We discuss fundamental questions of Mathematical Finance such as arbitrage and hedging in the context of a discrete time market with no reference probability. We show how different notions of arbitrage can be studied under the same general framework by specifying a class S of significant sets, and we investigate the richness of the family of martingale measures in relation to the choice of S. We also provide a superhedging duality theorem. We show that the initial cost of the cheapest portfolio that dominates a contingent claim on every possible path, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and observe how this is related to no-arbitrage considerations. We finally consider the extension of the previous results to markets with frictions.

A MODEL-FREE ANALYSIS OF DISCRETE TIME FINANCIAL MARKETS / M. Burzoni ; supervisor: M.Frittelli ; coordinatore: G. Naldi. DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2015 Dec 10. 28. ciclo, Anno Accademico 2015. [10.13130/burzoni-matteo_phd2015-12-10].

A MODEL-FREE ANALYSIS OF DISCRETE TIME FINANCIAL MARKETS

M. Burzoni
2015

Abstract

We discuss fundamental questions of Mathematical Finance such as arbitrage and hedging in the context of a discrete time market with no reference probability. We show how different notions of arbitrage can be studied under the same general framework by specifying a class S of significant sets, and we investigate the richness of the family of martingale measures in relation to the choice of S. We also provide a superhedging duality theorem. We show that the initial cost of the cheapest portfolio that dominates a contingent claim on every possible path, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and observe how this is related to no-arbitrage considerations. We finally consider the extension of the previous results to markets with frictions.
10-dic-2015
Settore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e Finanziarie
Settore MAT/06 - Probabilita' e Statistica Matematica
Knightian uncertainty; arbitrage; superhedging; duality; transaction costs; model free; martingale
FRITTELLI, MARCO
FRITTELLI, MARCO
NALDI, GIOVANNI
Doctoral Thesis
A MODEL-FREE ANALYSIS OF DISCRETE TIME FINANCIAL MARKETS / M. Burzoni ; supervisor: M.Frittelli ; coordinatore: G. Naldi. DIPARTIMENTO DI MATEMATICA "FEDERIGO ENRIQUES", 2015 Dec 10. 28. ciclo, Anno Accademico 2015. [10.13130/burzoni-matteo_phd2015-12-10].
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R09933.pdf

Open Access dal 24/02/2016

Tipologia: Tesi di dottorato completa
Dimensione 953.82 kB
Formato Adobe PDF
953.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/337059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact