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Introduction

The State Preference Model or Asset Pricing Model is the base of any mathematical description

of Financial Markets. It postulates that the price of d financial assets is known at a certain initial

time t0 = 0 (today), while the price at future times t > 0 (tomorrow) is unknown and therefore it

is given by a certain random outcome. The natural framework for the formalization of this model

is that of Stochastic Analysis. We essentially need to fix a set of events Ω, where any ω ∈ Ω

represents a possible state of the world, and for any future time t ∈ I, we need a random vector

St : Ω → Rd which provides the price of the d assets St(ω) if the state of the world ω occurs.

Typical examples for the set of future times I are I = {0, . . . , T} (discrete time) and I = [0, T ]

(continuous time) for a certain fixed T > 0 named time horizon. The financial market will be

also enriched by the specification of a σ-algebra F and a filtration F := {Ft}t∈I ⊆ F with the

requirement that the process S := (St)t∈I is F-adapted. The interpretation for this reasonable

assumption is that it is not possible to forecast the possible future values of the price process S

with the current information available in the market (which is specified by the filtration F). We

can therefore assert that a Financial Market model is given by the quadruple (Ω,F ,F, S) and we

note that, so far, no probability measure is introduced, neither seems required for the specification

of the model.

In modern Financial Markets a great variety of securities are traded every day. Most of them are

contracts on some underlying assets (e.g. derivative) and the prices for exchanging such contracts

are not directly given by the law of supply and demand. Mathematical models are therefore

developed in order to answer two key questions:

Pricing.: What is a fair price for a traded security according to well established economical

principles?

Hedging.: Every trade is connected to some risks arising from unfavourable future events.

How does an agent cover such possible risks?

These two questions represent the quintessence of Mathematical Finance and the first, fundamental,

answers are contained in the so-called Fundamental Theorem of Asset Pricing (FTAP) and Super-

hedging duality.

1. On Fundamental Theorem of Asset Pricing

In a nutshell the Fundamental Theorem of Asset Pricing asserts that any reasonable pricing system

must be an expectation under a certain (risk-neutral) probability measure and viceversa. A pricing

system is reasonable if it does not admit arbitrage opportunities i.e. it is not possible to create a

portfolio of financial securities in such a way that the initial investment is zero (or even negative),

while the final outcome is always non negative (and in some cases strictly positive). If this was
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4 INTRODUCTION

allowed it would be possible to make an arbitrary large profit with no risk. A first intuition for this

equivalence can be accredited to De Finetti for his work on coherence and previsions (see [deF70]),

while the first systematic approach for understanding the deep relation among no arbitrage pricing

and risk-neutral pricing can be found in the work of Ross on Arbitrage Pricing Theory (see e.g.

[Ross76, Ross77]) and further developed in [Hu82]. Later on in the case of Ω being a finite set of

events a version of FTAP has been proven by Harrison and Pliska [HP81] (see also [HK79, K81])

using geometric arguments and separation in finite dimensional spaces.

Theorem. Let Ω = {ω1, . . . , ωn} and let s = (s1, . . . , sd) the initial prices of d assets with random

outcome S(ω) = (S1(ω), . . . , Sd(ω)) for any ω ∈ Ω.

@H ∈ Rd such that H · s ≤ 0

and H · S(ω) ≥ 0 with > for some ω ∈ Ω
⇐⇒

∃Q ∈ P such that EQ[Si] = si

and Q(ωi) > 0 ∀i = 1, . . . , n
(1)

where P is the class of probability measures on Ω.

It is immediately clear that in the finite setting no probability measure is needed for the specification

of the model since impossible events are automatically excluded from the construction of the state

space Ω. On the other hand, linear pricing rules consistent with the observed prices s1, . . . sd,

and not violating the No Arbitrage condition, turn out to be (risk-neutral) probabilities with full

support i.e. they assign positive measure to any state of the world. By introducing a reference

probability measure P with full support and defining an arbitrage as a portfolio with H · s ≤ 0,

P (H · S(ω) ≥ 0) = 1 and P (H · S(ω) > 0) > 0, the thesis in Theorem 1 can be restated as

There is No Arbitrage⇐⇒ ∃Q ∼ P such that EQ[Si] = si ∀i = 1, . . . d (2)

This identification allows non-trivial extensions of the Fundamental Theorem of Asset Pricing to

the case of a general, infinite dimensional Ω. Since it is well known that, on such a space, it is not

possible to find a single measure Q with the property that Q({ω}) > 0 for any ω ∈ Ω Theorem 1

cannot hold with Ω being an infinite dimensional space. The extension suggested by (2) is instead

possible and it has been proven by Dalang-Morton-Willinger in the celebrated work [DMW90],

by use of measurable selection arguments. Nevertheless, this apparently innocuous passage, carries

out what is, at the matter of facts a model assumption i.e. the choice of a reference probability

measure P . This aspect has been recently criticized especially after the recent financial crises: while

it is certainly possible to estimate the probability distribution of a certain asset S from historical

data, this estimation might be not accurate or, even worse, it might be no longer representative

of the stochastic evolution of S due to the prominent dynamic nature of real world markets. For

these situations, the unreliability of the measure P opened new and interesting challenges in several

branches of Mathematical Finance under the name of Knightian Uncertainty. In particular it has

renewed the attention on foundational issues such as option pricing rules and arbitrage conditions

which is the main topic of Chapter 1 of this thesis. Along the lines of the previous discussion we

can distinguish two extreme cases:

(1) We are completely sure about the reference probability measure P . In this case, the

classical notion of No Arbitrage or No Free Lunch with Vanishing Risk can be successfully

applied. In discrete markets several different proofs of the Fundamental Theorem of

Asset Pricing have been provided after the seminal paper [DMW90]. Schachermayer in



1. ON FUNDAMENTAL THEOREM OF ASSET PRICING 5

[S92] proposed a simplified approach based on orthogonality in Hilbert spaces; the key

result in the paper is the closure of a certain cone of superreplicable contingent claims

with respect to convergence in probability, in the spirit of [St90]. A different point of

view has been considered by Rogers in [R94] who exploited the solution of a utility

maximization problem to construct the density of an equivalent martingale measure.

Several alternative techniques have been implemented in order to simplify the original

proof by avoiding measurable selection arguments such as in [KK94, KS01b, JS98]. In

continuous time the problem is much more involved and requires a deeper analysis on No

Arbitrage conditions as well as the use of sophisticated tools from the general theory of

semi-martingales (see e.g. [DS94, DS98]).

(2) We face complete uncertainty about any probabilistic model and therefore we must de-

scribe our model independently of any probability. In this case we might adopt a model

independent (weak) notion of No Arbitrage. A pioneering contribution was given by

Hobson in the paper [Ho98] where the problem of pricing exotic options is tackled under

model mis-specification. In his approach the key assumption is the existence of a martin-

gale measure for the market, consistent with the prices of some observed vanilla options

(see also [BHR01, CO11, DOR14] for further developments). In [DH07], Davis and

Hobson relate the previous problem to the absence of Model Independent Arbitrages, by

the mean of semi-static strategies. A step forward towards a model-free version of the

First Fundamental Theorem of Asset Pricing in discrete time was formerly achieved by

Riedel [Ri15] in a one period market and by Acciaio at al. [AB13] in a more general

setup.

Between cases 1. and 2., there is the possibility to accept that the model could be described in

a probabilistic setting, but we cannot assume the knowledge of a specific reference probability

measure but at most of a set of priors, which leads to the new theory of Quasi-sure Stochastic

Analysis as in [BK12, DHP11, DM06, Pe10, STZ11, STZ11a]. The idea is that the classical

probability theory can be reformulated as far as the single reference probability P is replaced

by a class of (possibly non-dominated) probability measures P ′. This is the case, for example,

of uncertain volatility (e.g. [STZ11a]) where, in a general continuous time market model, the

volatility is only known to lie in a certain interval [σm, σM ].

In the theory of arbitrage for non-dominated sets of priors, important results were provided by

Bouchard and Nutz [BN15] in discrete time. A suitable notion of arbitrage opportunity with

respect to a class P ′, named NA(P ′), was introduced and it was shown that the no arbitrage

condition is equivalent to the existence of a family Q′ of martingale measure having the same

polar sets of P ′. In continuous time markets, a similar topic has been recently investigated also by

Biagini et al. [BBKN14].

Bouchard and Nutz [BN15] answer the following question: which is a good notion of arbitrage

opportunity for all admissible probabilistic models P ∈ P ′ (i.e. one single H that works as an

arbitrage for all admissible models) ? To pose this question one has to know a priori which are

the admissible models, i.e. we have to exhibit a subset of probabilities P ′. On the contrary we
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want to investigate arbitrage conditions and robustness properties of markets that are described

independently of any reference probability or set of priors.

To this aim we introduce a flexible notion of arbitrage that we denominate Arbitrage de la classe

S (see Definition 1.1). Since, loosely speaking, an arbitrage opportunity is a a riskless portfolio

which yields a positive profit in some state of the world (denoted by V+
H ⊆ Ω), in order to formally

describe this economical principle we need to specify the meaning of a “riskless portfolio”and that

of a “true gain”. While, in a model-free setup, the former can be naturally considered as a strategy

whose returns are non-negative in any state of the world (i.e. ∀ω ∈ Ω), it is less intuitively and

more debatable the concept of a true gain. This is exactly the role attributed to the class S. We

say that a riskless portfolio is an arbitrage if it yields a strictly positive return on a sufficiently

significant set of events belonging to S (i.e. V+
H ⊇ A with A ∈ S). Several definitions of arbitrage

considered in the literature can be seen as a particular case of this general postulate. The strongest

notion is obtained with S = {Ω}, meaning that we have a true gain if we can make a profit in any

state of the world; the weakest notion is instead given by S = {any non-empty measurable set},
meaning that we can consider a true gain whenever it is achieved for at least one state of the world.

In Chapter 1 we provide a model independent version of the Fundamental Theorem of Asset pricing

for a generic class S linking the choice of the class of significant set to the richness of the set of

martingale measures. Note that, for a particular choice of the class S, the No Arbitrage assumption

does not preclude the existence of riskless portfolios with strictly positive gain on a non-significant

set. This situation does not arise in the classical case and it considerably complicates the analysis

of the relations between No Arbitrage conditions and existence of martingale measures. A first

insight into the problem was formerly given in [DH07]: suppose you have two call options C1, C2

with the same initial price c0 but with different strikes K2 > K1. Anyone would agree that in

this market there is an arbitrage opportunity. Observe however that the strategy C1 − C2 yields

a positive gain if the price of the underlying asset ends above K1 at maturity. On the contrary if

an agent is convinced that the price of the underlying will remain below K1 she would implement

a different strategy, namely a short position in one of the two options (since they will never be

exercized). In Chapter 1 we formally describe situations where there might be a disagreement

on the effective arbitrage strategy and we mathematically treat them by means of a measurable

multifunction, that we called Universal Arbitrage Aggregator and whose task is precisely to capture

all the inefficiencies of the market. This technical tool is the key ingredient that allows us to show

a general model-free version of the Fundamental Theorem of Asset Pricing.

2. On Super-hedging duality

As in the classic theory the Fundamental Theorem of Asset Pricing represents the groundwork for

a formal option pricing theory based on martingale measures. The existence of this peculiar type

of measures and the justification for their use as pricing rules rely on a strong economical basis

such as the absence of arbitrage opportunities. When there is exactly one martingale measure

there is no doubt on the choice of the pricing rule and we therefore univocally assign a single

price to any contingent claim. Markets that exhibit such a behaviour are called complete but, in

real world situations, this is typically not the case. The reason is two-fold. On one hand agents

usually evaluate the same security differently one from another, as it is evident from the existence
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of spreads between bid and ask prices. On the other hand complete markets are not attractive

for investors since when there is agreement on the value of a certain claim there is less room for

making profits. In general we therefore have a whole class of prices for the same contingent claim

g, corresponding to different possible choice of the pricing martingale measure in M. The Super-

hedging duality Theorem relates the supremum of these prices to the cheapest portfolio that gives

a payoff at least as good as g (called super-hedging strategy). It is well known that in the classical

case the convexity of the set of equivalent martingale measures Me(P ) guarantees that the set

of admissible prices for g is an interval, and it is given by (infQ∈Me(P )EQ[g], supQ∈Me(P )EQ[g]).

Outside this interval P-Classical arbitrage opportunities can be obtained. More importantly we

have that

sup
Q∈Me(P )

EQ[g] = inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T ≥ g P -a.s.}

It is therefore natural to pose the question: Can we show an analogous Super-hedging duality

Theorem when no reference probability is considered? The relevance of the problem is revealed by

the increasing amount of literature on this topic in the last decades. Breeden and Litzenberger in

[BL78] observed that the prices of some European call options, with the same maturity T , reveal

information on the marginal distribution µ of the underlying price process at time T under the

risk-neutral measure. This key observation has two consequences. Firstly it enables to price other

vanilla derivatives with the same maturity; since these options depend only on the value of the

underlying at time T , the knowledge of the distribution µ is sufficient. Secondly it also permit to

provide robust bounds for exotic path-dependent options.

The first work in this direction is due to Hobson [Ho98] who exploited Skorokhod Embedding

Problem techniques in order to find robust bounds for the price of a lookback option. The idea is

the following: for a certain path-dependent option the first step is to write a pathwise lower/upper

bound by means of a semi-static strategy i.e. a linear combination of payoffs of some vanilla

options (static part) and dynamic trading in the underlying (dynamic part). Since any martingale

measure, compatible with the estimated marginal µ, will assign the same price to these portfolios,

the obtained bounds can be legitimate considered model-independent. The second step is to show

that they are also tight, meaning that there exist a model for the price process S which is compatible

with µ and which attains the boundaries. This is exactly where the Skorokhod Embedding Problem

comes into play (see the survey [Ho11] or [Ob10] and the reference therein for a full account).

Another important stream of research started with the reformulation of the superhedging duality

in the framework of the Monge-Kantorovich optimal mass transport. Given two probability space

(X1, µ1), (X2, µ2) the problem amounts to find a “cheap” way of transporting µ1 to µ2. Any

transport plan is given by a probability measure in the product space X1 × X2 with marginals

µ1 and µ2 while the cost function is specified by a map g. If we now recall that the marginal

distribution of the price process ST can be estimated from market data and that, obviously, the

initial price S0 is observable we can easily identify µ1 := δS0
and µ2 := µ where δx is the Dirac

measure centered in x. By defining the cost function as the payoff of a certain path-dependent

option g we have that the primal problem corresponds to minimize the expectations of g over

the set of probability measures compatible with the estimated marginal. Note that differently

from the original Monge-Kantorovich problem it is necessary to impose an additional constraint,
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namely, that the transport plans need to be martingale measures which complicates the analysis.

Nevertheless in many interesting cases the dual problem can be successfully rewritten in terms

of a sub-hedging problem, again by means of semi-static strategies. By exploiting the optimal

mass transport duality, versions of the superhedging theorem can be obtained both in discrete and

continuous time as in [BHLP13, DS13, DS14b, GHLT14, HL0ST15, HO15, TT13].

In any of these papers the underlying process S is the canonical process and given a set of vanilla

options {Φj}j∈J (with no loss of generality with zero-initial price) a semi-static trading strategy

is said to be a superhedge for the claim g if its terminal payoff dominates g in any state of the

world, i.e. the following version of the superhedging problem has been studied

inf

x ∈ R | ∃(H,h) ∈ H such that x+ (H · S)T (ω) +

k∑
j=1

hjΦj(ω) ≥ g(ω) ∀ω ∈ Ω

 (3)

While this requirement appears to be very reasonable from a model-independent point of view, in

some cases it turns out to be too restrictive in order to recover a perfect duality respect to the set

of No Arbitrage prices given by martingale measures. In Chapter 2 we provide an example of a

market where a duality gap appears unless some artificial assumptions are imposed on the payoff of

the claim g. Once again this is essentially a consequences of the fact that No Arbitrage conditions

in the model-free setup are, in general, compatible with the existence of riskless portfolios with

strictly positive gain on certain non-significant sets. While it is certainly true that the set of events

where this is possible is negligible it is likewise true that the corresponding set of trajectories for

the underlying price process is inefficient so that an agent should not be interested in hedging such

a risk. For this reason we propose to weaken the requirement of a pathwise dominating inequality

as in (3) with the validity of the same inequality on an efficient set ΩΦ ⊆ Ω. A full description and

characterization of this set is given in Chapter 2 where we also show some measurability properties

of ΩΦ. This modification of the problem turns out to be crucial to fill the duality gap and to obtain

the validity of a model-free version of the superhedging theorem in a general setting (see Theorem

2.2). A restriction of the set of paths considered for super-replication can also be found in [HO15]

but it is different in spirit. Differently from our approach this set is not endogenously determined

by the market but it is, on the contrary, determined by the modeller whenever she have additional

information that allows her to narrow the set of possible scenarios.

3. Models with transaction costs

The last part of the thesis is devoted to the extension of the previous results to the case of a

discrete time Model Independent framework when proportional transaction costs are taken into

account. The mathematical tools that we employed in the frictionless case are based on measur-

able selection combined with a geometric point of view. This methodology applies very well to

the case of markets with proportional transaction cost which consequently appears to be a natural

prosecution of our analysis.

The setting proposed by Kabanov et al. (see e.g. [KS01a, KRS02]) based on solvency cones,

has already a geometric nature and allows the extension of the aforementioned classical result on

the Fundamental Theorem of Asset Pricing with Ω finite (see [HP81]) to the case of proportional
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transaction costs as in [KS01a]. The result connects the absence of arbitrage to the existence of a

price process with values in the bid-ask spread which is a martingale under a certain risk-neutral

probability. This kind of process have been subsequently denominated “Consistent Price Systems”

(CPS), by Schachermayer [S04] where the equivalence between absence of Arbitrage and existence

of CPS has been proven on a general space (Ω,F , P ). In this paper Schachermayer pointed out

that in order to establish this duality the right concept to use is what he called Robust No Ar-

bitrage. This concept formalize the idea that if a market is arbitrage free then, for a sufficiently

small reduction of the transaction costs, the market should maintain the arbitrage free property.

The same condition is used in the Chapter 3 dropping the reference probability. The possibility

of shrinking the bid-ask spread, even for an arbitrary small amount, is crucial in order to avoid

undesirable complications. We have already discussed that in the frictionless case different agents

might disagree on the effective strategy which realize an arbitrage opportunity. This controversy

relies on a delicate linear dependence among the price processes of different assets. When these

prices can be perturbarted, by the presence of frictions in the market, this dependence diseappear

and the agents not only recognize an arbitrage opportunity but they also agree on the strategy

which they should undertake to take advantage of that.

In Chapter 3 we consider the model-free version of the notion of arbitrage introduced in [S04]

and we provide a Fundamental Theorem of Asset Pricing in this framework. To the best of our

knowledge version of this Theorem in this context has not yet been studied. Only a very short

literature is indeed available for the robust case, when a class of (possibly non-dominated) set of

priors is considered, recent results in this direction are given by [BZ13, BN14].

In the second part of Chapter 3 we investigate the superhedging Theorem in the presence of pro-

portional transaction costs. In the classical framework of a fixed probability measure there is a

huge literature on this topic (for a non exhaustive list see [BT00, CK96, CPT99, LS97, K99,

SSC95, S14]. Likewise the case of the Fundamental Theorem of Asset Pricing there are very

few results in the model-free case. A first important paper on this topic is given by Dolinsky and

Soner [DS14] where the case of a discrete time single-asset market is considered with constant

proportional transaction costs. By defining a Monge-Kanotorovich optimization problem and ex-

ploiting optimal transport techniques the authors succeeded to show that the superhedging price

of a path-dependent European option g coincides with the supremum of the expectation of g in the

set of proability measure called approximate martingale measures. Roughly speaking a probability

measure belongs to this set if for any u ≥ t, the conditional expectation of Su at time t is contained

in the interval ((1 − k)St, (1 + k)St) where k models the proportional transaction costs. A more

recent paper from the same authors [DS15] study the case of a continuous time market with one

risky asset and with semi-static strategies in some vanilla options allowed. Two hedging problems

are considered: in the first one it is required that the super-replication needs to hold for any path

in Ω; in the second just in the P -a.s. for a suitable P with conditional full support. Using convex

duality techniques they show that the two optimization problems have the same value.

In Chapter 3 we consider the hedging problem in a d-dimensional discrete time market with (ran-

dom) proportional transaction costs.
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CHAPTER 1

Arbitrage and Martingales1

We consider a financial market described by a discrete time adapted stochastic process S := (St)t∈I ,

I = {0, . . . , T}, defined on (Ω,F ,F), F := (Ft)t∈I , with T < ∞ and taking values in Rd (see

Section 1). Note we are not imposing any restriction on S so that it may describe generic financial

securities (for examples, stocks and/or options). Differently from previous approaches in literature,

in our setting the measurable space (Ω,F) and the price process S defined on it are given, and we

investigate the properties of martingale measures for S induced by no arbitrage conditions. The

class H of admissible trading strategies is formed by all F-predictable d-dimensional stochastic

processes and we denote with M the set of all probability measures under which S is an F-

martingale and with P the set of all probability measures on (Ω,F). We introduce a flexible

definition of Arbitrage which allows us to characterize the richness of the set M in a unified

framework.

Arbitrage de la classe S. Let:

V+
H = {ω ∈ Ω | VT (H)(ω) > 0} ,

where VT (H) =
∑T
t=1Ht · (St−St−1) is the final value of the strategy H. It is natural to introduce

several notion of Arbitrage accordingly to the properties of the set V+
H .

Definition 1.1. Let S be a class of measurable subsets of Ω such that ∅ /∈ S. A trading strategy

H ∈ H is an Arbitrage de la classe S if

• V0(H) = 0, VT (H)(ω) ≥ 0 ∀ω ∈ Ω and V+
H contains a set in S.

The class S has the role to translate mathematically the meaning of a “true gain”. When a

probability P is given (the “reference probability”) then we agree on representing a true gain

as P (VT (H) > 0) > 0 and therefore the classical no arbitrage condition can be expressed: no

losses P (VT (H) < 0) = 0 implies no true gain P (VT (H) > 0) = 0. In a similar fashion, when a

subset P ′ of probability measures is given, one may replace the P -a.s. conditions above with P-q.s

conditions, as in [BN15]. However, if we can not or do not want to rely on a set of probability

measures a priori assigned, we may well use another concept: there is a true gain if V+
H contains

a set considered significant. This is exactly the role attributed to the class S which is the core

of Section 2. Families of sets, not determined by some probability measures, have been already

used in the context of the first and second Fundamental Theorem of Asset Pricing respectively by

Battig Jarrow [BJ99] and Cassese [C08] (see Section 3.1 for a more specific comparison).

1Chapter 1 is based on the paper: Universal Arbitrage Aggregator in Discrete Time Markets under Uncertainty,

joint work with M. Frittelli and M. Maggis, forthcoming on Finance & Stochastics

11
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In order to investigate the properties of the martingale measures induced by No Arbitrage condi-

tions of this kind we first study (see Section 3) the structural properties of the market adopting a

geometrical approach in the spirit of [HP81] but with Ω being a general Polish space, instead of a

finite sample space. In particular, we characterize the class N of theM-polar sets i.e. those N ⊂ Ω

such that there is no martingale measure that can assign a positive measure to N . In the model

independent framework the set N is induced by the market since the set of martingale measure

has not to withstand to any additional condition (such as being equivalent to a certain P ). Once

these polar sets are identified we explicitly build in Section 3.6 a process H• which depends only

on the price process S and satisfies:

• VT (H•)(ω) ≥ 0 ∀ω ∈ Ω

• N ⊆ V+
H• for every N ∈ N .

This strategy is a measurable selection of a set valued process H, that we baptize Universal

Arbitrage Aggregator since for any P , which is not absolutely continuous with respect to M,

an arbitrage opportunity HP (in the classical sense) can be found among the values of H. All

the inefficiencies of the market are captured by the process H• but, in general, it fails to be F-

predictable. To recover predictability we need to enlarge the natural filtration of the process S by

considering a suitable technical filtration F̃ := {F̃t}t∈I which does not affect the set of martingale

measures, i.e. any martingale measure Q ∈M can be uniquely extended to a martingale measure

Q̃ on the enlarged filtration.

This allows us to prove, in Section 3.6, the main result of the Chapter:

Theorem 1.2. Let (Ω, F̃T , F̃) be the enlarged filtered space as in Section 3.5 and let H̃ be the set

of d-dimensional discrete time F̃-predictable stochastic process. Then

No Arbitrage de la classe S in H̃ ⇔M 6= ∅ and N does not contain sets of S

In other words, properties of the family S have a dual counterpart in terms of polar sets of the

pricing functional.

In Section 3.6 we further provide our version of the Fundamental Theorem of Asset Pricing: the

equivalence between absence of Arbitrage de la classe S in H̃ and the existence of martingale

measures Q ∈M with the property that Q(C) > 0 for all C ∈ S.

Model Independent Arbitrage. When S := {Ω} then the Arbitrage de la classe S corre-

sponds to the notion of a Model Independent Arbitrage. As Ω never belongs to the class of polar

sets N , from Theorem 1.2 we directly obtain the following result.

Theorem 1.3.

No Model Independent Arbitrage in H̃ ⇐⇒M 6= ∅.

An analogous result has been obtained in [AB13] when considering a single risky asset S as the

canonical process on the path space Ω = RT+, a possibly uncountable collection of options (ϕα)α∈A

whose prices are known at time 0, and when trading is possible through semi-static strategies (see

also [Ho11] for a detailed discussion). Assuming the existence of an option ϕ0 with a specific

payoff, equivalence in Theorem 1.3 is achieved in the original measurable space (Ω,F ,F,H). In

our setup, although we are free to choose a (d + k)-dimensional process S for modeling a finite
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number of options (k) on possibly different underlying (d), the class H̃ of admissible strategies are

dynamic in every Si for i = 1, . . . d + k. In order to incorporate the case of semi-static strategies

we would need to consider restrictions on H̃ and for this reason the two results are not directly

comparable.

Arbitrage with respect to open sets. In the topological context, in order to obtain full

support martingale measures, the suitable choice for S is the class of open sets. This selection de-

termines the notion of Arbitrage with respect to open sets, which we shorten as “Open Arbitrage”:

• Open Arbitrage is an admissible trading strategy H such that V0(H) = 0,

VT (H)(ω) ≥ 0 ∀ω ∈ Ω and V+
H contains an open set.

This concept admits the following dual reformulation (see Section 5, Proposition 1.64). An Open

Arbitrage consists in a trading strategy H ∈ H and a non empty weakly open set U ⊆ P such that

for all P ∈ U , VT (H) ≥ 0 P -a.s. and P (V+
H) > 0. (4)

The robust feature of an open arbitrage is therefore evident from this dual formulation, as a certain

strategy H satisfies (4) if it represents an arbitrage in the classical sense for a whole open set of

probabilities. In addition, if H is such strategy and we disregard any finite subset of probabilities

then H remains an Open Arbitrage. Moreover every weakly open subset of U contains a full

support probability P (see Lemma 1.57) under which H is a P -Arbitrage in the classical sense.

Full support martingale measures can be efficiently used whenever we face model mis-specification,

since they have a well spread support that captures the features of the sample space of events

without neglecting significantly large parts. In Dolinski and Soner [DS14] the equivalence of a

local version of NA and the existence of full support martingale measures has been proven (see

Section 2.5, [DS14]) in a continuous time market determined by one risky asset with proportional

transaction costs.

Feasibility and approximating measures. In Section 4 we answer the question: which are

the markets that are feasible in the sense that the properties of the market are nice for “most”

probabilistic models? Clearly this problem depends on the choice of the feasibility criterion, but to

this aim we do not need to exhibit a priori a subset of probabilities. On the opposite, given a market

(described without reference probability), the induced set of No Arbitrage models (probabilities)

for that market will determine if the market itself is feasible or not. What is needed here is a good

notion of “most” probabilistic models.

More precisely given the price process S defined on (Ω,F), we introduce the set P0 of probability

measures that exhibit No Arbitrage in the classical sense:

P0 = {P ∈ P | No Arbitrage with respect to P} . (5)

When

P0
τ

= P

with respect to some topology τ the market is feasible in the sense that any “bad” reference

probability can be approximated by No Arbitrage probability models. We show in Proposition

1.58 that this property is equivalent to the existence of a full support martingale measure if we

choose τ as the weak* topology.
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One other contribution of this thesis, proven in Section 4, is the following characterization of

feasible markets and absence of Open Arbitrage in terms of existence of full support martingale

measures. We denote with P+ ⊂ P the set of full support probability measures.

Theorem 1.4. The following are equivalent:

(1) The market is feasible, i.e P0
σ(P,Cb)

= P;

(2) There exists P ∈ P+ s.t. No Arbitrage w.r.to P (in the classical sense) holds true;

(3) M∩P+ 6= ∅;

(4) No Open Arbitrage holds with respect to admissible strategies H̃.

Riedel [Ri15] already pointed out the relevance of the concept of full support martingale measures

in a probability-free set up. Indeed in a one period market model and under the assumption that

the price process is continuous with respect to the state variable, he showed that the absence of a

one point arbitrage (non-negative payoff, with strict positivity in at least one point) is equivalent

to the existence of a full support martingale measure. As shown in Section 5.1, this equivalence

is no longer true in a multiperiod model (or in a single period model with non trivial initial σ-

algebra), even for price processes continuous in ω. In this Chapter we consider a multi-assets

multi-period model without ω-continuity assumptions on the price processes and we develop the

concept of open arbitrage, as well as its dual reformulation, that allows for the equivalence stated

in the above theorem.

Finally, we present a number of simple examples that point out: the differences between single

period and multi-period models (examples 1.13, 1.66, 1.67); the geometric approach to absence of

arbitrage and existence of martingale measures (Section 3.1); the need in the multi-period setting

of the disintegration of the atoms (example 1.26); the need of the one period anticipation of some

polar sets (example 1.32).

1. Financial Markets

We will assume that (Ω, d) is a Polish space and F = B(Ω) is the Borel σ-algebra induced by the

metric d. The requirement that Ω is Polish is used in Section 3.3 to guarantee the existence of

a proper regular conditional probability, see Theorem 1.28. We fix a finite time horizon T ≥ 1,

a finite set of time indices I := {0, . . . , T} and we set: I1 := {1, . . . , T}. Let F := {Ft}t∈I be a

filtration with F0 = {∅,Ω} and FT ⊆ F . We denote with L(Ω,Ft;Rd) the set of Ft-measurable

random variables X : Ω→ Rd and with L(Ω,F;Rd) the set of adapted processes X = (Xt)t∈I with

Xt ∈ L(Ω,Ft;Rd).
The market consists of one non-risky asset S0

t = 1 for all t ∈ I, constantly equal to 1, and d ≥ 1

risky assets Sj = (Sjt )t∈I , j = 1, . . . , d, that are real-valued adapted stochastic processes. Let

S = [S1, . . . , Sd] ∈ L(Ω,F;Rd) be the d-dimensional vector of the (discounted) price processes.

In this Chapter we focus on arbitrage conditions, and therefore without loss of generality we

will restrict our attention to self-financing trading strategies of zero initial cost. Therefore, we

may assume that a trading strategy H = (Ht)t∈I1 is an Rd-valued predictable stochastic process:

H = [H1, . . . ,Hd], with Ht ∈ L(Ω,Ft−1;Rd), and we denote with H the class of all trading
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strategies. The (discounted) value process V (H) = (Vt(H))t∈I is defined by:

V0(H) := 0, Vt(H) :=

t∑
i=1

Hi · (Si − Si−1), t ≥ 1.

A (discrete time) financial market is therefore assigned, without any reference probability measure,

by the quadruple [(Ω, d); (B(Ω),F);S;H] satisfying the previous conditions.

Notation 1.5. For F-measurable random variables X and Y , we write X > Y (resp. X ≥ Y,

X = Y ) if X(ω) > Y (ω) for all ω ∈ Ω (resp. X(ω) ≥ Y (ω), X(ω) = Y (ω) for all ω ∈ Ω).

1.1. Probability and martingale measures. Let P := P(Ω) be the set of all probabilities

on (Ω,F) and Cb := Cb(Ω) the space of continuous and bounded functions on Ω. Except when

explicitly stated, we endow P with the weak∗ topology σ(P, Cb), so that (P, σ(P, Cb)) is a Polish

space (see [AB06] Chapter 15 for further details). The convergence of Pn to P in the topology

σ(P, Cb) will be denoted by Pn
w→ P and the σ(P, Cb) closure of a set Q ⊆ P will be denoted with

Q.
We define the support of an element P ∈ P as

supp(P ) =
⋂
{C ∈ C | P (C) = 1}

where C are the closed sets in (Ω, d). Under our assumptions the support is given by

supp(P ) = {ω ∈ Ω | P (Bε(ω)) > 0 for all ε > 0},

where Bε(ω) is the open ball with radius ε centered in ω.

Definition 1.6. We say that P ∈ P has full support if supp(P ) = Ω and we denote with

P+ := {P ∈ P | supp(P ) = Ω}

the set of all probability measures having full support.

Observe that P ∈ P+ if and only if P (A) > 0 for every open set A. Full support measures are

therefore important, from a topological point of view, since they assign positive probability to all

open sets.

Definition 1.7. The set of F-martingale measures is

M(F) = {Q ∈ P | S is a (Q,F)-martingale} . (6)

and we set: M :=M(F), when the filtration is not ambiguous, and

M+ =M∩P+.

Definition 1.8. Let P ∈ P and G ⊆ F be a sub σ-algebra of F . The generalized conditional

expectation of a non negative X ∈ L(Ω,F ,R) is defined by:

EP [X | G] := lim
n→+∞

EP [X ∧ n | G],

and for X ∈ L(Ω,F ,R) we set EP [X | G] := EP [X+ | G] − EP [X− | G], where we adopt the

convention ∞−∞ = −∞. All basic properties of the conditional expectation still hold true (see

for example [FKV09]). In particular if Q ∈ M and H ∈ H then EQ[Ht · (St − St−1) | Ft−1] =

Ht · EQ[(St − St−1) | Ft−1] = 0 Q-a.s., so that EQ[VT (H)] = 0 Q-a.s.
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2. Arbitrage de la classe S

Let H ∈ H and recall that V+
H := {ω ∈ Ω | VT (H)(ω) > 0} and that V0(H) = 0.

Definition 1.9. Let P ∈ P. A P -Classical Arbitrage is a trading strategy H ∈ H such that:

• VT (H) ≥ 0 P−a.s., and P (V+
H) > 0

We denote with NA(P ) the absence of P -Classical Arbitrage.

Recall the definition of Arbitrage de la classe S stated in the Introduction.

Definition 1.10. Some examples of Arbitrage de la classe S:

(1) H is a 1p-Arbitrage when S = {C ∈ F | C 6= ∅}. This is the weakest notion of arbitrage

since V+
H might reduce to a single point. The 1p-Arbitrage corresponds to the definition

given in [Ri15]. This can be easily generalized to the following notion of n point Arbitrage:

H is an np-Arbitrage when

S = {C ∈ F | C has at least n elements} ,

and might be significant for Ω (at most) countable.

(2) H is an Open Arbitrage when S = {C ∈ B(Ω) | C open non-empty}.
(3) H is a P ′-q.s. Arbitrage when S = {C ∈ F | P (C) > 0 for some P ∈ P ′}, for a fixed

family P ′ ⊆ P. Notice that S = (N (P ′))c, the complements of the polar sets of P ′. Then

there are No P ′-q.s. Arbitrage if:

H ∈ H such that VT (H)(ω) ≥ 0 ∀ω ∈ Ω⇒ VT (H) = 0 P ′-q.s.

This definition is similar to the No Arbitrage condition in [BN15], the only difference

being that here we require VT (H)(ω) ≥ 0 ∀ω ∈ Ω, while in the cited reference it is only

required VT (H) ≥ 0 P ′-q.s.. Hence No P ′-q.s. Arbitrage is a condition weaker than No

Arbitrage in [BN15].

(4) H is a P -a.s. Arbitrage when S = {C ∈ F | P (C) > 0} for a fixed P ∈ P. As in the

previous example the No P -a.s. Arbitrage is a weaker condition than the No P -Classical

Arbitrage condition, the only difference being that here we require VT (H)(ω) ≥ 0 ∀ω ∈ Ω,

while in the classical definition it is only required VT (H) ≥ 0 P -a.s.

(5) H is a Model Independent Arbitrage when S = {Ω}, in the spirit of [AB13, DH07,

CO11].

(6) H is an ε-Arbitrage when S = {Cε(ω) | ω ∈ Ω}, where ε > 0 is fixed and Cε(ω) is the

closed ball in (Ω, d) of radius ε and centered in ω.

Obviously, for any class S,

No 1p-Arb.⇒ No Arb. de la classe S ⇒ No Model Ind. Arb. (7)

and these notions depend only on the properties of the financial market and are not necessarily

related to any probabilistic models.

Remark 1.11. The No Arbitrage concepts defined above, as well as the possible generalization of

No Free Lunch de la classe S, can be considered also in more general, continuous time, financial
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market models. We choose to present our theory in the discrete time framework, as the subsequent

results in the next sections will rely crucially on the discrete time setting.

Example 1.12. The flexibility of our approach relies on the arbitrary choice of the class S. Con-

sider Ω = C0([0, T ];R) which is a Polish space once endowed with the supremum norm ‖ · ‖∞. We

may consider two classes

S∞ = { open balls in ‖ · ‖∞} and S1 = { open balls in ‖ · ‖1}

where ‖ω‖1 =
∫ T

0
|ω(t)|dt. Notice that since the integral operator

∫ T
0
| · |dt : C0([0, T ];R) → R is

‖ · ‖∞-continuous every open ball in ‖ · ‖1 is also open in ‖ · ‖∞. Hence every Arbitrage de la classe

S1 is also an Arbitrage de la classe S∞ but not the converse.

For instance consider a market described by an underlying process S1 and a digital option S2,

where trading is allowed only in a set of finite times {0, 1, . . . , T − 1}. Define S1
0(ω) = s0 for every

ω ∈ Ω and S1
t (ω) = ω(t) for the underlying and S2

t (ω) = 1B(ω)1T (t) for the option where the set

B is given by B := {ω | S1
t (ω) ∈ (s0 − ε, s0 + ε) ∀t ∈ [0, T ]}. A long position in the option at time

T − 1 is an arbitrage de la classe S∞ even though there does not exist any arbitrage de la classe

S1.

2.1. Defragmentation. When the reference probability P ∈ P is fixed, the market ad-

mits a P -Classical Arbitrage if and only if there exists t ∈ {1, . . . , T} and a random vector

η ∈ L0(Ω,Ft−1, P ;Rd) such that η · (St − St−1) ≥ 0 P -a.s. and P (η · (St − St−1) > 0) > 0

(see [DMW90] or [FS04], Proposition 5.11). In our context the existence of an Arbitrage de la

classe S, over a certain time interval [0, T ], does not necessarily imply the existence of a single time

step where the arbitrage is realized on a set in S. It might happen, instead, that the agent needs to

implement a strategy over multiple time steps to achieve an arbitrage de la classe S. The following

example shows exactly a simple case in which this phenomenon occurs. Recall that L(Ω,F ;Rd) is

the set of Rd-valued F-measurable random variables on Ω.

Example 1.13. Consider a 2 periods market model composed by two risky assets S1, S2 on (R,B(R))

which are described by the following trajectories

S1 :

3→ 3 ω ∈ A1

↗ 5 ω ∈ A2

2→ 2
↗
↘

↘ 1 ω ∈ A3

1→ 1 ω ∈ A4

S2 :

7→ 7 ω ∈ A1

↗ 3 ω ∈ A2

2→ 2
↗
↘

↘ 1 ω ∈ A3

1→ 1 ω ∈ A4

Consider H1 = (−1,+1) and H2 = (1A2∪A3
,−1A2∪A3

).

Then H1 ·(S1−S0) = 41A1
and H2 ·(S2−S1) = 21A2

. Choosing A1 = Q∩(0, 1), A2 = (R\Q)∩(0, 1)

and A3 = [1,+∞), A4 = (−∞, 0] we observe that an Open Arbitrage can be obtained only by a two

step strategy, while in each step we have only 1p-Arbitrages.

In general the multi step strategy realizes the Arbitrage de la classe S at time T even though it

does not yield necessarily a positive gain at each time: i.e. there might exist a t < T such that

{Vt(H) < 0} 6= ∅. This is the case of Example 1.32.
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In the remaining of this section ∆St = [S1
t − S1

t−1, . . . , S
d
t − Sdt−1].

Lemma 1.14. The strategy H ∈ H is a 1p-Arbitrage if and only if there exists a time t ∈ I1, an

α ∈ L(Ω,Ft−1;Rd) and a non empty A ∈ Ft such that

α(ω) ·∆St(ω) ≥ 0 ∀ω ∈ Ω

α(ω) ·∆St(ω) > 0 on A.
(8)

Proof. (⇒) Let H ∈ H be a 1p-Arbitrage. Set

t = min{t ∈ {1, . . . , T} | Vt(H) ≥ 0 with Vt(H)(ω) > 0 for some ω ∈ Ω}.

If t = 1, α = H1 satisfies the requirements. If t > 1, {Vt−1(H) < 0} 6= ∅ or {Vt−1(H) = 0} = Ω . In

the first case, for α = Ht1{Vt−1(H)<0} we have α ·∆St ≥ 0 with strict inequality on {Vt−1(H) < 0}.
In the latter case α = Ht satisfies the requirements.

(⇐) Take α ∈ L(Ω,Ft−1;Rd) as by assumption and define H ∈ H by Hs = 0 for every s 6= t and

Ht = α. Hence VT (H) = Vt(H) so that VT (H) ≥ 0. Note that {ω ∈ Ω | VT (H)(ω) > 0} = {ω ∈
Ω | α ·∆St(ω) > 0} and the proof is complete. �

Remark 1.15. Notice that only the implication (⇐) of the previous Lemma holds true for Open

Arbitrage. This means that there exists an Open Arbitrage if we can find a time t ∈ I1, an

α ∈ L(Ω,Ft−1;Rd) and a set A ∈ Ft containing an open set such that (8) holds true. Similarly for

Arbitrage de la classe S. On the other hand the converse is false in general as shown by Example

1.13.

The following Lemma provides a full characterization of Arbitrages de la classe S by the mean of

a multi-step decomposition of the strategy.

Lemma 1.16 (Defragmentation). The strategy H ∈ H is an Arbitrage de la classe S if and only if

there exists:

• a finite family {Ut}t∈I with Ut ∈ Ft, Ut ∩ Us = ∅ for every t 6= s and
⋃
t∈I Ut contains

a set in S;

• a strategy Ĥ ∈ H such that VT (Ĥ) ≥ 0 on Ω, and Ĥt ·∆St > 0 on Ut for any Ut 6= ∅.

Proof. (⇒) Let H ∈ H be an Arbitrage de la classe S. Define Bt = {Vt(H) > 0} and

U1 = B1 ⇒ H1 ·∆S1(ω) > 0 ∀ω ∈ U1

U2 = Bc1 ∩B2 ⇒ H2 ·∆S2(ω) > 0 ∀ω ∈ U2

UT−1 = Bc1 ∩ . . . ∩BcT−2 ∩BT−1 ⇒ HT−1 ·∆ST−1(ω) > 0 ∀ω ∈ UT−1

UT = Bc1 ∩ . . . ∩BcT−2 ∩BcT−1 ∩ V+
H ⇒ HT ·∆ST (ω) > 0 ∀ω ∈ UT

From the definition of {U1, U2, . . . , UT } we have that V+
H ⊆

⋃T
i=1 Ui. Set Ĥ1 = H1 and consider

the strategy for every 2 ≤ t ≤ T given by

Ĥt(ω) = Ht(ω)1Dt−1
(ω) where Dt−1 =

(
t−1⋃
s=1

Us

)c
.

By construction Ĥ ∈ H and Ĥt ·∆St(ω) > 0 for every ω ∈ Ut.
(⇐) The converse implication is trivial. �
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3. Arbitrage de la classe S and Martingale Measures

Before addressing this topic in its full generality we provide some insights into the problem and we

introduce some examples that will help to develop the intuition on the approach that we adopt.

The required technical tools will then be stated in Sections 3.2 and 3.3.

Consider the family of polar sets of M

N := {A ⊆ A′ ∈ F | Q(A′) = 0 ∀ Q ∈M} .

In Nutz and Bouchard [BN15] the notion of NA(P ′) for any fixed family P ′ ⊆ P is defined by:

VT (H) ≥ 0 P ′ − q.s.⇒ VT (H) = 0 P ′ − q.s.

where H is a predictable process which is measurable with respect to the universal completion

of F. One of the main results in [BN15] asserts that, under NA(P ′), there exists a class Q′ of

martingale measures which shares the same polar sets of P ′. If we take P ′ = P then NA(P) is

equivalent to No (universally measurable) 1p-Arbitrage, since P contains all Dirac measures. In

addition, the class of polar sets of P is empty. In Section 3.4 we will show that this same result is

true also in our setting as a consequence of Proposition 1.34. The existence of a class of martingale

measures with no polar sets implies that ∀ω ∈ Ω there exists Q ∈ M such that Q({ω}) > 0 and

since Ω is a separable space we can find a dense set D := {ωn}∞n=1, with associated Qn ∈M, such

that
∑∞
n=1

1
2nQ

n is a full support martingale measure (see Lemma 1.76).

Proposition 1.17. We have the following implications

(1) No 1p-Arbitrage =⇒M+ 6= ∅.
(2) M+ 6= ∅ =⇒ No Open Arbitrage.

Proof. The proof of 1. is postponed to Section 3.4.

We prove 2. by observing that for any open set O and Q ∈M+ we have Q(O) > 0. Since for any

H ∈ H such that VT (H) ≥ 0 we have Q(V+
H) = 0, then V+

H does not contain any open set. �

Example 1.18. Note however that the existence of a full support martingale measure is compatible

with 1p-Arbitrage so that the converse implication of 1. in Proposition 1.17 does not hold. Let

(Ω,F) = (R+,B(R+)). Consider the market with one risky asset: S0 = 2 and

S1 =

{
3 ω ∈ R+ \Q
2 ω ∈ Q+

(9)

Then obviously there exists a 1p-Arbitrage even though there exist full support martingale measures

(those probabilities assigning positive mass only to each rational).

As soon as we weaken No 1p-Arbitrage, by adopting any other no arbitrage conditions in Definition

1.10, there is no guarantee of the existence of martingale measures, as shown in Section 3.1. In

order to obtain the equivalence betweenM 6= ∅ and No Model Independent Arbitrage (the weakest

among the No Arbitrage conditions de la classe S) we will enlarge the filtration, as explained in

Section 3.5.
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3.1. Examples. This section provides a variety of counterexamples to many possible conjec-

tures on the formulation of the Fundamental Theorem of Asset Pricing in the model-free framework.

A financially meaningful example is the one of two call options with the same spot price p1 = p2

but with strike prices K1 > K2, formulated in [DH07], which already highlights that the equiva-

lence between absence of model independent arbitrage and existence of martingale measures is not

possible.

We consider a one period market (i.e. T = 1) with (Ω,F) = (R+,B(R+)) and with d = 2 risky

assets S = [S1, S2], in addition to the riskless asset S0 = 1. Admissible trading strategies are

represented by vectors H = (α, β) ∈ R2 so that

VT (H) = α∆S1 + β∆S2,

where ∆Si = Si1 − Si0 for i = 1, 2. Let S0 = [S1
0 , S

2
0 ] = [2, 2],

S1
1 =

{
3 ω ∈ R+ \Q
2 ω ∈ Q+

; S2
1 =


1 + exp(ω) ω ∈ R+ \Q
1 ω = 0

1 + exp(−ω) ω ∈ Q+ \ {0}
(10)

and F = FS . We notice the following simple facts.

(1) There are no martingale measures:

M = ∅.

Indeed, if we denote by Mi the set of martingale measures for the ith asset we have

M1 = {Q ∈ P | Q(R+ \Q) = 0} and ∀Q ∈M2, Q(R+ \Q) > 0.

(2) The final value of the strategy H = (α, β) ∈ R2 is

VT (H) =


α+ β(exp(ω)− 1) ω ∈ R+ \Q
−β ω = 0

β(exp(−ω)− 1) ω ∈ Q+ \ {0}
.

Only the strategies H ∈ R2 having β = 0 and α ≥ 0 satisfy VT (H)(ω) ≥ 0 for all

ω ∈ Ω. For β = 0 and α > 0, V+
H = R+ \ Q and therefore there are No Open Ar-

bitrage and No Model Independent Arbitrage (but M = ∅). This fact persists

even if we impose boundedness restrictions on the process S or on the admissible strate-

gies H, as the following modification of the example shows: let S0 = [2, 2] and take S1
1 =

[2+exp(−ω)]1R+\Q +21Q+ and S2
1 = [1+exp(ω)∧4]1R+\Q +1{0}+[1+exp(−ω)]1Q+\{0}.

(3) SetH+ := {H ∈ H | VT (H) ≥ 0 and V0(H) = 0} so that we have
⋃
H∈H+ V+

H = R+\Q $
Ω. This shows that the condition M = ∅ is not equivalent to

⋃
H∈H+ V+

H = Ω i.e. it is

not true that the set of martingale measures is empty iff for every ω there exists a strategy

H that gives positive wealth on ω and V0(H) = 0. In order to recover the equivalence

between these two concepts (as in Proposition 1.43) we need to enlarge the filtration in

the way explained in Section 3.5.

(4) By fixing any probability P there exists a P -Classical Arbitrage, since the (probabilistic)

Fundamental Theorem of Asset Pricing holds true and M = ∅. Indeed:
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Figure 1. In examples (10) and (11), 0 does not belong to the relative interior of the convex

set generated by the points {[∆S1(ω),∆S2(ω)]}ω∈Ω and hence there exists an hyperplane

which separates the points.

Legend:

R+ \Q

{0}

Q+ \ {0}

−4 −2 2 4
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0

∆S2

∆S1

Ex. (10)

−4 −2 2 4

−2

2

4

6

0

∆S2

∆S1

Ex. (11)

(a) If P (R+ \Q) = 0, then β = −1 (α = 0) yield a P -Classical arbitrage, since V+
H = Q+

and P (V+
H) = 1

(b) If P (R+ \ Q) > 0 then β = 0 and α = 1 yield a P -Classical arbitrage, since V+
H =

R+ \Q and P (V+
H) > 0.

(5) Instead, by adopting the definition of a P -a.s. Arbitrage (VT (H)(ω) ≥ 0 for all ω ∈ Ω

and P (V+
H) > 0), there are two possibilities:

(a) If P (R+ \ Q) = 0, No P -a.s. Arbitrage holds, since only the strategies H ∈ R2

having β = 0 and α ≥ 0 satisfies VT (H)(ω) ≥ 0 for all ω ∈ Ω and V+
H = R+ \Q.

(b) If P (R+\Q) > 0, then β = 0 and α = 1 yield a P -a.s. arbitrage, since V+
H = R+\Q

and P (V+
H) > 0.

(6) Geometric approach: If we plot the vector [∆S1,∆S2] on the real plane (see Figure 1)

we see that there exists a unique separating hyperplane given by the vertical axis. As

a consequence 1p-Arbitrage can arise only by investment in the first asset (β = 0). For

a separating hyperplane we mean an hyperplane in Rd passing by the origin and such

that one of the associated half-space contains (not necessarily strictly contains) all the

image points of the random vector [∆S1,∆S2]. Let us now consider this other example

on (R+,B(R+). Let S0 = [2, 2], and

S1
1 =


3 ω ∈ R+ \Q
2 ω = 0

1 ω ∈ Q+ \ {0}
S2

1 =


7 ω ∈ R+ \Q
2 ω = 0

0 ω ∈ Q+ \ {0}
(11)

In both examples (10) and (11) there exist separating hyperplanes i.e. a 1p-Arbitrage

can be obtained (see Figure 1). In example (10)M is empty and we find a unique separat-

ing hyperplane: this hyperplane cannot give a strict separation of the set [∆S1(ω),∆S2(ω)]ω∈Q+

even though Q+ does not support any martingale measure. In example (11)M = {δω=0},
only the event {ω = 0} supports a martingale measure and there exists an infinite number

of hyperplanes which strictly separates the image of both polar sets R+ \Q and Q+ \{0},
namely, those separating the convex grey region in Figure 1.
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In conclusion the previous examples show that in a model-free environment the existence of a

martingale measure can not be implied by arbitrage conditions - at least of the type considered so

far. This is an important difference between the model-free and quasi-sure analysis approach (see

for example [BN15]):

• Model free approach: we deduce the ‘richness’ of the set M of martingale measures

starting directly from the underlying market structure (Ω,F , S) and we analyze the class

of polar sets with respect to M.

• Quasi sure approach: the class of priors P ′ ⊆ P and its polar sets are given and one for-

mulates a No-Arbitrage type condition to guarantee the existence of a class of martingale

measures which has the same polar sets as the set of priors.

An alternative definition of Arbitrage. The notion of No P -Classical Arbitrage, P (VT (H) <

0) = 0 implies P (VT (H) > 0) = 0, can be rephrased as: V0(H) = 0 and

{VT (H) < 0} is negligible ⇒ {VT (H) > 0} is negligible (12)

or in our setting

V−H does not contain sets in S ⇒ V+
H does not contain sets in S. (13)

where V−H := {ω ∈ Ω | VT (H)(ω) < 0}. In the definition (13) we are giving up the requirement

VT (H) ≥ 0, and so the differences with respect to the existence of arbitrage opportunities showed

in Item 5 of the example in this section disappear. However, this alternative definition of arbitrage

does not work well, as shown by the following example. Consider (Ω,F) = (R+,B(R+), a one

period market with one risky asset: S0 = 2,

S1 =


3 ω ∈ [1,∞)

2 ω = [0, 1) \Q
1 ω ∈ [0, 1) ∩Q

(14)

Consider the strategy of buying the risky asset: H = 1. Then V−H = [0, 1) ∩ Q does not contain

an open set, V+
H = [1,∞) contains open sets. Therefore, there is an Open Arbitrage (in the

modified definition obtained from (13)) but there are full support martingale measures, for example

Q([0, 1) ∩ Q) = Q([1,∞)) = 1
2 . Notice also that by enlarging the filtration the Open Arbitrage

would persist.

A concept of no arbitrage similar to (12) was introduced by Cassese [C08], by adopting an ideal

N of “negligible” sets - not necessarily derived from probability measures. In a continuous time

setting, he proves that the absence of such an arbitrage is equivalent to the existence of a finitely

additive “martingale measure”. Our results are not comparable with those by [C08] since the

markets are clearly different, we do not require any structure on the family S and [C08] works

with finitely additive measures. In addition, the example (14) just discussed shows the limitation in

our setting of the definition (12) for finding martingale probability measures with the appropriate

properties.

3.2. Technical Lemmata. Recall that S = (St)t∈I is an Rd-valued stochastic process defined

on a Polish space Ω endowed with its Borel σ-algebra F = B(Ω) and I1 := {1, . . . , T}.
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Through the rest of the Chapter we will make use of the natural filtration FS = {FSt }t∈I of the

process S and for ease of notation we will not specify S, but simply write Ft for FSt .

For the sake of simplicity we indicate by Z := Mat(d× (T +1);R) the space of d× (T +1) matrices

with real entries representing the space of all the possible trajectories of the price process. Namely

for every ω ∈ Ω we have (S0(ω), S1(ω), . . . , ST (ω)) = (z0, z1, . . . , zT ) =: z ∈ Z. Fix s ≤ t: for

any z ∈ Z we indicate , the components from s to t by zs:t = (zs, . . . , zt) and zt:t = zt. Similarly

Ss:t = (Ss, Ss+1, . . . , St) represents the process from time s to t.

We denote with ri(K) the relative interior of a set K ⊆ Rd. In this section we will make extensive

use of the geometric properties of the image in Rd of the increments of the price process ∆St :=

St−St−1 relative to a set Γ ⊆ Ω. The typical sets that we will consider are the level sets Γ = Σzt−1,

where:

Σzt−1 := {ω ∈ Ω | S0:t−1(ω) = z0:t−1} ∈ Ft−1, z ∈ Z, t ∈ I1 (15)

and Γ = Azt−1, the intersection of the level set Σzt−1 with a set A ∈ Ft−1:

Azt−1 := {ω ∈ A | S0:t−1(ω) = z0:t−1} ∈ Ft−1. (16)

For any Γ ⊆ Ω define the convex cone:

(∆St(Γ))cc := co
(
conv

(
∆St(Γ)

))
∪ {0} ⊆ Rd. (17)

If 0 ∈ ri(∆St(Γ))cc we cannot apply the hyperplane separating theorem to the convex sets {0}
and ri(∆St(Γ))cc, namely, there is no H ∈ Rd that satisfies H · ∆St(ω) ≥ 0 for all ω ∈ Γ with

strict inequality for some of them. As intuitively evident, and shown in Corollary 1.21 below,

0 ∈ ri(∆St(Γ))cc if and only if No 1p-Arbitrage are possible on the set Γ, since a trading strategy

on Γ with a non-zero payoff always yields both positive and negative outcomes.

In this situation, for Γ = Σzt−1, the level set is not suitable for the construction of a 1p-Arbitrage

opportunity and sets with this property are naturally important for the construction of a martingale

measure. We wish then to identify, for Γ = Σzt−1 satisfying 0 /∈ ri(∆St(Γ))cc, those subset of Σzt−1

that retain this property. This result is contained in the following key Lemma 1.20.

Observe first that for a convex cone K ⊆ Rd such that 0 /∈ ri(K) we can consider the family

V = {v ∈ Rd | ‖v‖ = 1 and v · y ≥ 0 ∀ y ∈ K} so that

K =
⋂
v∈V
{y ∈ Rd | v · y ≥ 0} =

⋂
n∈N
{y ∈ Rd | vn · y ≥ 0},

where {vn} = (Qd ∩ V ) \ {0}.

Definition 1.19. Adopting the above notations, we will call
∑∞
n=1

1
2n−1 vn ∈ V the standard sep-

arator.

Lemma 1.20. Fix t ∈ I1 and Γ 6= ∅. If 0 /∈ ri(∆St(Γ))cc then there exist β ∈ {1, . . . , d},
H1, . . . ,Hβ, B1, . . . , Bβ , B∗ with Hi ∈ Rd, Bi ⊆ Γ and B∗ := Γ \

(
∪βj=1 B

j
)

such that:

(1) Bi 6= ∅ for all i = 1, . . . β, and {ω ∈ Γ | ∆St(ω) = 0} ⊆ B∗ which may be empty;

(2) Bi ∩Bj = ∅ if i 6= j;

(3) ∀i ≤ β, Hi ·∆St(ω) > 0 for all ω ∈ Bi and Hi ·∆St(ω) ≥ 0 for all ω ∈ ∪βj=iBj ∪B∗.
(4) ∀H ∈ Rd s.t. H ·∆St ≥ 0 on B∗ we have H ·∆St = 0 on B∗.



24 1. ARBITRAGE AND MARTINGALES

Moreover, for z ∈ Z, A ∈ Ft−1 and Γ = Azt−1 (or Γ = Σzt−1) we have Bi, B∗ ∈ Ft and

H(ω) :=

β∑
i=1

Hi1Bi(ω) (18)

is an Ft-measurable random variable that is uniquely determined when we adopt for each Hi the

standard separator.

Clearly in these cases, β, Hi, H, Bi and B∗ will depend on t and z and whenever necessary they

will be denoted by βt,z, Hi
t,z, Ht,z, Bit,z and B∗t,z.

Proof. Set A0 := Γ and K0 = (∆St(Γ))cc ⊆ Rd and the possibly empty set ∆0 := {ω ∈ A0 |
∆St(ω) = 0}.

Step 1:: The set K0 ⊆ Rd is non-empty and convex and so ri
(
K0
)
6= ∅. From 0 /∈ ri

(
K0
)

there exists a standard separator H1 ∈ Rd such that we have: (i) H1 ·∆St(ω) ≥ 0 for all

ω ∈ A0; (ii) B1 := {ω ∈ A0 | H1 ·∆St(ω) > 0} is non-empty.

Set A1 := (A0 \ B1) = {ω ∈ A0 | H1 ·∆St(ω) = 0} and let K1 := (∆St(A
1))cc, which is

a non-empty convex set with dim(K1) ≤ d− 1.

If 0 ∈ ri
(
K1
)

(this includes the case K1 = {0}) the procedure is complete: one cannot

separate {0} from the relative interior of K1. The conclusion is that β = 1, B∗ = A1 =

A0 \ B1 which might be empty, and ∆0 ⊆ B∗. Notice that if K1 = {0} then B∗ = ∆0

which might be empty. Otherwise:

Step 2:: If 0 /∈ ri
(
K1
)

we find the standard separator H2 ∈ Rd such that H2 ·∆St(ω) ≥ 0,

for all ω ∈ A1, and B2 := {ω ∈ A1 | H2 · ∆St(ω) > 0} is non-empty. Denote A2 :=

(A1 \B2) and let K2 = (∆St(A
2))cc with dim(K2) ≤ d− 2.

If 0 ∈ ri
(
K2
)

(this includes K2 = {0}) the procedure is complete and we have the

conclusions with β = 2 and B∗ = A1 \ B2 = A0 \ (B1 ∪ B2), and ∆0 ⊆ B∗. Notice that

if K1 = {0} then B∗ = ∆0. Otherwise:

...:

Step d-1: If 0 /∈ ri
(
Kd−2

)
... SetBd−1 6= ∅, Ad−1 = (Ad−2\Bd−1), Kd−1 = (∆St(A

d−1))cc

with dim(Kd−1) ≤ 1. If 0 ∈ ri
(
Kd−1

)
the procedure is complete. Otherwise:

Step d:: We necessarily have 0 /∈ ri
(
Kd−1

)
, so that dim(Kd−1) = 1, and the convex cone

Kd−1 necessarily coincides with a half-line with origin in 0. We find a separator Hd ∈ Rd

with Bd := {ω ∈ Ad−1 | Hd ·∆St(ω) > 0} 6= ∅ and the set

B∗ := {ω ∈ Ad−1 | ∆St(ω) = 0} = {ω ∈ A0 | ∆St(ω) = 0} = ∆0

satisfies: B∗ = Ad−1 \ Bd. Set Ad := Ad−1 \ Bd = B∗ = ∆0 and Kd := (∆St(A
d))cc.

Then Kd = {0}.

Since dim(∆St(Γ))cc ≤ d we have at most d steps. In case β = d we have Γ = A0 =
⋃d
i=1B

i ∪∆0.

To prove the last assertion we note that for any fixed t and z, Bi are Ft-measurable since Bi =

Azt−1 ∩ (f ◦St)−1((0,∞)) where f : Rd 7→ R is the continuous function f(x) = Hi · (x− zt−1) with

Hi ∈ Rd fixed. �
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Corollary 1.21. Let t ∈ I1, z ∈ Z, A ∈ Ft−1, Γ = Azt−1. Then 0 ∈ ri(∆St(Γ))cc if and only if

there are No 1p-Arbitrage on Γ, i.e.:

for all H ∈ Rd s.t. H(St − zt−1) ≥ 0 on Γ we have H(St − zt−1) = 0 on Γ. (19)

Proof. Let 0 /∈ ri(∆St(Γ))cc. Then from Lemma 1.20-3) with i = 1 we obtain a 1p-Arbitrage

H1 on Γ = ∪βj=1B
j ∪ B∗, since B1 6= ∅. Viceversa, if 0 ∈ ri(∆St(Γ))cc we obtain (19) from the

argument following equation (17). �

Definition 1.22. For A ∈ Ft−1 and Γ = Azt−1 we naturally extend the definition of βt,z in Lemma

1.20 to the case of 0 ∈ ri(∆St(Γ))cc using

βt,z = 0
·⇔ 0 ∈ ri(∆St(Γ))cc

with B0
t,z = ∅ and B∗t,z = Azt−1 ∈ Ft−1. In this case, we also extend the definition of the random

variable in (18) as Ht,z(ω) ≡ 0.

Corollary 1.23. Let t ∈ I1, z ∈ Z, A ∈ Ft−1 and Γ = Azt−1 with 0 /∈ ri(∆St(Γ))cc. For any

P ∈ P s.t. P (Γ) > 0 let

j := inf{1 ≤ i ≤ β | P (Bit,z) > 0}.

If j <∞ the trading strategy H(s, ω) := Hj1Γ(ω)1{t}(s) is a P -Classical Arbitrage.

Proof. From Lemma 1.20 we obtain: Hj∆St(ω) > 0 on Bjt,z with P (Bjt,z) > 0;Hj∆St(ω) ≥ 0

on
⋃βt,z
i=j B

i
t,z ∪B∗t,z and P (Bkt,z) = 0 for 1 ≤ k < j. �

Remark 1.24. Let D ⊆ Rd and C := (D)cc ⊆ Rd be the convex cone generated by D. If 0 ∈ ri(C)

then for any x ∈ D there exist a finite number of elements xj ∈ D such that 0 is a convex

combination of {x, x1, . . . , xm} with a strictly positive coefficient of x. Indeed, fix x ∈ D and recall

that for any convex set C ⊆ Rd we have

ri(C) := {z ∈ C | ∀x ∈ C ∃ε > 0 s.t. z − ε(x− z) ∈ C} .

As 0 ∈ ri(C) and x ∈ D ⊆ C we obtain −εx ∈ C, for some ε > 0, and thus: ε
1+εx+ 1

1+ε (−εx) = 0.

Since −εx ∈ C then it is a linear combination with non negative coefficients of elements of D

and we obtain: ε
1+εx+ 1

1+ε

∑m
j=1 αjxj = 0, which can be rewritten as: λx+

∑m
j=1 λjxj = 0, with

xj ∈ D, λ +
∑m
j=1 λj = 1, λ > 0 and λj ≥ 0. When the set D ⊆ Rd is the set of the image

points of the increment of the price process [∆St(ω)]ω∈Γ, for a fixed time t, this observation shows

that, however we choose ω ∈ Γ we can construct a conditional martingale measure, relatively to the

period [t − 1, t], which assigns a strictly positive weight to ω and has finite support. The measure

is determined by the coefficients {λ, λ1, . . . , λm} in the equation: 0 = λ∆St(ω) +
∑m
j=1 λj∆St(ωj).

This heuristic argument is made precise in the following Corollary and it will be used also in the

proof of Proposition 1.34.

Corollary 1.25. Let z, t, Γ = Azt−1 and B∗t,z as in Lemma 1.20.

For all U ⊆ B∗t,z, U ∈ F there exists Q ∈M(B∗t,z) s.t. Q(U) > 0

where M(B) = {Q ∈ P | Q(B) = 1 and EQ[St | Ft−1] = St−1 Q-a.s.}, for B ∈ F .
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Proof. From Lemma 1.20-4) there are no 1p-Arbitrage restricted to Γ = B∗t,z. Applying

Corollary 1.21 this implies that 0 ∈ ri(∆St(B∗t,z))cc. Take any ω ∈ U ⊆ B∗t,z . Applying Remark

1.24 to the set D := ∆St(B
∗
t,z) and to x := ∆St(ω) ∈ D, we deduce the existence of {ω1, . . . , ωm} ⊆

B∗t,z and non negative coefficients {λt(ω1), . . . , λt(ωm)} and λt(ω) > 0 such that:

λt(ω) +

m∑
j=1

λt(ωj) = 1 and 0 = λt(ω)∆St(ω) +

m∑
j=1

λt(ωj)∆St(ωj).

Since {ω1, . . . , ωm} ⊆ B∗t,z and ω ∈ B∗t,z we have St−1(ωj) = zt−1 and St−1(ω) = zt−1. Therefore:

0 = λt(ω)(St(ω)− zt−1) +

m∑
j=1

λt(ωj)(St(ωj)− zt−1), (20)

so that Q({ω}) = λt(ω) and Q({ωj}) = λt(ωj), for all j, give the desired probability. �

Example 1.26. Let (Ω,F) = (R+,B(R+)) and consider a single period market with d = 3 risky

asset St = [S1
t , S

2
t , S

3
t ] with t = 0, 1 and S0 = [2, 2, 2]. Let

S1
1(ω) =


1 ω ∈ R+ \Q

2 ω ∈ Q ∩ [1/2,+∞)

3 ω ∈ Q ∩ [0, 1/2)

S2
1(ω) =


2 ω ∈ R+ \Q

1 + ω2 ω ∈ Q ∩ [1/2,+∞)

1 + ω2 ω ∈ Q ∩ [0, 1/2)

S3
1(ω) =


2 + ω2 ω ∈ R+ \Q

2 ω ∈ Q ∩ [1/2,+∞)

2 ω ∈ Q ∩ [0, 1/2)

Fix t = 1 and z ∈ Z with z0 = S0. It is easy to check that in this case βt,z = 2 with B1
t,z = R+ \Q,

B2
t,z = Q∩ [0, 1/2), B∗t,z = Q∩ [1/2,+∞). The corresponding strategies H = [h1, h2, h3] (standard

in the sense of Lemma 1.20) are given by H1
t,z = [0, 0, 1] and H2

t,z = [1, 0, 0]. Note that H1
t,z is

a 1p-arbitrage with V+
H1
t,z

= B1
t,z. We have therefore that B1

t,z is a null set with respect to any

martingale measure. The strategy H2
t,z satisfies VT (H2

t,z) ≥ 0 on (B1
t,z)

c with V+
H2
t,z

= B2
t,z hence,

B2
t,z is also an M-polar set. This example shows the need of a multiple separation argument, as

it is not possible to find a single separating hyperplane H ∈ Rd such that the image points of

B1
t,z ∪B2

t,z (which isM-polar), through the random vector ∆S, are strictly contained in one of the

associated half-spaces. We have indeed that B2
t,z is a subset of {ω ∈ Ω | H1

t,z(S1 − S0) = 0} where

H1
t,z is the only 1p-arbitrage in this market.

The corollaries 1.23 and 1.25 show the difference between the sets Bi and B∗. Restricted to the

time interval [t−1, t], a probability measure whose mass is concentrated on B∗ admits an equivalent

martingale measure while for those probabilities that assign positive mass to at least one Bi an

arbitrage opportunity can be constructed. We can summarize the possible situations as follows.

Corollary 1.27. For Γ = Azt−1, with A ∈ Ft−1, and M(B) defined in Corollary 1.25 we have:

(1) B∗t,z = Azt−1 ⇔ No 1p-Arbitrage on Azt−1
·⇔ 0 ∈ ri(∆St(Azt−1))cc.

(2) B∗t,z = ∅⇔ 0 /∈ conv
(
∆St(A

z
t−1)

)



3. ARBITRAGE DE LA CLASSE S AND MARTINGALE MEASURES 27

∆S1

∆S2

∆S3Legend:

B2
t,z

B1
t,z

B∗t,z

Figure 2. Decomposition of Ω in Example 1.26

(3) βt,z = 1 and B∗t,z 6= ∅ =⇒ there exists H ∈ Rd, H 6= 0 such that B∗t,z = {ω ∈ Azt−1 |
H(St(ω) − zt−1) = 0} is “martingalizable” i.e. ∀U ⊂ B∗t,z, U ∈ F there exists Q ∈
M(B∗t,z) s.t. Q(U) > 0.

Proof. Equivalence 1. immediately follows from Corollary 1.21 and Definition 1.22. To show

2. we use the sets Ki for i = 1, . . . , βt,z and the other notations from the proof of Lemma 1.20.

Suppose first that 0 /∈ conv
(
∆St(Γ)

)
which implies 0 /∈ ri(∆St(Γ))cc and ∆0 = ∅. From the

assumption we have 0 /∈ conv
(
∆St(C)

)
for any subset C ⊆ Γ so, in particular, 0 /∈ ri(Ki) unless

Ki = {0}. This implies B∗t,z = ∆0 = ∅.

Suppose now 0 ∈ conv
(
∆St(Γ)

)
. If 0 ∈ ri(∆St(Γ))cc, by Definition 1.22 we have B∗t,z = Γ which

is non empty. Suppose then 0 /∈ ri(∆St(Γ))cc. As 0 ∈ conv
(
∆St(Γ)

)
there exists n ≥ 1 such that:

0 =
∑n
j=1 λj(St(ωj)−zt−1), with

∑n
j=1 λj = 1, λj > 0 and ωj ∈ Γ for all j. If 0 is an extremal point

then n = 1, St(ω1)−zt−1 = 0 and {ω1} ∈ ∆0 ⊆ B∗t,z. If n ≥ 2 we have 0 ∈ conv(∆St{ω1, . . . , ωn})
so that for any H ∈ Rd that satisfies H ·∆St(ωi) ≥ 0 for any i = 1, . . . , n we have H ·∆St(ωi) = 0.

Hence {ω1, . . . , ωn} ⊆ B∗t,z by definition of B∗t,z. We conclude by showing 3. From Lemma 1.20

items 3 and 4, if we select H = H1 then {ω ∈ Γ | H1(St(ω) − zt−1) = 0} = Γ \ B1
t,z = B∗t,z 6= ∅

and on B∗t,z we may apply Corollary 1.25. �

3.3. On M-polar sets. We consider for any t ∈ I the σ-algebra Ft :=
⋂
Q∈M F

Q
t , where FQt

is the Q-completion of Ft. Ft is the universal completion of Ft with respect toM =M(F). Notice

that the introduction of this enlarged filtration needs the knowledge a priori of the whole classM
of martingale measures. Recall that any measure Q ∈ M can be uniquely extended to a measure

Q on the enlarged σ-algebra FT so that we can write with slight abuse of notationM(F) =M(F)

where F := {Ft}t∈I .

We wish to show now that under any martingale measure the sets Bit,z (and their arbitrary unions)

introduced in Lemma 1.20 must be null-sets. To this purpose we need to recall some properties of

a proper regular conditional probability (see Theorems 1.1.6, 1.1.7 and 1.1.8 in Stroock-Varadhan

[SV06]).
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Theorem 1.28. Let (Ω,F , Q) be a probability space, where Ω is a Polish space, F is the Borel

σ-algebra, Q ∈ P. Let A ⊆ F be a countably generated sub σ-algebra of F . Then there exists a

proper regular conditional probability, i.e. a function QA(·, ·) : (Ω,F) 7→ [0, 1] such that:

a) for all ω ∈ Ω, QA(ω, ·) is a probability measure on F ;

b) for each B ∈ F , the function QA(·, B) is a version of Q(B | A)(·);
c) ∃N ∈ A with Q(N) = 0 such that QA(ω,B) = 1B(ω) for ω ∈ Ω \N and B ∈ A
d) In addition, if X ∈ L1(Ω,F , Q) then EQ[X | A](ω) =

∫
Ω
X(ω̃)QA(ω, dω̃) Q− a.s.

Recall that Ft = FSt , t ∈ I, is countably generated.

Lemma 1.29. Fix t ∈ I1 = {1, . . . , T}, A ∈ Ft−1, Q ∈ M and for z ∈ Z consider the set

Azt−1 := {ω ∈ A | S0:t−1(ω) = z0:t−1}. Then⋃
z∈Z

{ω ∈ Azt−1 s.t. QFt−1
(ω,∪βt,zi=1B

i
t,z) > 0}

is a subset of an Ft−1-measurable Q-null set.

Proof. If Q(A) = 0 there is nothing to show. Suppose now Q(A) > 0. In this proof we set for

the sake of simplicity X := St, Y := EQ[X | Ft−1] = St−1 Q-a.s. β := βt,z and A := Ft−1 = FSt−1.

Set

Dz
t :=

{
ω ∈ Azt−1 such that QA(ω,∪βi=1B

i
t,z) > 0

}
.

If z ∈ Z is such that 0 ∈ ri(∆St(Azt−1))cc then ∪βi=1B
i
t,z = ∅ and Dz

t = ∅. So we can consider

only those z ∈ Z such that 0 /∈ ri(∆St(Azt−1))cc. Fix such z.

Since A = FSt−1 is countably generated, Q admits a proper regular conditional probability QA.

From Theorem 1.28 d) we obtain:

Y (ω) =

∫
Ω

X(ω̃)QA(ω, dω̃) Q− a.s.

As Azt−1 ∈ A, by Theorem 1.28 c) there exists a set N ∈ A with Q(N) = 0 so that QA(ω,Azt−1) = 1

on Azt−1 \N and therefore we have∫
Ω

X(ω̃)QA(ω, dω̃) =

∫
Azt−1

X(ω̃)QA(ω, dω̃) ∀ω ∈ Azt−1 \N. (21)

Since 0 /∈ ri(∆St(Γ))cc we may apply Lemma 1.20: for any i = 1, . . . , β, there exists Hi ∈ Rd such

that Hi ·(X(ω̃)−zt−1) ≥ 0 for all ω̃ ∈ ∪βl=iBlt,z∪B∗t,z and Hi ·(X(ω̃)−zt−1) > 0 for every ω̃ ∈ Bit,z.
Now we fix ω ∈ Dz

t \N ⊆ Azt−1 \N. Then the index j := min{1 ≤ i ≤ β | QA(ω,Bit,z) > 0} is well

defined and: i) Hj · (X(ω̃)− zt−1) > 0 on Bjt,z, (ii) QA(ω,Bjt,z) > 0 iii) Hj · (X(ω̃)− zt−1) ≥ 0 on

∪βl=jBlt,z ∪B∗t,z; iv) QA(ω,Bit,z) = 0 for i < j. From i) and ii) we obtain

QA(ω,Azt−1 ∩ {Hj · (X − zt−1) > 0}) ≥ QA(ω,Bjt,z) > 0.

From iii) and iv) we obtain:

QA(ω, {Hj · (X − zt−1) ≥ 0}) ≥ QA(ω,∪βl=jB
l
t,z ∪B∗t,z)

≥ QA(ω,Azt−1)−QA(ω,∪i<jBit,z) = 1.



3. ARBITRAGE DE LA CLASSE S AND MARTINGALE MEASURES 29

Hence

Hj ·

(∫
Azt−1

X(ω̃)QA(ω, dω̃)− zt−1

)
=

∫
Azt−1

Hj · (X(ω̃)− zt−1)QA(ω, dω̃) > 0

and therefore, from equation (21) and from zt−1 = Y (ω), we have:

Hj ·
(∫

Ω

X(ω̃)QA(ω, dω̃)− Y (ω)

)
> 0.

As this holds for any ω ∈ Dz
t \N we obtain:

Dz
t \N ⊆ {ω ∈ Ω | Y (ω) 6=

∫
Ω

X(ω̃)QA(ω, dω̃)} =: N∗ ∈ Ft−1

with Q(N∗) = 0. Hence, Dz
t ⊆ N ∪ N∗ := N0 with Q(N0) = 0 and N0 not dependent on z. As

this holds for every z ∈ Z we conclude that
⋃
z∈ZD

z
t ⊆ N0. �

Corollary 1.30. Fix t ∈ I1 and Q ∈M. If

Bt :=
⋃
z∈Z

βt,z⋃
i=1

Bit,z

for Bit,z given in Lemma 1.20 with Γ = Σzt−1 or Γ = Azt−1 (defined in equations (15) and (16)),

then Bt is a subset of an Ft-measurable Q null set.

Proof. First we consider the case Γ = Σzt−1 and Bit,z given in Lemma 1.20 with Γ = Σzt−1.

As in the previous proof, we denote the σ-algebra Ft−1 with A := Ft−1. Notice that if z ∈ Z

is such that 0 ∈ ri(∆St(Γ))cc then ∪βt,zi=1B
i
t,z = ∅, hence we may assume that 0 /∈ ri(∆St(Γ))cc .

From the proof of Lemma 1.29 ⋃
z∈Z

Dz
t ⊆ N0 = N ∪N∗

with Q(N0) = 0. Notice that if ω ∈ Ω\N0 then, for all z ∈ Z, either ω /∈ Σzt−1 or QA(ω,∪βt,zi=1B
i
t,z) =

0. Hence ω ∈ Σzt−1\N0 impliesQA(ω,∪βt,zi=1B
i
t,z) = 0. By Theorem 1.28 c) we haveQA(ω, (Σzt−1)c) =

0 for all ω ∈ Σzt−1 \N0.

Fix now ω ∈ Σzt−1 \ N0 and consider the completion FQA(ω,·)
t of Ft and the unique extension on

FQA(ω,·)
t of QA(ω, ·), which we denote with Q̂A(ω, ·) : FQA(ω,·)

t → [0, 1].

From QA(ω, (Σzt−1)c) = 0 we deduce that Bt ∩ (Σzt−1)c ∈ FQA(ω,·)
t and Q̂A(ω,Bt ∩ (Σzt−1)c) = 0.

From Bt ∩ Σzt−1 = ∪βt,zi=1B
i
t,z and QA(ω,∪βt,zi=1B

i
t,z) = 0 we deduce: Bt ∩ Σzt−1 ∈ F

QA(ω,·)
t and

Q̂A(ω,Bt ∩ Σzt−1) = 0. Then Bt = (Bt ∩ Σzt−1) ∪ (Bt ∩ (Σzt−1)c) ∈ FQA(ω,·)
t and Q̂A(ω,Bt) = 0.

Since ω ∈ Σzt−1 \ N0 was arbitrary, we showed that Q̂A(ω,Bt) = 0 for all ω ∈ Σzt−1 \ N0 and all

z ∈ Z. Since
⋃
z∈Z(Σzt−1 \N0) = Ω \N0 we have:

Bt ∈ FQA(ω,·)
t and Q̂A(ω,Bt) = 0 for all ω ∈ Ω \N0 with Q(N0) = 0. (22)

Now consider the σ-algebra

F̂t =
⋂

ω∈Ω\N0

FQA(ω,·)
t

and observe that Bt ∈ F̂t. Notice that if a subset B ⊆ Ω satisfies: B ⊆ C for some C ∈ Ft with

QA(ω,C) = 0 for all ω ∈ Ω \N0, then

Q(C) =

∫
Ω

QA(ω,C)Q(dω) =

∫
Ω\N0

QA(ω,C)Q(dω) = 0,
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so that B ∈ FQt . This shows that Ft ⊆ F̂t ⊆ FQt . Hence Bt ∈ FQt . Let Q̂ : F̂t → [0, 1] be defined

by Q̂(·) :=
∫

Ω
Q̂A(ω, ·)Q(dω). Then Q̂ is a probability which satisfies Q̂(B) = Q(B) for every

B ∈ Ft and therefore is an extension on F̂t of Q. Since Q : FQt → [0, 1] is the unique extension on

FQt of Q and Ft ⊆ F̂t ⊆ FQt then Q̂ is the restriction of Q on F̂t and

Q(Bt) = Q̂(Bt) =

∫
Ω

Q̂A(ω,Bt)Q(dω) =

∫
Ω\N0

Q̂A(ω,Bt)Q(dω) = 0.

Suppose now A ∈ Ft−1, Γ = Azt−1 and set Ct :=
⋃
z∈Z{∪

βt,z
i=1B

i
t,z} where Bit,z is given in Lemma

1.20 with Γ = Azt−1. Fix any ω ∈ A. Then Σ
S0:T (ω)
t ⊆ A since A ∈ Ft−1. As a consequence

Ct ⊆ Bt. �

Corollary 1.31. Fix t ∈ I1 = {1, . . . , T} and for A ∈ Ft−1 consider Azt−1 = {ω ∈ A | S0:t−1(ω) =

z0:t−1} 6= ∅.

Then for any Q ∈ M the set
⋃
{Azt−1 | 0 /∈ conv

(
∆St(A

z
t−1)

)
} is a subset of an Ft−1-measurable

Q-null set and as a consequence is an M-polar set.

Proof. From Corollary 1.27, the condition 0 /∈ conv
(
∆St(A

z
t−1)

)
implies that ∪βt,zi=1B

i
t,z =

Azt−1. From Theorem 1.28 we haveQA(ω,Azt−1) = 1 onAzt−1\N , Dz
t = {ω ∈ Azt−1|QFt−1

(ω,Azt−1) >

0} ⊇ Azt−1 \N and(⋃
{Azt−1 | 0 /∈ conv

(
∆St(A

z
t−1)

)
} \N

)
⊆
⋃
z∈Z

Dz
t ⊆ N0 ∈ Ft−1.

�

3.3.1. Backward effect in the multiperiod case. The following example shows that additional

care is required in the multi-period setting:

Example 1.32. Let Ω = {ω1, ω2, ω3, ω4} and consider a single risky asset St with t = 0, 1, 2.

S0 = 7 S1(ω) =

8 ω ∈ {ω1, ω2}

3 ω ∈ {ω3, ω4}
S2(ω) =



9 ω = ω1

6 ω = ω2

5 ω = ω3

4 ω = ω4

Fix z ∈ Z with the first two components (z0, z1) equal to (7, 3).

First period: Σz0 = Ω and 0 ∈ ri(conv(∆S1(Σz0))) = (−4, 1) and there exists Q1 such that

Q1(ωi) > 0 for i = 1, 2, 3, 4 and S0 = EQ1 [S1]. If we restrict the problem to the first period only,

there exists a full support martingale measure for (S0, S1) and there are no M-polar sets.

Second period: Σz1 = {ω3, ω4}, 0 /∈ conv(∆S2(Σz1)) = [1, 2] and hence Σz1 is not supported by any

martingale measure for S, i.e. if Q ∈M then Q({ω3, ω4}) = 0.

Backward: As {ω3, ω4} is a Q null set for any martingale measure Q ∈M, then Q({ω1, ω2}) = 1.

This reflects into the first period by means of 0 /∈ conv(∆S1({ω1, ω2})) = {1} and we deduce that

also {ω1, ω2} is not supported by any martingale measure, implying M = ∅.

This example thus shows that new M-polar sets (as {ω3, ω4}) can arise at later times creating a

backward effect on the existence martingale measures. In order to detect these situations at time

t, we shall need to anticipate certain polar sets at posterior times.
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More formally we need to consider the following iterative procedure. Let

ΩT := Ω

Ωt−1 := Ωt \
⋃
z∈Z

{Σzt−1 | 0 /∈ conv
(
∆St(Σ̃

z
t−1)

)
}, t ∈ I1,

where

Σ̃zt−1 := {ω ∈ Ωt | S0:t−1 = z0:t−1}, t ∈ I1.

We show that the set Bit,z obtained from Lemma 1.20 with Γ = Σ̃zt belong to the family of polar

set of M(F):

N := {A ⊆ A′ ∈ F | Q(A′) = 0 ∀ Q ∈M(F)}

More precisely,

Lemma 1.33. For all t ∈ I1 and z ∈ Z consider the sets Bit,z from Lemma 1.20 with Γ = Σ̃zt−1.

Let

B̃t :=
⋃
z∈Z

{
∪βt,zi=1B

i
t,z

}
Dt−1 :=

⋃
z∈Z

{
Σzt−1 | 0 /∈ conv(∆St(Σ̃

z
t−1))

}
For any Q ∈ M, B̃t is a subset of a Ft-measurable Q-null set and Dt−1 is a subset of an Ft−1-

measurable Q-null set.

Proof. We prove this by backward induction. For t = T the assertion is true from Corollary

1.30 and Corollary 1.31. Suppose now the claim holds true for any k + 1 ≤ t ≤ T . From the

inductive hypothesis there exists NQ
k ∈ Fk such that Dk ⊆ NQ

k with Q(NQ
k ) = 0. Introduce the

auxiliary Fk-measurable random variable

XQ
k := Sk−11NQk

+ Sk1(NQk )c (23)

and notice that EQ[XQ
k | Fk−1] = Sk−1 Q-a.s. From ∆XQ

k := XQ
k − Sk−1 = 0 on NQ

k and

Ω \NQ
k ⊆ Ω \Dk, we can deduce that

0 /∈ ri(∆Sk(Σ̃zk−1))cc =⇒ 0 /∈ ri(∆XQ
k (Σzk−1))cc (24)

which implies B̃k ⊆ Bk(XQ
k )∪NQ

k where we denote Bk(XQ
k ) the set obtained from Corollary 1.30

with Γ = Σzk−1 and XQ
k which replaces Sk. According to Corollary 1.30 we find MQ

k ∈ Fk with

Q(MQ
k ) = 0 so that B̃k ⊆ Bk(XQ

k ) ∪NQ
k ⊆M

Q
k ∪N

Q
k . Since Q is arbitrary we have the thesis.

We now show the second assertion.

For every Q ∈M and ε = (ε, . . . , ε) ∈ Rd with ε > 0 we can define

SQk = (Sk−1 + ε)1NQk ∪M
Q
k

+ Sk1(NQk ∪M
Q
k )c (25)

and EQ[SQk | Fk−1] = Sk−1. With ∆SQk := SQk − Sk−1 we claim

Dk−1 ⊆
⋃
z∈Z

{Σzk−1 | 0 /∈ conv(∆SQk (Σzk−1))}. (26)

Indeed let z ∈ Z such that Σzk−1 ⊆ Dk−1 and observe that

0 /∈ conv(∆Sk(Σ̃zk−1))⇔ 0 /∈ conv(∆Sk(Σzk−1 \Dk)). (27)
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Since Σzk−1 \N
Q
k ⊆ Σzk−1 \Dk ⊆ B̃k ⊆ NQ

k ∪M
Q
k , then

Σzk−1 = (Σzk−1 ∩N
Q
k ) ∪ (Σzk−1 \N

Q
k ) ⊆ NQ

k ∪M
Q
k

⊆
⋃
z∈Z

{Σzk−1 | 0 /∈ conv(∆SQk (Σzk−1))}

for any Σzk−1 ⊆ Dk−1. Hence the claim since
⋃
z{Σzk−1 | 0 /∈ conv(∆SQk (Σzk−1))} is a subset of an

Fk−1-measurable Q-null set. �

3.4. On the maximal M-polar set and the support of martingale measures. The

sets introduced in Sections 3.2 and 3.3.1 provide a geometric decomposition of Ω in two parts,

Ω = Ω∗ ∪ Ωc∗ specified in Proposition 1.34 below. The set Ω∗ contains those events ω supported

by martingale measures, namely, for any of those events it is possible to construct a martingale

measure (even with finite support) that assign positive probability to ω. Observe that such a

decompostion is induced by S and it is determined prior to arbitrage considerations.

Proposition 1.34. Let {Ωt}t∈I as defined in Section 3.5 and, for any z ∈ Z, let βt,z and B∗t,z be

the index β and the set B∗ from Lemma 1.20 with Γ = Σ̃zt−1. Define

Ω∗ :=

T⋂
t=1

(⋃
z∈Z

B∗t,z

)
.

We have the following

M 6= ∅⇐⇒ Ω∗ 6= ∅⇐⇒M∩Pf 6= ∅,

where

Pf := {P ∈ P | supp(P ) is finite}

is the set of probability measures whose support is a finite number of ω ∈ Ω.

If M 6= ∅ then for any ω∗ ∈ Ω∗ there exists Q ∈ M such that Q({ω∗}) > 0, so that Ωc∗ is the

maximal M-polar set, i.e. Ωc∗ is an M-polar set and

∀N ∈ N we have N ⊆ Ωc∗. (28)

Proof. Observe first that:

Ωc∗ =

T⋃
t=1

B̃t.

From Lemma 1.33, B̃t is an M-polar set for any t ∈ I1, which implies Ωc∗ is an M-polar set.

Suppose now that Ω∗ = ∅ so that Ω =
⋃T
t=1 B̃t is a polar set. We can conclude that M = ∅.

Suppose now that Ω∗ 6= ∅. We show that for every ω∗ ∈ Ω∗ there exists a Q ∈ M such that

Q({ω∗}) > 0. Observe now that for any t ∈ I1 and for any ω ∈ Ω∗, 0 ∈ ri(∆St(B
∗
t,z))

cc with

z = S0:T (ω). As we did in Corollary 1.25, we apply Remark 1.24 and conclude that there exists a

finite number of elements of B∗t,z, named Ct(ω) := {ω, ω1, . . . , ωm} ⊆ B∗t,z, such that

St−1(ω) = λt(ω)St(ω) +

m∑
j=1

λt(ωj)St(ωj) (29)

where λt(ω) > 0 and λt(ω) +
∑m
j=1 λt(ωj) = 1.

Fix now ω∗ ∈ Ω∗. We iteratively build a set ΩTf which is suitable for being the finite support of a

discrete martingale measure (and contains ω∗).
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Start with Ω1
f = C1(ω∗) which satisfies (29) for t = 1. For any t > 1, given Ωt−1

f , define Ωtf :=

{Ct(ω) | ω ∈ Ωt−1
f }. Once ΩTf is settled, it is easy to construct a martingale measure via (29):

Q({ω}) =

T∏
t=1

λt(ω) ∀ω ∈ ΩTf

Since, by construction, λt(ω∗) > 0 for any t ∈ I1, we have Q({ω∗}) > 0 and Q ∈M∩Pf .

To show (28) just observe from the previous line that Ω∗ is not M-polar, while Ωc∗ =
⋃T
t=1 B̃t is

M-polar thanks to Lemma 1.33. �

Proof of Proposition 1.17. The absence of 1p-Arbitrages readly implies that Ω∗ = Ω (see

Corollary 1.27). Take a dense subset {ωn}n∈N of Ω: from Proposition 1.34 for any ωn there exists

a martingale measure Qn ∈ M such that Qn({ωn}) > 0. From Lemma 1.76 in the Appendix

Q :=
∑∞
i=1

1
2iQ

i ∈M, moreover Q({ωn}) > 0 ∀n ∈ N. Since {ωn}n∈N is dense, Q is a full support

martingale measure. �

3.5. Enlarged Filtration and Universal Arbitrage Aggregator. In Sections 3.2 and 3.3

we solve the problem of characterizing theM-polar sets of a certain market model on a fixed time

interval [t− 1, t] for t ∈ I1 = {1, . . . , T}. In particular, if we look at the level sets Σzt−1 of the price

process (St)t∈I , we can identify the component of these sets that must be polar (Corollary 1.30)

which coincides with the whole level set when 0 /∈ conv(∆St(Σ
z
t−1)) (Corollary 1.31). Further care

is required in the multiperiod case due to the backward effects (see Section 3.3.1), but nevertheless

a full characterization of M-polar sets is obtained in Section 3.4 .

In this section we build a predictable strategy that embrace all the inefficiencies of the market.

Unfortunately, even on a single time-step, the polar set given by Corollary 1.30 belongs, in general,

to Ft (the universal M-completion), hence the trading strategies suggested by equation (18) in

Lemma 1.20 fail to be predictable. This reflects into the necessity of enlargement of the original

filtration by anticipating some one step-head information. Under this filtration enlargement, which

depends only on the underlying structure of the market, the set of martingale measures will not

change (see Lemma 1.41).

Definition 1.35. We call Universal Arbitrage Aggregator the strategy

H•t (ω)1Σzt−1
:=

{
Ht,z(ω) on

⋃βt,z
i=1 B

i
t,z

0 on Σzt−1 \
⋃βt,z
i=1 B

i
t,z

(30)

for t ∈ I1 = {1, . . . , T}, where z ∈ Z satisfies z0:t−1 = S0:t−1(ω) and Ht,z, B
i
t,z, B

∗
t,z comes from

(18) and Lemma 1.20 with Γ = Σ̃zt−1.

This strategy is predictable with respect to the enlarged filtration F̃ = {F̃t}t∈I given by

F̃t : = Ft ∨ σ(H•1 , . . . ,H
•
t+1), t ∈ {0, . . . , T − 1} (31)

F̃T : = FT ∨ σ(H•1 , . . . ,H
•
T ). (32)

Remark 1.36. The strategy H• in equation (30) satisfies VT (H•) ≥ 0 and

V+
H• =

T⋃
t=1

B̃t. (33)
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Indeed, from Lemma 1.20 Ht,z ·∆St > 0 on
⋃βt,z
i=1 B

i
t,z, so that

⋃T
t=1 B̃t ⊆ V+

H• . On the other hand,

V+
H• ⊆ {H•t 6= 0 for some t} ⊆

⋃T
t=1 B̃t.

For t < T we therefore conclude that F̃t ⊆ Ft ∨
⋃t+1
s=1Ns ⊆ Ft, where

Nt :=

A =
⋃
z∈V

⋃
i∈J(z)

Bit,z | for some
V ⊆ Z

J(z) ⊆ {1, . . . , βt,z}

 ∪Dt,

while for t = T , F̃T ⊆ FT ∨
⋃T
s=1Ns ⊆ FT .

For any Q ∈M and t ∈ I, any element of Nt is a subset of a Ft-measurable Q-null set .

From now on we will assume that the class of admissible trading strategies H̃ is given by all F̃
predictable processes. We can rewrite the definition of Arbitrage de la classe S using strategies

adapted to F̃. Namely, an Arbitrage de la classe S with respect to H̃ is an F̃-predictable processes

H = [H1, . . . ,Hd] such that VT (H) ≥ 0 and {VT (H) > 0} contains a set in S.

Remark 1.37. No Arbitrage de la classe S with respect to H̃ implies No Arbitrage de la classe S
with respect to H.

Remark 1.38. (Financial interpretation of the filtration enlargement) Fix t ∈ I1, z ∈ Z,

the event Σzt−1 = {S0:t−1 = z0:t−1} and suppose the market presents the opportunity given by

0 /∈ ri(∆St(Σ
z
t−1))cc. Consider two probabilities Pk ∈ P, k = 1, 2, for which Pk(Σzt−1) > 0.

Following Lemma 1.20, if jk := inf{i = 1, . . . , β | Pk(Bit,z) > 0} <∞, then the rational choice for

the strategy is Hjk , as shown in Corollary 1.23. Thus it is possible that jk < ∞ holds for both

probabilities, so that the two agents represented by P1 and P2 agree that Σzt−1 is a non-efficient

level set of the market, although it is possible that j1 6= j2 so that they might not agree on the

trading strategy Hjk that establish the Pk-Classical Arbitrage on Σzt−1. In such case, these two

arbitrages are realized on different subsets of Σzt−1 and generate different payoffs. Nevertheless

note that any of these agents is able to find an arbitrage opportunity among the finite number of

trading strategies {Hi
t,z}

βt,z
i=1 given by Lemma 1.20 (recall βt,z ≤ d). The filtration enlargement

allows to embrace them all. This can be referred to the analogous discussion in [DH07]: “A weak

arbitrage opportunity is a situation where we know there must be an arbitrage but we cannot tell,

without further information, what strategy will realize it”.

We expand on this argument more formally. Recall that Lemma 1.20 provides a partition of any

level set Σ̃zt−1 with the following property: for any ω ∈ Ωc∗ there exists a unique set Bit,z, identified

by i = i(ω), such that ω ∈ Bit,z with z = S0:T (ω). Define therefore, for any t ∈ I1 the multifunction

Ht(ω) :=
{
H ∈ Rd | H ·∆St(ω̂) ≥ 0 for any ω̂ ∈ ∪βt,zj=i(ω)B

j
t,z ∪B∗t,z

}
(34)

if ω ∈ Ωc∗ and Ht(ω) = {0} otherwise.

Observe that for any t ∈ I1, if ω1, ω2 satisfy S0:t−1(ω1) = S0:t−1(ω2) and i(ω1) = i(ω2) they belong

to the same Bit,z and Ht(ω1) = Ht(ω2). In other words Ht is constant on any Bit,z and therefore

for any open set V ⊆ Rd we have

{ω ∈ Ω | Ht(ω) ∩ V 6= ∅} =
⋃
z∈Z

βt,z⋃
i=1

{Bit,z | Ht(Bit,z) ∩ V 6= ∅}
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from which Ht is measurable with respect to Ft−1 ∨
⋃t
s=1Ns. Note that since H•t (ω) ∈ Ht(ω) for

any ω ∈ Ω, we have that H•t is a selection of Ht with the same measurability. We now show how the

process H := (Ht)t∈I1 provides P -Classical Arbitrage as soon as we choose a probabilistic model

P ∈ P which is not absolutely continuous with respect to the capacity ν(A) := supQ∈MQ(A),

A ∈ F (see Lemma 1.68 for more details on the properties of ν). The case of P � ν is discussed

in Remark 1.40.

Theorem 1.39. Let H be defined in (34). If P ∈ P is not absolutely continuous with respect to ν

then there exists an FP -predictable trading strategy HP which is a P -Classical Arbitrage and

HP (ω) ∈ H(ω) P -a.s.

where FPt denote the P -completion of Ft and FP := {FPt }t∈I .

Proof. See Appendix 6.1. �

From Lemma 1.68 if P ∈ P fulfills the hypothesis of Theorem 1.39 there exists an F-measurable

set F ⊆ (Ω∗)
c with P (F ) > 0. Note that from Remark 1.69 such a P always exists if Ωc∗ 6=

∅. Theorem 1.39 asserts therefore that for any probabilistic models which supports Ωc∗ an FP -

predictable arbitrage opportunity can be found among the values of the set-valued process H.

This property suggested us to baptize H as the Universal Arbitrage Aggregator and thus H• as a

(standard) selection of the Universal Arbitrage Aggregator. Note that we could have considered a

different selection of H satisfying the essential requirement (33). Since this choice does not affect

any of our results we simply take H•.

Remark 1.40. Recall from (5) that any P ∈ (P0)c admits a P -Classical Arbitrage opportunity.

We can distinguish between two different classes in (P0)c.

