡ 0 ∀ x ∈ Ω. For N ≫ 1 we expect that the relevant
contribution is givenby small values of∥μ∥ and the nonlinear
terms in s are higher order corrections to the leading
quadratic terms. The saddle point equations simplify as

ϱðxÞ ¼ ∇ · ½ρðxÞμðxÞ�; ð11aÞ
μðxÞ ¼ ∇φðxÞ: ð11bÞ

The strict analogy between our problem and an electrostatic
problem is evident. The field μ plays the role of an electric
field E, −φ is the scalar potential, and, indeed, it acts as a
Lagrange multiplier which implements the Gauss law,
whereas ρ corresponds to a dielectric function ϵ in a linear
dielectric medium, in such a way that the equivalent of the
displacement field D ¼ ϵE is ρ∇φ. The B points and theR
points play the role of pointlike charges of opposite sign,
being the overall charge

R
Ω ϱðxÞdx ¼ 0. It is remarkable

that Eq. (11b) reproduces the known result inmeasure theory
that the transport field is a gradient [26] but, in our approach,
this is specified as the gradient of the introduced Lagrange
multiplier. We impose Neumann boundary conditions

∇nðxÞφðxÞjx∈∂Ω ≡∇φðxÞ · nðxÞjx∈∂Ω ¼ 0; ð12Þ

where nðxÞ is the normal unit vector to the boundary in
x ∈ ∂Ω. This condition guarantees that the shape of the
boundary is not modified in the N → ∞ limit. We can
therefore computeφ as the solution of the following equation
on Ω with the given boundary conditions
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∇ · ½ρðxÞ∇φðxÞ� ¼ ϱðxÞ: ð13Þ

To solve Eq. (13), we use the modified Green’s function
Gρðx; yÞ of the operator ∇ · ½ρðxÞ∇•� on Ω, defined by

∇x · ½ρðxÞ∇xGρðx; yÞ� ¼ δðdÞðx − yÞ − 1

jΩj ;

with
∂Gρðx; yÞ
∂nðxÞ

����
x∈∂Ω

¼ 0: ð14Þ

In Eq. (14), jΩj is the Lebesgue measure ofΩ. We can write
an explicit expression for μðxÞ as

μðxÞ ¼
Z
Ω
∇xGρðx; yÞϱðyÞdy: ð15Þ

Averaging over the disorder, we easily obtain the following
two-point correlation function

Cðx;yÞ
≔ μðxÞ·μðyÞ

¼
ZZ

ΩNðxÞ×ΩNðyÞ
½ϱðzÞϱðwÞ∇xGρðx;zÞ·∇yGρðy;wÞ�dzdw

¼ 2

N

Z
ΩNðx;yÞ

½ρðzÞ∇xGρðx;zÞ·∇yGρðy;zÞ�dz

−
2

N

ZZ
ΩNðxÞ×ΩNðyÞ

½ρðzÞρðwÞ∇xGρðx;zÞ·∇yGρðy;wÞ�dzdw;

ð16Þ

where we denoted by •̄ the average over all instances. In the
previous equation we used the following result

ϱðzÞϱðwÞ ¼ 2
ρðzÞ
N

½δðdÞðz − wÞ − ρðwÞ�: ð17Þ

Moreover, we introduced a proper cutoff to avoid divergen-
ces in the expression NCðx; yÞ and take into account finite
size effects. This cutoff has indeed an intuitive explanation.
Let δN be the scaling law in N of the average distance
between two nearest neighbor points randomly generated on
Ω accordingly to ρðxÞ. We introduced

ΩNðxÞ ≔fy ∈ Ω∶ ∥x − y∥ > αδNg; ð18aÞ

ΩNðx; yÞ ≔ fz ∈ Ω∶ ∥x − z∥ > αδN

and ∥y − z∥ > αδNg; α ∈ Rþ: ð18bÞ

Observe that δN ⟶
N→∞

0. The scaling quantity δN takes into
account the nonzero characteristic length for finite N. The
results of the computationmay depend upon the regularizing
parameter α.

Equation (16) provides a recipe for the calculation of the
AOC and for the correlation function in the sEBMP. In
particular, in our approximation we have that

EN ≃
Z
Ω
Cðx;xÞρðxÞdx: ð19Þ

If no regularization is required (α ¼ 0) we can write

EN≃ 2

N

ZZ
Ω×Ω

ρðxÞ
�
ρðyÞGρðx;yÞ−

Gρðx;xÞ
jΩj

�
dxdy: ð20Þ

Let us now consider the one dimensional problem,
Ω ¼ ½a; b� ⊂ R, and a certain probability density distribu-
tion ρðxÞ on Ω. In this case we can explicitly write (α ¼ 0)
the correlation function and the AOC, from Eq. (16) and
Eq. (19) respectively. Imposing Neumann boundary con-
ditions ∂xφðxÞjx¼a ¼ ∂xφðxÞjx¼b ¼ 0,

Cðx; yÞ ¼ 2

N

Φρðminfx; ygÞ − ΦρðxÞΦρðyÞ
ρðxÞρðyÞ ; ð21aÞ

EN ¼ 2

N

Z
b

a

ΦρðxÞ½1 − ΦρðxÞ�
ρðxÞ dx; ð21bÞ

where we introduced the cumulative function

ΦρðxÞ ≔
Z

x

a
ρðξÞdξ: ð22Þ

Our approach is suitable for many applications. In the
following, we shall provide some examples and numerical
verifications.
Matching problem on the interval.—As an application of

Eqs. (21), let us assume, for example, a semicircle
distribution on Ω≡ ½−1; 1�,

ρðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

π
x ∈ ½−1; 1�; ð23aÞ

ΦρðxÞ ¼ 1þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
− arccos x
π

: ð23bÞ

We can compute straightforwardly the correlation func-
tion and the AOC using Eqs. (21). In particular, we obtain
the nontrivial result

EN ¼ 1

N

�
π2

6
−
5

8

�
þ o

�
1

N

�
: ð24Þ

In Fig. 1 we compare the numerical results with the
analytical predictions, showing the excellent agreement
both for the correlation function and for the AOC.
Observe also that Eq. (21a) provides the correct corre-

lation function for the sEBMP on Ω≡ ½0; 1� with uniform
distribution. Assuming indeed ρðxÞ ¼ θðxÞθð1 − xÞ, being
θðxÞ the Heaviside function, we have
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Cðx; yÞ ¼
�
2
minfx;yg−xy

N ðx; yÞ ∈ ½0; 1�2
0 otherwise;

ð25aÞ

EN ¼ 1

3N
þ o

�
1

N

�
: ð25bÞ

Similar expressions have been derived, using a different
approach, in Refs. [24,25] for the grid-Poisson matching
problem.
Matching problem on the unit square.—Let us now

consider Ω¼fðx1;x2Þ∈R2∶ 0<x1< 1;0<x2< 1g⊂R2.
Let us suppose also that ρðxÞ ¼ 1 on Ω. Using Eq. (16)
we can compute Cðx; yÞ as a function of the modified
Green’s function of the Laplacian on the square with
Neumann boundary condition Gsðx; yÞ. However, it can
be seen that NCðx;xÞ → ∞ for N → ∞ and we need to
impose a regularizing cutoff to properly evaluate this
quantity. Being in this case δN ∼ ð1= ffiffiffiffi

N
p Þ, a regularization

procedure gives us [28]