The first one is: PM := {P ∈ (P0)c | P << ν} or, in other words, an element P ∈ (P0)c belong

to PM iff any subset of Ωc∗ is P -null. Then for each probability P in this class, there exists a

probability P ′ with larger support that annihilates any P -Classical Arbitrage opportunity. Recall

Example 1.26 where Ω∗ = Q∩ [1/2,+∞). By choosing P = δ{ 1
2}
∈ PM we clearly have P -Classical

Arbitrages. Nevertheless by simply taking P ′ = λδ{ 1
2}

+ (1−λ)δ{2} for some 0 < λ < 1 this market

is arbitrage free. From a model-independent point of view these situations must not considered as

market inefficiencies since they vanish as soon as more trajectories are considered. This feature is

captured by the Universal Arbitrage Aggregator by means of the property: H• = 0 on Ω∗.

On the other hand when P ∈ (P0)c \ PM then P assigns a positive measure to some M-polar

F-measurable set F ∈ N . Therefore, any other P ′ ∈ P with larger support will satisfy P ′(F ) > 0

and the probabilistic model (Ω,F ,F, S, P ′) will also exhibit P ′-Classical Arbitrages. In the case

of Example 1.26 Ωc∗ = B1 ∪ B2 where B1 = R+ \ Q and B2 = Q ∩ [0, 1/2). If P (Ωc∗) > 0 the

market exhibits a P -Classical Arbitrage, but this is still valid for any probabilistic model given by

P ′ with P << P ′. In particular if P ′(B1) > 0 then H1 := [0, 0, 1] is a P ′-Classical Arbitrage,

while if P ′(B1) = 0 and P ′(B2) > 0 then H2 := [1, 0, 0] is the desired strategy. In this example,

H•1 = H11{R+\Q} +H21{Q∩[0,1/2)}.

Lemma 1.41. M(F)�M(F̃) with the following meaning
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• the restriction of any Q̃ ∈M(F̃) to FT belongs to M(F);

• any Q ∈M(F) can be uniquely extended to an element of M(F̃)

Proof. Let Q̃ ∈M(F̃) and Q ∈ P(Ω) be the restriction to FT . For any t ∈ I1 and A ∈ Ft−1

we have EQ[(St − St−1)1A] = EQ̃[(St − St−1)1A] = 0. Let now Q ∈ M(F). There exists a unique

extension to F̃T of Q that we call Q̃. For any Ã ∈ F̃t−1 with t ∈ I1 there exists A ∈ Ft−1 such that

Q̃(Ã) = Q̃(A) = Q(A). Hence EQ̃[(St − St−1)1Ã] = EQ̃[(St − St−1)1A] = EQ[(St − St−1)1A] = 0,

where the first equality follows from Q̃(Ã\A) = 0 and the second one from the FT -measurability

of (St − St−1)1A. We conclude that EQ̃[St | F̃t−1] = St−1, hence Q̃ ∈M(F̃). �

Remark 1.42. The filtration enlargement F̃ has been introduced to guarantee the aggregation of

1p-Arbitrages on the sets Bit,z obtained from Lemma 1.20 with Γ = Σ̃zt−1. If indeed we follow

[C12] we can consider any collection of probability measures Θt := {P it,z} on (Ω,F) such that

P it,z(B
i
t,z) = 1. Observe first that

FΘt
t ⊇ σ

(⋃
{Bit,z | z ∈ V, i ∈ J(z)}

)
with V and J(z) arbitrary. For any P it,z we have indeed that FP

i
t,z

t contains any subset of (Bit,z)
c.

Therefore if A =
⋃
{Bit,z | z ∈ V, i ∈ J(z)} we have

• if z /∈ V or i /∈ J(z) then A ∈ FP
i
t,z

t trivially because A ⊂ (Bit,z)
c

• if z ∈ V and i ∈ J(z) then A ∈ FP
i
t,z

t because A = Bit,z ∪ Ā with Ā ⊆ (Bit,z)
c

It is easy to check that Θt has the Hahn property on Ft as defined in Definition 3.2, [C12], with

Φt := Θt |Ft . We can therefore apply Theorem 3.16 in [C12] to find an FΘt
t - measurable function

Ht such that Ht = Hi
t,z P

i
t,z-a.s. which means that Ht(ω) = Hi

t,z for every ω ∈ Bit,z.

3.6. Main Results. Our aim now is to show how the absence of arbitrage de la classe S
provides a pricing functional via the existence of a martingale measure with nice properties.

Clearly the “No 1p-Arbitrage”condition is the strongest that one can assume in this model indepen-

dent framework and we have shown in Proposition 1.17 that it automatically implies the existence

of a full support martingale measure. On the other hand we are interested in characterizing those

markets which can exhibit 1p-Arbitrages but nevertheless admits a rational system of pricing rules.

The set Ω∗ introduced in Section 3.4 has a clear financial interpretation as it represents the set of

events for which No 1p-Arbitrage can be found. This is the content of the following Proposition.

Let (Ω, F̃T , F̃), H̃ as in Section 3.5 and define

H̃+ :=
{
H ∈ H̃ | VT (H)(ω) ≥ 0 ∀ω ∈ Ω and V0(H) = 0

}
.

Proposition 1.43. (1) V+
H• =

⋃
H∈H̃+ V+

H = Ωc∗

(2) M 6= ∅ if and only if
⋃
H∈H̃+ V+

H is strictly contained in Ω.

Proof. (2) follows from (1) and Proposition 1.34. Indeed: M 6= ∅ iff Ω∗ 6= ∅ iff Ωc∗ & Ω iff⋃
H∈H̃+ V+

H ( Ω. Now we prove (1). Given (33), we only need to show the inclusion
⋃
H∈H̃+ V+

H ⊆
Ωc∗. Let ω ∈

⋃
H∈H̃+ V+

H , then there exists H ∈ H̃+ and t ∈ I1 such that Ht(ω) · ∆St(ω) ≥ 0

∀ω ∈ Ω and Ht(ω) ·∆St(ω) > 0. Let z = S0:T (ω). From Lemma 1.20 there exists i ∈ {1, . . . , βt,z}
such that ω ∈ Bit,z hence we conclude that ω ∈ B̃t and therefore ω ∈ Ωc∗. �



3. ARBITRAGE DE LA CLASSE S AND MARTINGALE MEASURES 37

Proof of Theorem 1.2. We prove that

∃ an Arbitrage de la classe S in H̃ ⇐⇒M = ∅ or N contains sets of S.

Notice that if H ∈ H̃ satisfies VT (H)(ω) ≥ 0 ∀ω ∈ Ω then, if M 6= ∅, V+
H ∈ N , otherwise

0 < EQ[VT (H)] = V0(H) = 0 for Q ∈ M. If there exists an H̃-Arbitrage de la classe S then V+
H

contains a set in S and therefore N contains a set in S. If instead M = ∅ we already have the

thesis. For the opposite implication, we exploit the Universal Arbitrage H• ∈ H̃ as defined in

equation (30) satisfying VT (H•)(ω) ≥ 0 ∀ω ∈ Ω and V+
H• =

⋃T
t=1 B̃t = Ωc∗. If M = ∅ then, by

Proposition 1.34, Ωc∗ = Ω and H• is an H̃-Model Independent Arbitrage and hence (from (7)) H•

is also an Arbitrage de la classe S. If M 6= ∅ and N contains a set C in S then C ⊆ Ωc∗ = V+
H•

from (28) and Proposition 1.43, item 1. Therefore H• is an H̃-Arbitrage de la classe S. �

Definition 1.44. Define the following convex subset of P:

RS := {Q ∈ P | Q(C) > 0 for all C ∈ S} . (35)

The martingale measures having the property of the class RS will be associated to the Arbitrage

de la classe S.

Example 1.45. We consider the examples introduced in Definition 1.10. Suppose there are no

Model Independent Arbitrage in H̃. From Theorem 1.2 we obtain:

(1) 1p-Arbitrage: S = {C ∈ F | C 6= ∅}.
• No 1p-Arbitrage in H̃ iff N = ∅;

• RS = P+, if Ω finite or countable; otherwise RS = ∅.
• In the case of np-Arbitrage we have:

RS = {Q ∈ P | Q(A) > 0 for all A ⊆ Ω having at least n elements}

No np-Arbitrage in H̃ iff N does not contain elements having more than n − 1

elements.

(2) Open Arbitrage: S = {C ∈ B(Ω) | C open non-empty}.
• No Open Arbitrage in H̃ iff N does not contain non-empty open sets;

• RS = P+.

(3) P ′-q.s. Arbitrage: S = {C ∈ F | P (C) > 0 for some P ∈ P ′}, P ′ ⊆ P.

• No P ′-q.s. Arbitrage in H̃ iff N may contain only P ′-polar sets;

• RS = {Q ∈ P | P ′ � Q for all P ′ ∈ P ′}.
(4) P -a.s. Arbitrage: S = {C ∈ F | P (C) > 0}, P ∈ P.

• No P -a.s. Arbitrage in H̃ iff N may contain only P -null sets;

• RS = {Q ∈ P | P � Q}.
(5) Model Independent Arbitrage: S = {Ω}.

• RS = P.

(6) ε-Arbitrage: S = {Cε(ω) | ω ∈ Ω}, where ε > 0 is fixed and Cε(ω) is the closed ball in

(Ω, d) of radius ε and centered in ω.

• No ε-Arbitrage in H̃ iff N does not contain closed balls of radius ε;

• RS = {Q ∈ P | Q(Cε(ω)) > 0 for all ω ∈ Ω}.



38 1. ARBITRAGE AND MARTINGALES

Corollary 1.46. Suppose that the class S has the property:

∃ {Cn}n∈N ⊆ S s.t. ∀C ∈ S ∃n s.t. Cn ⊆ C. (36)

Then:

No Arb. de la classe S in H̃ ⇐⇒M∩RS 6= ∅. (37)

Proof. Suppose Q ∈ M ∩ RS 6= ∅. Then any polar set N ∈ N does not contain sets in

S (otherwise, if C ∈ S and C ⊆ N then Q(C) > 0 and Q(N) = 0, a contradiction). Then,

from Theorem 1.2, No Arbitrage de la classe S holds true. Conversely, suppose that No Arbitrage

de la classe S holds true so that M 6= ∅ and let {Cn}n∈C ⊆ S be the collection of sets in the

assumption. From Theorem 1.2, we obtain that N ∈ N does not contain any set in S, and so

each set Cn is not a polar set, hence for each n there exists Qn ∈ M such that Qn(Cn) > 0. Set

Q :=
∑∞
n=1

1
2nQn ∈M (see Lemma 1.76). Take any C ∈ S and let Cn ⊆ C. Then

Q(C) ≥ 1

2n
Qn(C) ≥ 1

2n
Qn(Cn) > 0

and Q ∈M∩RS . �

Corollary 1.47. Let S be the class of non empty open sets. Then the condition (36) is satisfied

and therefore

No Open Arbitrage in H̃ ⇐⇒M+ 6= ∅. (38)

Proof. Consider a dense countable subset {ωn}n∈N of Ω, as Ω is Polish. Consider the open

balls:

Bm(ωn) :=

{
ω ∈ Ω | d(ω, ωn) <

1

m

}
, m ∈ N,

The density of {ωn}n∈N implies that Ω =
⋃
n∈NB

m(ωn) for any m ∈ N. Take any open set C ⊆ Ω.

Then there exists some n such that ωn ∈ C. Take m ∈ N sufficiently big so that Bm(ωn) ⊆ C. �

Corollary 1.48. Suppose that Ω is finite or countable. Then the condition (36) is fulfilled and

therefore:

No Arb. de la classe S in H̃ ⇐⇒M∩RS 6= ∅. (39)

In particular:

No 1p-Arbitrage in H̃ ⇐⇒ M+ 6= ∅. (40)

No P -a.s. Arbitrage in H̃ ⇐⇒ ∃ Q ∈M s.t. P � Q. (41)

No P ′-q.s. Arbitrage in H̃ ⇐⇒ ∃ Q ∈M s.t. P ′ � Q ∀P ′ ∈ P ′. (42)

Proof. Define S0 := {{ω} | ω ∈ Ω such that there exists C ∈ S with ω ∈ C}. Then S0 is at

most a countable set and satisfies condition (36). �

Remark 1.49. While (40) holds also for 1p-Arbitrage in H (see Proposition 1.65)), (41) and (42)

can not be improved. Indeed, by replacing in the example (10) R+ with Q+ and Q+ with N, Ω is

countable, we still have M = ∅ but there are No P -a.s. Arbitrage in H if P (Q+�N) = 0 (see

Section 3.1, item 5 (a)).
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Remark 1.50. There are other families of sets satisfying condition (36). For example, in a topo-

logical setting, nowhere dense subset of Ω (those having closure with empty interior) are often

considered “negligible” sets. Then the class of sets which are the complement of nowhere dense

sets, satisfies condition (36).

Remark 1.51. Condition (36) is not necessary to obtain the desired equivalence (37). Consider

for example the class S defining ε-Arbitrage in Example 1.45 item 6. In such a case condition

(36) fails, as soon as Ω is uncountable. However, we now prove that (37) holds true, when Ω = R.

We already know by the previous proof that M ∩ RS 6= ∅ implies No Arbitrage de la classe S
in H̃. For the converse, from No Arbitrage de la classe S in H̃ we know that each element in

S := {[r − ε, r + ε] | r ∈ R} is not a polar set. Consider the countable class

G := {[q − ε, q + ε] | q ∈ Q} ⊆ S.

Each set Gn ∈ G is not a polar set, hence for each n there exists Qn ∈M such that Qn(Gn) > 0.

Set Q :=
∑∞
n=1

1
2nQn ∈M (see Lemma 1.76). The set

D := {r ∈ R | Q([r − ε, r + ε]) = 0}

is at most countable. Indeed, any two distinct intervals J := [r− ε, r+ ε] and J ′ := [r′ − ε, r′ + ε],

with r, r′ ∈ D, must be disjoint, otherwise for a rational q between r and r′ we would have:

[q− ε, q+ ε] ⊆ J ∪ J ′ and thus Q([q− ε, q+ ε]) = 0, which is impossible by construction of Q. For

each rn ∈ D the set [rn − ε, rn + ε] ∈ S is not a polar set, hence for each n there exists Q̂n ∈ M
such that Q̂n([rn − ε, rn + ε]) > 0. Set Q̂ :=

∑∞
n=1

1
2n Q̂n ∈M. Thus Q := 1

2Q+ 1
2 Q̂ ∈M∩RS is

the desired measure.

4. Feasible Markets

We extend the classical notion of arbitrage with respect to a single probability measure P ∈ P to

a class of probabilities R ⊆ P as follows:

Definition 1.52. The market admits R-Arbitrage if

• for all P ∈ R there exists a P -Classical Arbitrage.

We denote with No R-Arbitrage the property: for some P ∈ R, NA(P ) holds true.

Remark 1.53 (Financial interpretation of R-Arbitrage.). If a model admits an R-Arbitrage then

the agent will not be able to find a fair pricing rule, whatever model P ∈ R he will choose. However,

the presence of an R-Arbitrage only implies that for each P there exists a trading strategy HP

which is a P -Classical Arbitrage and this is a different concept respect to the existence of one

single trading strategy H that realizes an arbitrage for all P ∈ R. In the particular case of R = P
this notion was firstly introduced in [DH07] as “Weak Arbitrage opportunity” and further studied

in [CO11, DOR14] and the reference therein. The No R-Arbitrage property above should not

be confused with the condition NA(R) introduced by Bouchard and Nutz [BN15] and recalled in

Section 3 as well as in Definition 1.10, item 3.

We set:

Pe(P ) = {P ′ ∈ P | P ′ ∼ P} , Me(P ) = {Q ∈M | Q ∼ P}
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In discrete time financial markets the Dalang-Morton-Willinger Theorem applies, so that NA(P )

iff Me(P ) 6= ∅.

Proposition 1.54. Suppose that R ⊆ P has the property: P ∈ R implies Pe(P ) ⊆ R. Then

No R-Arbitrage iff M∩R 6= ∅.

In particular

No RS-Arbitrage iffM∩RS 6= ∅,

No P+-Arbitrage iff M+ 6= ∅,

No P-Arbitrage iff M 6= ∅.

where RS is defined in (35) and all arbitrage conditions here are with respect to H.

Proof. Suppose Q ∈ M ∩ R 6= ∅. Since Q ∈ R and NA(Q) holds true we have No R-

Arbitrage. Viceversa, suppose No R-Arbitrage holds true. Then there exists P ∈ R for which

NA(P ) holds true and therefore there exists Q ∈ Me(P ). The assumption Pe(P ) ⊆ R implies

Q ∈Me(P ) :=M∩Pe(P ) ⊆M∩R. The particular cases follows from the fact that RS has the

property: P ∈ RS implies Pe(P ) ⊆ RS . �

Remark 1.55. As a result of the previous proposition, whenever (37), (38), (39) hold true each

(equivalent) condition in (37), (38), (39) is also equivalent to: No RS-Arbitrage in H (with S :=

{open sets} for (38)).

Given the measurable space (Ω,F) and the price process S defined on it, in this section we in-

vestigate the properties of the set of arbitrage free (for S) probabilities on (Ω,F). A minimal

reasonable requirement on the financial market is the existence of at least one probability P ∈ P
that does not allow any P -Classical Arbitrage. Recall from the Introduction the definition of the

set

P0 = {P ∈ P | Me(P ) 6= ∅} .

By Proposition 1.54 and the definition of P0 it is clear that:

No P-Arbitrage⇔M 6= ∅⇔ P0 6= ∅,

and each one of these conditions is equivalent to No Model Independent Arbitrage with respect to

H̃ (Theorem 1.3). When P0 6= ∅, it is possible that only very few models (i.e. a “small” set of

probability measures - the extreme case being |P0| = 1) are arbitrage free. On the other hand, the

financial market could be very “well posed”, so that for “most” models no arbitrage is assured -

the extreme case being P0 = P.

To distinguish these two possible occurrences we analyze the conditions under which the set P0 is

dense in P: in this case even if there could be some particular models allowing arbitrage opportu-

nities, the financial market is well posed for most models.

Definition 1.56. The market is feasible if P0 = P

Recall that we are here considering the σ(P, Cb)- closure.

In Proposition 1.58 we characterize feasibility with the existence of a full support martingale

measure, a condition independent of any a priori fixed probability.
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Lemma 1.57. For all P ∈ P+

Pe(P ) = P and P+ is σ(P, Cb)-dense in P.

Proof. It is well know that under the assumption that (Ω, d) is separable, P+ 6= ∅. Let us

first show that ∀a ∈ Ω we have that δa ∈ Pe(P ) where P ∈ P+ and δa is the point mass probability

measure in a. Let

An :=

{
ω ∈ Ω : d(a, ω) <

1

n

}
.

This set is open in the topology induced by d and, since P has full support, 0 < P (An) < 1.

Define the conditional probability measure Pn := P (· | An). For all 0 < λ < 1, the measure

Pλ := λP (· | Acn) + (1− λ)P (· | An) has full support, is equivalent to P and Pλ converges weakly

to P (· | An) as λ ↓ 0. Hence: Pn ∈ Pe(P ). In order to show that Pn
w→ δa we prove that ∀ G open

lim inf Pn(G) ≥ δa(G). If a ∈ G then δa(G) = 1 and P (G ∩ An) = P (An) eventually so we have

that lim inf Pn(G) = 1 = δa(G). Otherwise if a 6∈ G then δa(G) = 0 and the inequality is obvious.

Since ∀a ∈ Ω we have that δa ∈ Pe(P ) then co({δa : a ∈ Ω}) ⊆ Pe(P ) and from the density of

the probability measures with finite support in P (respect to the weak topology) it follows that

Pe(P ) = P. The last assertion is obvious since Pe(P ) ⊆ P+ for each P ∈ P+. �

Proposition 1.58. The following assertions are equivalent:

(1) M+ 6= ∅;
(2) No P+-Arbitrage;

(3) P0 ∩ P+ 6= ∅;
(4) P0 ∩ P+ = P;

(5) P0 = P.

Proof. Since M+ 6= ∅ ⇔ No P+-Arbitrage by Proposition 1.54 and No P+-Arbitrage ⇔
P0 ∩ P+ 6= ∅ by definition, 1), 2), 3) are clearly equivalent.

Let us show that 3) ⇒ 4): Assume that P0 ∩ P+ 6= ∅ and observe that if P ∈ P0 ∩ P+ then

Pe(P ) ⊆ P0 ∩P+, which implies that Pe(P ) ⊆ P0 ∩ P+ ⊆ P. From Lemma 1.57 we conclude that

4) holds.