EN ¼ lnN
2πN

þ γ

N
þ o

�
1

N

�
; ð26Þ

for some constant γ. Note that the leading term is exactly the
same obtained for the sEBMP on the two-dimensional torus
[23]. In Fig. 2 we plotted the numerical results for the AOC
and we compare with the previous prediction. Moreover, we
compare also our numerical results with the theoretical
prediction for cðrÞ, defined as the correlation function
between points on the diagonals of the square as follows

xr≔ ðr;rÞ; yr ≔ ðr;1− rÞ; cðrÞ≔NCðxr;yrÞ: ð27Þ

Matching problem on the flat hypertorus.—Finally, we
consider the domain Ω≡ ½0; 1�d ⊂ Rd with periodic boun-
dary conditions; i.e., we deal with the sEBMP on the flat

unit hypertorus in d dimensions Td ≔ Rd=Zd. We can
restate the results above for this case simply by substituting
the Neumann boundary conditions in Eqs. (13) and (14)
with periodic boundary conditions. Moreover, the
Euclidean distance in Eq. (1) between the points x ¼
ðxiÞi¼1;…;d and y ¼ ðyiÞi¼1;…;d in Ω must be intended as

∥x − y∥2 ≔
Xd
i¼1

½min ðjxi − yij; 1 − jxi − yijÞ�2: ð28Þ

Assuming ρðxÞ¼1 and α¼0, then Gρðx;yÞ≡Gdðx−yÞ,
where Gdðx − yÞ is the Green’s function of the Laplacian
on the unit flat hypertorus Td

∇2
xGdðx − yÞ ¼ δðdÞðx − yÞ − 1: ð29Þ

Under these hypotheses we have that, up to higher order
terms, we can formally write

Cðx; yÞ ¼ −
2

N
Gdðx − yÞ; EN ¼ −

2

N
Gdð0Þ: ð30Þ

For d ¼ 1 Eqs. (30) have the form

Cðx; yÞ ¼ 1 − 6jx − yjð1 − jx − yjÞ
6N

;

EN ¼ 1

6N
þ o

�
1

N

�
: ð31Þ

Equations (30) were adopted as a working ansatz in
Refs. [23,29] and they were used to derive both the scaling
of the AOC and the correlation functions of the sEBMP on
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ln N
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FIG. 2. Matching problem on the square. In the main plot,
correlation function between points on the diagonals of the
square, see Eq. (27), obtained for N ¼ 3000 and averaging over
2 × 104 instances. We compare with our analytical prediction. In
the smaller plot, we compare our theoretical prediction for the
AOC, Eq. (26) with numerical results obtained averaging over
2 × 104 instances. In particular, the value of γ ¼ 0.677ð1Þ is
obtained by a fit procedure.
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FIG. 1. sEBMP on the real line with points generated using a
semicircle distribution, Eqs. (23). We plot the correlation func-
tions Cðx; xÞ and Cðx;−xÞ for N ¼ 3000, obtained averaging
over 5000 instances of the problem. We plot also the AOC EN
obtained averaging over 5000 instances. We compare with the
theoretical predictions obtained from Eqs. (21).
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Td. For d ≥ 2, however, Gdð0Þ is a divergent quantity. In
this case, a nonzero value of α must be taken and the
regularization must be performed, as shown in Ref. [23].
Conclusions.—The presented approach allows us

to go beyond the mean field approximation in the
sEBMP, and to easily evaluate the scaling behavior of
the AOC and other useful quantities, like the correlation
functions of the optimal solution. A deep connection is
established among the theory of combinatorial optimiza-
tion, the theory of optimal transport and the theory of
disordered systems and stochastic processes. Indeed,
even if optimal transport theory has been already success-
fully applied to many different physical problems
(kinetic theory, fluidodynamics…), the study of the proper-
ties of the solution in the presence of disorder (e.g.,
uncertainty on the distribution parameters) is a highly
nontrivial task. This interesting research line is still largely
unexplored by both physicists and mathematicians and we
hope that these results will allow further studies in this
direction. Finally, the method presented here may be useful
in the analysis of other stochastic Euclidean optimization
problems, where both disorder and geometric constraints
appear.
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