Observe now that the implication 4) ⇒ 5) holds trivially, so we just need to show that 5) ⇒ 3).

Let P ∈ P+. If P satisfies NA(P ) there is nothing to show, otherwise by 5) there exist a sequence

of probabilities Pn ∈ P0 such that Pn
w→ P and the condition NA(Pn) holds ∀n ∈ N. Define

P ∗ :=
∑+∞
n=1

1
2nPn and note that for this probability the condition NA(P ∗) holds true, so we just

need to show that P ∗ has full support. Assume by contradiction that supp(P ∗) ⊂ Ω. Then there

exist an open set O such that P ∗(O) = 0 and P (O) > 0 since P has full support. From Pn(O) = 0

for all n, and Pn
w→ P we obtain 0 = lim inf Pn(O) ≥ P (O) > 0, a contradiction. �

Remark 1.59. From the previous proof we observe that if the market is feasible then
⋃
P∈P0

supp(P ) =

Ω and no “significantly large parts” of Ω are neglected by no arbitrage models P ∈ P0.

Proof of Theorem 1.4. Proposition 1.58 guarantees: 1. ⇔ 2. ⇔ 3. and Corollary 1.47

assures: 3. ⇔ 4. �
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The case of a countable space Ω. When Ω = {ωn | n ∈ N} is countable it is possible to provide

another characterization of feasibility using the norm topology instead of the weak topology on

P. More precisely, we consider the topology induced by the total variation norm. A sequence of

probabilities Pn converges in variation to P if ‖Pn−P‖ → 0, where the variation norm of a signed

measure R is defined by:

‖R‖ = sup
(Ai,...,An)∈F

n∑
i=1

|R(Ai)|, (43)

and (Ai, . . . , An) is a finite partition of Ω.

Lemma 1.60. Let Ω be a countable space. Then ∀P ∈ P+

Pe(P )
‖·‖

= P+
‖·‖

= P.

Proof. Since Ω is countable we have that

P = {P := {pn}∞1 ∈ `1 | pn ≥ 0 ∀n ∈ N, ‖P‖1 = 1},

P+ = {P ∈ P | pn > 0 ∀n ∈ N},

with ‖ · ‖1 the `1 norm. Observe that in the countable case Pe(P ) = P+ for every P ∈ P+. So we

only need to show that for any P ∈ P and any ε > 0 there exists P ′ ∈ P+ s.t. ‖P − P ′‖1 ≤ ε.
Let P ∈ P \ P+. Then P = {pn}∞1 ∈ `1 and there exists at least one index n for which pn = 0.

Let α > 0 be the constant satisfying ∑
n∈N s.t. pn=0

α

2n
= 1.

There also exists one index n, say n1, for which 1 ≥ pn1
> 0. Let p := pn1

> 0.

For any positive ε < p, define P ′ = {p′n} by: p′n1
= p − ε

2 , p
′
n = pn for all n 6= n1 s.t. pn > 0,

p′n = α
2n

ε
2 for all n s.t. pn = 0. Then p′n > 0 for all n and

∑∞
n=1 p

′
n =

∑
n s.t.pn>0 pn = 1 , so that

P ′ ∈ P+ and ‖P − P ′‖1 = ε. �

Remark 1.61. In the general case, when Ω is uncountable, while it is still true that P+
‖·‖

= P, it

is no longer true that Pe(P )
‖·‖

= P for any P ∈ P+.

Take Ω = [0, 1] and Pe(λ) the set of probability measures equivalent to Lebesgue. It is easy to see

that δ0 /∈ Pe(λ)
‖·‖

since ‖P − δ0‖ ≥ P ((0, 1]) = 1 .

Proposition 1.62. If Ω is countable, the following conditions are equivalent:

(1) M+ 6= ∅;
(2) No P+-Arbitrage;

(3) P0 ∩ P+ 6= ∅;
(4) P0

‖·‖
= P,

where ‖ · ‖ is the total variation norm on P

Proof. Using Lemma 1.60 the proof is straightforward using the same techniques as in Propo-

sition 1.58. �
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5. On Open Arbitrage

In the introduction we already illustrated the interpretation and robust features of the dual for-

mulation of Open Arbitrage. In order to prove the equivalence between Open Arbitrage and (4)

consider the following definition and recall that V+
H := {ω ∈ Ω | VT (H)(ω) > 0}.

Definition 1.63. Let τ be a topology on P and H be a class of trading strategies. Set

W (τ,H) =

{
H ∈ H |

there exists a non empty τ − open set U ⊆ P such that

∀P ∈ U VT (H) ≥ 0 P -a.s. and P (V+
H) > 0

}

Clearly, W (τ,H) consists of the trading strategies satisfying condition (4) with respect to the

appropriate topology and the measurability requirement. The first item in the next proposition is

the announced equivalence. The second item shows that the analogue equivalence is true also with

respect to the class H̃. Therefore, in Theorem 1.4 we could add to the four equivalent conditions

also the dual formulation of Open Arbitrage with respect to H̃.

Proposition 1.64. (1) Let σ := σ(P, Cb) and ‖ · ‖ the variation norm defined in (43). Then:

H ∈ W (‖ · ‖,H)⇐⇒ H ∈ H is a 1p-Arbitrage

⇑

H ∈ W (σ,H) ⇐⇒ H ∈ H is an Open Arbitrage

In addition, if H ∈W (σ,H) then VT (H)(ω) ≥ 0 for all ω ∈ Ω.

(2) Let F = B(Ω) be the Borel σ-algebra and let F̃ be a σ-algebra such that F ⊆F̃ . Define the set

P̃ := {P̃ : F̃ → [0, 1] | P̃ is a probability},

and endow P̃ with the topology σ̃ := σ(P̃, Cb). The class of admissible trading strategies H̃ is given

by all F̃- predictable processes. Then

H ∈W (σ̃, H̃) ⇐⇒ H ∈ H̃ is an Open Arbitrage in H̃

In addition, if H ∈W (σ̃, H̃) then VT (H)(ω) ≥ 0 for all ω ∈ Ω.

Proof. We prove (1) and we postpone the proof of (2) to the Appendix.

(a) H is a 1p-Arbitrage ⇒ H ∈ W (‖ · ‖,H). Let H ∈ H be a 1p-Arbitrage. Then VT (H)(ω) ≥
0 ∀ω ∈ Ω and there exists a probability P such that P (V+

H) > ε > 0. From the implication

‖P − Q‖ < ε ⇒ |P (C) − Q(C)| < ε for every C ∈ F , we obtain: P̄ (V+
H) > 0 ∀P̄ ∈ Bε(P ), where

Bε(P ) is the ball of radius ε centered in P . Hence H ∈W (‖ · ‖,H).

(b) H ∈ W (‖ · ‖,H) ⇒ H is a 1p-Arbitrage. If H ∈ W (‖ · ‖,H) then VT (H) ≥ 0 P -a.s. for all

P in the open set U . We need only to show that B := {ω ∈ Ω | VT (H)(ω) < 0} is empty. By

contradiction, let ω ∈ B, take any P ∈ U and define the probability Pλ := λδω + (1− λ)P . Since

VT (H) ≥ 0 P -a.s. we must have P (ω) = 0, otherwise P (B) > 0. However, Pλ(B) ≥ Pλ(ω) = λ > 0

for all positive λ and Pλ will eventually belongs to U , as λ ↓ 0, which contradicts VT (H) ≥ 0 P -a.s.

for any P ∈ U .

(c) H ∈ W (σ,H) ⇒ H ∈ W (‖ · ‖,H). This claim is trivial because every weakly open set is also

open in the norm topology.

(d) If H ∈W (σ,H) then VT (H)(ω) ≥ 0 for all ω ∈ Ω. This follows from (c) and (b).



44 1. ARBITRAGE AND MARTINGALES

(e) H ∈W (σ,H) ⇒ H is an Open Arbitrage. Suppose H ∈W (σ,H), so that VT (H)(ω) ≥ 0 ∀ω ∈
Ω. We claim that (V+

H)c = {ω ∈ Ω | VT (H) = 0} is not dense in Ω. This will imply the thesis as

int(V+
H) will then be a non empty open set on which VT (H) > 0. Suppose by contradiction that

(V+
H)c = Ω. We know by Lemma 1.77 in the Appendix that the set Q of embedded probabilities

co({δω} | ω ∈ (V+
H)c) is weakly dense in P and hence it intersects, in particular, the weakly open

set U in the definition of W (σ,H). However, for every P ∈ Q we have VT (H) = 0 P -a.s. and so H

is not in W (σ,H).

(f) H is an Open Arbitrage ⇒ H ∈ W (σ,H). Note first that if F is a closed subset of Ω, then

P(F ) := {P ∈ P | supp(P ) ⊂ F} is a σ(P, Cb) closed face of P from Th. 15.19 in [AB06]. If H

is an Open Arbitrage then V+
H contains an open set and in particular G := (V+

H)c is a closed set

strictly contained in Ω. Observe then that U := (P(G))c is a non empty open set of probabilities

that fulfills the properties in the definition of W (σ,H). �

The following proposition is an improvement of (40), as the 1p-Arbitrage is defined with respect

to H.

Proposition 1.65. For Ω countable: No 1p-Arbitrage in H ⇐⇒M+ 6= ∅.

Proof. As a consequence of Propositions 1.17 and 1.64 we only need to prove M+ 6= ∅ =⇒
W (‖ · ‖,H) = ∅. From Proposition 1.62 item 4) we have M+ 6= ∅ =⇒ P0

‖·‖
= P and so for

every (norm) open set U ⊆ P there exists P ∈ P0 ∩ U for which NA(P ) holds, which implies

W (‖ · ‖,H) = ∅. �

5.1. On the continuity of S with respect to ω. Consider first a one period market

I = {0, 1} with S0 = s0 ∈ Rd and S1 a random outcome continuous in ω. Then every 1p-Arbitrage

generates an Open Arbitrage (this was shown by [Ri15] and is intuitively clear). From Proposition

1.17, No 1p-Arbitrage impliesM+ 6= ∅ and therefore No Open Arbitrage. We then conclude that,

in this particular case, the three conditions are all equivalent and Theorem 1.4 holds without the

enlargement of the natural filtration so that we recover in particular the result stated in [Ri15].

Differently from the one period case, in the multi-period setting it is no longer true that No Open

Arbitrage and No 1p-Arbitrage (with respect to admissible strategies H) are equivalent, as shown

by the following examples. Moreover, even with S continuous in ω, No Open Arbitrage is not

equivalent to M+ 6= ∅ as long as we do not enlarge the filtration as in Section 3.5.

Example 1.66. Consider Ω = [0, 1] × [0, 1], F = B[0,1] ⊗ B[0,1] and the canonical process given

by S1(ω) = ω1 and S2(ω) = ω2. Clearly for any ω = (ω1, ω2) such that ω1 ∈ (0, 1) we have that

0 ∈ ri(∆S2(Σω1 ))cc. On the other hands for ω = (1, ω2) or ω̂ = (0, ω2) we have 1p-Arbitrages since

S2(ω) ≤ S1(ω) with < for any ω2 6= 1 and S2(ω̂) ≥ S1(ω̂) with > for any ω2 6= 0. Denote by

Σ1 = {S1 = 1} and Σ0 = {S1 = 0} then α(ω) = −1Σ1 + 1Σ0 is a 1p-Arbitrage which does not

admit any open arbitrage since neither Σ1 nor Σ0 are open sets, and any strategy which is not zero

on (Σ1 ∪ Σ0)c gives both positive and negative payoffs.

Example 1.67. We show an example of a market with S continuous in ω, with no Open Arbitrage

in H and M+ = ∅. Let us first introduce the following continuous functions on Ω = [0,+∞)
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ϕma,b(ω) :=


m(ω − a) ω ∈ [a, a+b

2 ]

−m(ω − b) ω ∈ [a+b
2 , b]

0 otherwise

φma,b(ω) :=


m(ω − a) ω ∈ [a, a+ 1]

m ω ∈ [a+ 1, b− 1]

−m(ω − b) ω ∈ [b− 1, b]

0 otherwise

with a, b,m ∈ R. Define the continuous (in ω) stochastic process (St)t=0,1,2,3

S0(ω) :=
1

2

S1(ω) := φ1
[0,3](ω) + φ1

[3,6](ω) +

∞∑
k=3

ϕ1
[2k,2k+2](ω)

S2(ω) := φ
1
2

[0,3](ω) + φ
1
2

[3,6](ω) +

∞∑
k=3

ϕ2
[2k,2k+2](ω)

S3(ω) := ϕ2
[0,3](ω) + ϕ

1
4

[3,6](ω) + ϕ4
[6,8](ω) +

∞∑
k=4

ϕ4k
[2k+1− 1

k ,2k+1+ 1
k ](ω)

It is easy to check that given z ∈ Z such that z0:2 = [ 1
2 , 1, 2], we have Σz2 = {2k + 1}k≥3 and

H := 1Σz2
is the only 1p-Arbitrage opportunity in the market. One can also check that V+

H = Σz2,

as a consequence, H is not an Open Arbitrage and

Q({2k + 1}k≥3) = 0 for any Q ∈M (44)

Consider now ẑ ∈ Z with ẑ0:2 = [ 1
2 , 1,

1
2 ] and the corresponding level set Σẑ2. It is easy to check that

Σẑ2 = [1, 2] ∪ [4, 5] and ∆S2 < 0 on Σẑ2 (45)

Observe now that z0:1 = ẑ0:1 and that Σz1 = [1, 2] ∪ [4, 5] ∪ {2k + 1}k≥3. We therefore have

S2(ω) =

{
2 ω ∈ {2k + 1}k≥3

1
2 ω ∈ [1, 2] ∪ [4, 5]

for ω ∈ Σz1

From S1(ω) = 1 on Σz1, (44) and (45), any martingale measure must satisfy Q([1, 2] ∪ [4, 5]) = 0.

In other words there exist polar sets with non-empty interior which implies M+ = ∅.

6. Appendix

6.1. proof of Theorem 1.39.

Lemma 1.68 (Lebesgue decomposition of P ). Let ν := supQ∈MQ. For any P ∈ P there exists a

set F ∈ F such that F ⊆ Ωc∗, and the measures Pc(·) := P (· \ F ) and Ps(·) := P (· ∩ F ) satisfy

Pc � ν, Ps ⊥ ν and P = Pc + Ps (46)

Proof. We wish to apply Theorem 4.1 in [LYL07] to µ = P ∈ P and ν = supQ∈MQ. It is

easy to check that: 1) µ and ν are monotone [0, 1]-valued set functions on F satisfying µ(∅) = 0

and ν(∅) = 0; 2) P is exhaustive, i.e. if {An}n∈N is a disjoint sequence then P (An) → 0 (indeed,

1 ≥ P (∪nAn) =
∑
n P (An) ≥ 0 ⇒ P (An) → 0; 3) ν is weakly null additive: if A,B ∈ F

with ν(A) = ν(B) = 0 then ν(A ∪ B) = 0 (indeed, if ν(A) = ν(B) = 0 then for any Q ∈ M,
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Q(A) = Q(B) = 0 which implies Q(A ∪B) = 0 and ν(A ∪B) = 0); 4) ν is continuous from below.

Indeed if An ↗ A then Q(An) ↑ Q(A), Q(A) = supnQ(An) and

lim
n→∞

ν(An) = sup
n
ν(An) = sup

n
sup
Q∈M

Q(An) = sup
Q∈M

sup
n
Q(An) = ν(A).

Hence µ and ν satisfy all the assumptions of Theorem 4.1 in [LYL07] and hence we obtain the

existence of F ∈ F such that ν(F ) = 0 and the decomposition in (46) holds true. From Proposition

1.34, ∀A ∈ F such that A ⊆ Ω∗ we have ν(A) > 0. Therefore, F ⊆ Ωc∗ and this concludes the

proof. �

Remark 1.69. Observe that if Ωc∗ 6= ∅ the set of probability measures with non trivial singular

part Ps is non-empty. Simply take, for instance, any convex combination of {δω | ω ∈ Ωc∗}.

Preliminary considerations. We want to consider now the probabilistic model (Ω, {FPt }t∈I , S, P )

and we need therefore to pass from ω-wise considerations to P -a.s considerations. For this reason

we first need to construct an auxiliary process SPt with the property SPt = St P -a.s for any t ∈ I
in the same spirit of Lemma 1.33.

Let P∆ST (·, ·) : Ω × B(Rd) 7→ [0, 1] be the conditional distribution of ∆ST and denote Υ∆ST its

random support. Define as in Rokhlin [Ro08] the set A∆ST := {0 /∈ ri(convΥ∆ST )}. It may

happen that P (A∆ST ) = 0. In this case BT and DT−1 as in Lemma 1.33 are subset of P -null sets

(respectively in FT and FT−1). Construct iteratively XP
t and SPt as in (23) and (25). Denote

∆XP
t := XP

t − St−1 and let

τ := min
{
t ∈ I1 | P

(
A∆XPt

)
> 0
}
. (47)

Observe that τ is well defined since, from Lemma 1.33, if P (A∆XPt
) = 0 for any t ≥ 1 we have

that
⋃
t∈I1 B̃t = Ωc∗ is a subset of a P -null set (cfr (24)). This is a contradiction since P is not

absolutely continuous with respect to ν, henceforth the set F from Lemma 46 satisfies F ⊆ Ωc∗

and P (F ) > 0. From now on we still denote by {St}t∈I the P -a.s. version of the process given by

{St1t<τ +XP
t 1t≥τ}t∈I .

Remark 1.70. For any t ∈ I1 denote Pt−1(·, ·) : (Ω,F) 7→ [0, 1] the conditional probability of P on

Ft−1. Recall from Theorem 1.28 c] that there exists N1 ∈ Ft−1 with P (N1) = 0 such that for any

ω ∈ Ω \N1 we have Pt−1(ω,Σ
z(ω)
t−1 ) = 1 where z(ω) = S0:T (ω).

Construction of a P -arbitrage from H. Recall that τ is defined in 47 and denote Aτ := A∆Sτ .

For any ω ∈ Ω the level set Σzτ−1 can be decomposed as Σzτ−1 = ∪βτ,zi=1B
i
τ,z ∪ B∗τ,z. Define for any

z ∈ Z

jz := inf
{
j ∈ {1, . . . , βτ,z} | P (ω,Bjτ,z) > 0 ∀ω ∈ Σzτ−1

}
and recall that P (·, Bjτ,z) is constant on Σzτ−1 (Theorem 1.28 b]). Define N2 :=

⋃
z∈Zf ∪

jz−1
i=1 Biτ,z

where Zf := {z ∈ Z | jz < ∞}. N2 is a P̄ -null set since for any ω ∈ N c
1 we have P̄ (ω,N2) =

P̄ (ω,∪jz−1
i=1 Biτ,z) = 0 hence P̄ (N2) = P̄ (N1 ∩N2) + P̄ (N c

1 ∩N2) = 0 (see also Lemma 1.73 below).

Recall that P̄ (·) and P̄ (ω, ·) denote the completion of P (·) and P (ω, ·) respectively.
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Denote N := N1 ∪ N2. We are now able to define the following multifunction Ψ : Ω 7→ 2R
d

with

values in the power set of Rd.

Ψ(ω) :=

 ∆Sτ

(
Σ
z(ω)
τ−1 ∩N c

)
ω ∈ N c

∅ otherwise
(48)

In Lemma 1.71 we show that Ψ is FPτ−1-measurable. We apply now an argument similar to [Ro08].

Denote Sd1 the unitary closed ball in Rd, lin(χ) the linear space generated by χ and χ◦ the polar

cone of χ. By preservation of measurability (see Proposition 1.75) the (closed-valued) multifunction

ω 7→ G0(ω) := lin(Ψ(ω)) ∩ (−cone Ψ(ω))
◦ ∩ Sd1

is also FPτ−1-measurable and G0(ω) 6= ∅ iff ω ∈ Aτ ∩ N c, hence Aτ = {0 /∈ ri(convΥ∆SPτ
)} is

FPτ−1-measurable. Note that we already have that G0(ω) ⊆ Hτ (ω) for P -a.e. ω ∈ Ω. Indeed fix

ω /∈ N and consider the level set Σ
z(ω)
τ−1 and its decomposition as in Lemma 1.20. By construction

of G0 we have that any g ∈ G0(ω) 6= ∅ satisfies g ·∆Sτ (ω) ≥ 0 for any ω ∈ ∪βτ,zi=jz
Biτ,z ∪ B∗τ,z and

thus g ∈ H(ω).

Nevertheless, the random set G0(ω) contains those g ∈ Sd1 such that g ·∆Sτ (ω) = 0. Thus, we will

not extract a measurable selection from G0 but we will rather consider for any n ∈ N the following

closed-valued multifunction

ω 7→ Gn(ω) := lin(Ψ(ω)) ∩
{
v ∈ Rd | 〈v, s〉 ≥ 1

n
∀s ∈ Ψ(ω) \ {0}

}
∩ Sd1, n ≥ 1

and seek for a measurable selection of G := ∪∞n=0Gn. From Lemma 1.74 all the random sets Gn are

FPτ−1-measurable and therefore the same is true for G. Now, for any n ≥ 0, let H̃n a measurable

selection of Gn on {Gn 6= ∅} which always exists for a (measurable) closed-valued multifunction

with H̃n(ω) = 0 if Gn(ω) = ∅. Define therefore

Hk :=

k∑
n=0

H̃n and Bk := V+
Hk

(49)

By construction Bk is an increasing sequence of sets converging to ∪zBjzτ,z which is therefore

measurable and it satisfies

P (∪zBjzτ,z) =

∫
Ω\N

P (ω,Bjzτ,z)dP (ω) ≥
∫
Aτ\N

P (ω,Bjzτ,z)dP (ω) > 0

which follows from the definition of conditional probability, P (Aτ ) > 0 and P (ω,Bjzτ,z) > 0 for

every ω ∈ Aτ \N . We can therefore conclude that there exists m ≥ 0 such that P (Bm) > 0 and

since obviously Hm∆Sτ ≥ 0 we have that Hm is a P -arbitrage. The normalized random variable

HP
τ := Hm(ω)/‖Hm(ω)‖ is a measurable selector of the multifunction G0 since it satisfies HP

τ (ω) ∈
∪mn=1Gn(ω) ⊆ G(ω) ⊆ Hτ (ω) P -a.s. and thus the desired strategy is given by HP

s = HP
τ 1τ (s).

Lemma 1.71. The multifunction Ψ defined in (48) is FPτ−1-measurable.

Proof. Recall that by definition the multifunction Ψ is measurable iff for any open set V ⊆ Rd

we have {ω | Ψ(ω) ∩ V 6= ∅} is a measurable set. Observe that

Ψ−1(V ) := {ω | Ψ(ω) ∩ V 6= ∅} = S−1
τ−1

[
Sτ−1

(
∆S−1

τ (V ) ∩N c
)]
∩N c
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Let us show that the complement of this set is FPτ−1-measurable from which the thesis will follow.

Observe that for any function f and for any set A we have (f−1(A))c = f−1(Ac) so that

(Ψ−1(V ))c = S−1
τ−1

[
Sτ−1

(
∆S−1

t̄ (V ) ∩N c
)c] ∪N

= S−1
τ−1

[
Sτ−1

(
(∆S−1

τ (V ))c ∪N
)]
∪N

= S−1
τ−1

[
Sτ−1

(
∆S−1

τ (V c) ∪N
)]
∪N

Note now that A1 := ∆S−1
τ (V c)∪N is an analytic set since it is union of a Borel set and a P̄ -null

set. The set B1 := Sτ−1(A1) is an analytic subset of Rd since S is a Borel function and image

of an analytic set through a Borel measurable function is analytic. Finally A2 := S−1
τ−1(B1) is

an analytic subset of Ω since pre-image of an analytic set through a Borel measurable function is

analytic. Since P -completion of F contains any analytic set, A2 ∪N is also analytic and belongs

to FPτ−1.

Remark 1.72. For sure A2∪N is analytic and belongs to FP . The heuristic for A2∪N belonging

to FPτ−1 should be that this set is union of atoms of FPτ−1. More formally, since B1 is analytic in

Rd for any measure µ there exists F,G such that B1 = F ∪G with F a Borel set and G a subset of

µ-null measure (because analytic sets are in the completion of B respect to any measure µ). Taking

µ as the distribution of Sτ−1 under P we have A2 = S−1
τ−1(F ) ∪ S−1

τ−1(G). Since S−1
τ−1(F ) ∈ Fτ−1

and S−1
τ−1(G) is a subset of a Fτ−1-measurable P -null set, we have A2 ∈ FPτ−1 and hence also

A2 ∪N .

�

Lemma 1.73. Let (Ω,F , P ) a probability space and G a sub σ-algebra of F . Let PG(ω, ·) the

conditional probability of P on G. Then

P̄ (A) =

∫
Ω\N(A)

P̄G(ω,A)dP (ω) A ∈ FP (50)

where P̄G(ω, ·) is the completion of PG(ω, ·) and N(A) ∈ G is a P -null set which depends on A.

Proof. It is easy to see that every set in FP is union of a set F ∈ F and a subset of a

P -null set. For any F ∈ F , P̄ (F ) = P (F ) and PG(ω, F ) = P̄G(ω, F ) so equality (50) is obvious

from the definition of conditional probability (with N(F ) = ∅). Let A be a subset of a P-null set

A1. 0 = P (A1) =
∫

Ω
PG(ω,A1)dP (ω) which means that PG(ω,A1) = 0 P -a.s. Thus, we also have

P̄G(ω,A) = 0 P -a.s. and by taking N(A) = {ω ∈ Ω : PG(ω,A1) > 0} ∈ G equality (50) follows. �

Measurable selection results.

Lemma 1.74. Let (Ω,A) a measurable space and Ψ : Ω 7→ 2R
d

an A-measurable multifunction. Let

ε > 0 then

Ψε : ω 7→
{
v ∈ Rd | 〈v, s〉 ≥ ε ∀s ∈ Ψ(ω) \ {0}

}
is an A-measurable multifunction.

Proof. Observe first that for v ∈ Rd

〈v, s〉 ≥ ε ∀s ∈ Ψ(ω) \ {0} ⇔ 〈v, s〉 ≥ ε ∀s ∈ Ψ(ω) \ {0}

⇔ 〈v, s〉 ≥ ε ∀s ∈ D(ω) \ {0}
(51)
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where D(ω) is a dense subset of Ψ(ω). This is obvious by continuity of the scalar product. With

no loss of generality we can then consider Ψ closed valued and we denote by ψn its Castaing

representation (see Theorem 14.5 in [RW98] for details). For any n ∈ N consider the following

closed-valued multifunction:

Λn(ω) =


{
v ∈ Rd | 〈v, ψn(ω)〉 ≥ ε

}
if ω ∈ dom Ψ, ψn(ω) 6= 0

Rd if ω ∈ dom Ψ, ψn(ω) = 0

∅ otherwise

We claim that Λn is measurable ∀n ∈ N from which the map ω 7→
⋂
n∈N Λn(ω) is also measurable

(cfr Proposition 1.75). From (51) we thus conclude that Ψε is measurable.

We are only left to show the claim. To this end observe that Λn(ω) has non-empty interior on

{Λn 6= ∅}. Therefore for any open set V ⊆ Rd we have

{ω ∈ Ω | Λn(ω) ∩ V 6= ∅} = {ω ∈ Ω | int(Λn(ω)) ∩ V 6= ∅}.

Note now that

{ω ∈ Ω | int(Λn(ω)) ∩ V 6= ∅} = ψ−1
n

(
Πy

(
Π−1
x (V ) ∩ 〈·, ·〉−1(ε,∞)

))
∪ ψ−1

n (0)

which is measurable (when ψn is measurable) from the continuity of 〈·, ·〉 and from the open

mapping property of the projections Πx,Πy : Rd × Rd 7→ Rd. �

Proposition 1.75. [Proposition 14.2-11-12 [RW98]] Consider a certain family of A-measurable

set-valued functions. The following operations preserve A-measurability: countable unions, count-

able intersections (if the functions are closed-valued), finite linear combination, convex/linear/affine

hull, generated cone, polar set, closure.

6.2. Complementary results. Recall that we are assuming that Ω is a Polish space.

Lemma 1.76. Let Qi ∈M for any i ∈ N. Then

Q :=
∑
i∈N

1

2i
Qi ∈M

Proof. We first observe that Q ∈ P hence we just need to show that is a martingale measure.

Consider the measures Qk :=
∑k
i=1

1
2iQi, which are not probabilities, and note that for each k we

have:
∫

Ω
1B∆StdQk = 0 if B ∈ Ft−1. We observe that ‖Qk − Q‖ → 0 for k → ∞, where ‖ · ‖ is

the total variation norm. We have indeed that

sup
A∈F
|Qk(A)−Q(A)| = sup

A∈F

∞∑
i=k+1

1

2i
Qi(A) =

∞∑
i=k+1

1

2i
→ 0 as k →∞.

In particular we have Qk(A) ↑ Q(A) for any A ∈ F . Representing any simple function f as∑n(f)
j=1 aj(f)1Aj , we obtain for a non negative random variable X

lim
k→∞

∫
Ω

XdQk = lim
k→∞

sup
f∈S

n(f)∑
j=1

aj(f)Qk(Aj) = sup
k

sup
f∈S

n(f)∑
j=1

aj(f)Qk(Aj)

= sup
f∈S

sup
k

n(f)∑
j=1

aj(f)Qk(Aj) = sup
f∈S

n(f)∑
j=1

aj(f)Q(Aj) =

∫
Ω

XdQ
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where S are the simple function less or equal than X. For any B ∈ Ft−1 we then have:

EQ [1B∆St] =

∫
Ω

(1B∆St)
+dQ−

∫
Ω

(1B∆St)
−dQ

= lim
k→∞

∫
Ω

(1B∆St)
+dQk − lim

k→∞

∫
Ω

(1B∆St)
−dQk = lim

k→∞

∫
Ω

1B∆StdQk = 0.

�

Lemma 1.77. For any dense set D ⊆ Ω, the set of probabilities co({δω}ω∈D) is σ(P, Cb) dense in

P.

Proof. Take ω∗ /∈ D and let ωn → ω∗. Note that for every open setG we have lim inf δωn(G) ≥
δω∗(G) and this is equivalent to the weak convergence δωn

w→ δω∗ . Observe that for every set X

we have

co(X) = co(X) :=
⋂
{C | C convex closed containing X} = co(X).

Hence, by taking X = {δω}ω∈D and by σ(P, Cb) density of the set of measures with finite support

in P, we obtain the thesis. �

Lemma 1.78. Let F = B(Ω) be the Borel σ-algebra and let F̃ be a σ-algebra such that F ⊆F̃ . The

set P̃ := {P̃ : F̃ → [0, 1] | P̃ is a probability} is endowed with the topology σ(P̃, Cb). Then

(1) If A ⊆ Ω is dense in Ω, then co({δω}ω∈A) is σ(P̃, Cb) dense in P̃. Notice that any element

Q ∈ co({δω}ω∈A) can be extended to F̃ .

(2) If D ⊆ Ω is closed then

P̃(D) := {P̃ ∈ P̃ | supp(P̃ ) ⊆ D}

is σ(P̃, Cb) closed, where the support is well-defined by

supp(P̃ ) :=
⋂
{C ∈ C | P̃ (C) = 1}

and C are the closed sets in (Ω, d).

Proof. By construction for any P̃ ∈ P̃ we have
∫
fdP̃ =

∫
fdP for any f ∈ Cb where P ∈ P

is the restriction of P̃ to F .

To show the first claim we choose any P̃ ∈ P̃. Consider P ∈ P the restriction of P̃ to F . Then

from Lemma 1.77 there exists a sequence Qn ∈ co({δω}ω∈A) such that
∫
fdQn →

∫
fdP for every

f ∈ Cb. As a consequence
∫
fdQn →

∫
fdP̃ , for every f ∈ Cb.

To show the second claim consider any net {P̃α}α ⊂ P̃(D) such that P̃α
w→ P̃ . We want to show

that P̃ ∈ P̃(D). Consider Pα, P the restriction to F of P̃α, P̃ respectively. Then Pα
w→ P . Notice

that by definition supp(Pα) = supp(P̃α) ⊆ D and supp(P ) = supp(P̃ ). Moreover P(D) = {P ∈ P |
supp(P ) ⊆ D} is σ(P, Cb) closed (Theorem 15.19 in [AB06]) so that D ⊇ supp(P ) = supp(P̃ ). �

Proof of Proposition 1.64, item (2). Recall that an Open Arbitrage in H̃ is a F̃-predictable

processes H = [H1, . . . ,Hd] such that VT (H) ≥ 0 and V+
H = {VT (H) > 0} contains an open set.

First we show that H ∈W (σ̃, H̃) implies VT (H)(ω) ≥ 0 for all ω ∈ Ω. We need only to show that

the set B := {ω ∈ Ω | VT (H)(ω) < 0} is empty. By contradiction, let ω ∈ B, take any P ∈ U
and define the probability Pλ := λδω + (1−λ)P . Since VT (H) ≥ 0 P -a.s. we must have P (ω) = 0,

otherwise P (B) > 0. However, Pλ(B) ≥ Pλ(ω) = λ > 0 for all positive λ and Pλ will belongs to
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U , as λ ↓ 0, which contradicts VT (H) ≥ 0 P -a.s. for any P ∈ U . To prove the equivalence, assume

first that H ∈W (σ̃, H̃). We claim that (V+
H)c = {ω ∈ Ω | VT (H) = 0} is not dense in Ω. This will

imply the thesis as the open set int(V+
H) will then be a not empty on which VT (H) > 0. Suppose by

contradiction that (V+
H)c = Ω. We know by Lemma 1.78 that the corresponding set Q of embedded

probabilities co({δω}ω∈(V+
H)c) is weakly dense in P̃ and hence it intersects, in particular, the weakly

open set U . However, for every P ∈ Q we have VT (H) = 0 P -a.s. and so this contradicts the

assumption. Suppose now that H ∈ H̃ is an Open Arbitrage. Note that from Lemma 1.78 if F

is a closed subset of Ω, then P̃(F ) := {P ∈ P̃ | supp(P ) ⊂ F} is σ(P̃, Cb) closed. Since H is an

Open Arbitrage then V+
H contains an open set and in particular G := (V+

H)c is a closed set strictly

contained in Ω. Observe then that (P̃(G))c is a non empty σ(P̃, Cb) open set of probabilities such

that for all P ∈ U we have VT (H) ≥ 0, P -a.s. and P (V+
H) > 0. �





CHAPTER 2

Model-free Superhedging duality1

We adopt the following setting and notations: let Ω be a Polish space and F = B(Ω) be the

Borel sigma-algebra; T ∈ N, I := {0, ..., T}, S = (St)t∈I be an Rd-valued stochastic process on

(Ω,F) representing the price process of d ∈ N assets; P be the set of all probability measures

on (Ω,F); FS := {FSt }t∈I be the natural filtration and F := {Ft}t∈I be the Universal Filtration,

namely

Ft :=
⋂
P∈P
FSt ∨NP

t , where NP
t = {N ⊆ A ∈ FSt | P (A) = 0};

H be the class of F-predictable stochastic processes, with values in Rd, representing the family of

admissible trading strategies; (H · S)T :=
∑T
t=1

∑d
j=1H

j
t (Sjt − S

j
t−1) =

∑T
t=1Ht ·∆St be the gain

up to time T from investing in S adopting the strategy H. We denote

M := {Q ∈ P | S is an F-martingale under Q} ,

Pf := {Q ∈ P | supp(Q) is finite} ,

Mf := M∩Pf ,

where the support of P ∈ P is defined by supp(P ) =
⋂
{C ∈ F | C closed, P (C) = 1}. The family

of M-polar sets is given by N := {N ⊆ A ∈ F | Q(A) = 0 ∀Q ∈M} and a property is said to

hold quasi surely (q.s.) if it holds outside a polar set. We adopt the convention ∞−∞ = −∞ for

those random variables g whose positive and negative part is not integrable. We are also assuming

the existence of a numeraire asset S0
t = 1 for all t ∈ I.

The aim of this Chapter is the proof of the following discrete time, model independent version of

the superhedging theorem.

Theorem 2.1 (Superhedging). Let g : Ω 7→ R be an F-measurable random variable. Then

inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T ≥ g M-q.s.}

= inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗}

= sup
Q∈Mf

EQ[g] = sup
Q∈M

EQ[g],

where

Ω∗ := {ω ∈ Ω | ∃Q ∈M s.t. Q(ω) > 0} . (52)

1Chapter 2 is based on the preprint: Model-free Superhedging duality, joint work with M. Frittelli and M.

Maggis, arXiv 1506.06608.

53
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Probability free set up. In the statement of the superhedging theorem there is no reference

to any a priori assigned probability measure and the notions of M, H and Ω∗ only depend on the

measurable space (Ω,F) and the price process S. In general the class M is not dominated. In

caseM = ∅ then Ω∗ = ∅ and the theorem is trivial, as each term in the equalities of Theorem 2.1

is equal to −∞, provided we convene that any M-q.s. inequalities hold true when M = ∅. For

this reason we will assume without loss of generalityM 6= ∅, and recall that this condition can be

reformulated in terms of absence of Model Independent H̃-Arbitrages (see Chapter 1).

We are not imposing any restriction on S so that it may describe generic financial securities (for

examples, stocks and/or options). However, in the framework of Theorem 2.1 the class H of

admissible trading strategies requires dynamic trading in all assets. In Theorem 2.2 below we

easily extend this setup to the case of semi-static trading on a finite number of options.

As illustrated in Section 3, we explicitly show that the initial cost of the cheapest portfolio that

dominates a contingent claim g on every possible path

inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω} (53)

can be strictly greater than supQ∈MEQ[g], unless some artificial assumptions are imposed on g or

on the market. In order to avoid these restrictions on the class of derivatives, it is crucial to select

the correct set of paths (i.e. Ω∗) where the superhedging strategy can be efficiently employed.

On the set Ω∗. In Theorem 2.1, the pathwise model independent inequality in (53), is replaced

with an inequality involving only those ω ∈ Ω which are weighted by at least one martingale

measure Q ∈M. In Chapter 1 (see also Proposition 2.9) it is shown the existence of the maximal

M-polar set N∗, namely a set N∗ ∈ N containing any other set N ∈ N . Moreover

Ω∗ = (N∗)
C . (54)

The inequality x+ (H ·S)T ≥ g M-q.s. holds by definition outside anyM-polar set and therefore

it is equivalent, thanks to (54), to the inequality x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗, which justifies

the first equality in Theorem 2.1. The set Ω∗ can be equivalently determined (see Proposition 2.9)

via the setMf of martingale measures with finite support, a property that turns out to be crucial

in several proofs.

We stress that we do not make any ad hoc assumptions on the discrete time financial model

and notice that Ω∗ is determined only by S: indeed the set M can be written also as M ={
Q ∈ P | S is an FS-martingale under Q

}
. One of the main technical results of this Chapter is

the proof that the set Ω∗ is an analytic set (Proposition 2.17) and so our findings show that the

natural setup for studying this problem is (Ω, S,F,H). We also point out that we could replace

any sigma-algebra Ft with the sub sigma-algebra generated by the analytic sets of FSt .

Superhedging with semi-static strategies on options and stocks. We now allow for

the possibility of static trading in a finite number of options. Let us add to the previous market

k options Φ = (φ1, ..., φk) which expires at time T and assume without loss of generality that

they have zero initial cost. We assume that each φj is an F-measurable random variable. Define

hΦ :=
∑k
j=1 h

jφj , h ∈ Rk, and

MΦ := {Q ∈Mf | EQ[φj ] = 0 ∀j = 1, ..., k} = {Q ∈Mf | EQ[hΦ] = 0 ∀h ∈ Rk}, (55)
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which are the options-adjusted martingale measures, and

ΩΦ := {ω ∈ Ω | ∃Q ∈MΦ s.t. Q(ω) > 0} ⊆ Ω∗. (56)

We have by definition that for every Q ∈ MΦ the support satisfies supp(Q) ⊆ ΩΦ. We define the

superhedging price when semi-static strategies are allowed by

πΦ(g) := inf
{
x ∈ R | ∃(H,h) ∈ H × Rk such that x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ ΩΦ

}
.

(57)

With the same methodology used in the proof of Theorem 2.1 we will obtain in Section 4.3 the

superhedging duality with semi-static strategies:

Theorem 2.2 (Super-hedging with options). Let g : Ω 7→ R and φj : Ω 7→ R, j = 1, ..., k, be

F-measurable random variables. Then

πΦ(g) = sup
Q∈MΦ

EQ[g].

Comparison with the related literature. In the classical case when a reference probability

is fixed, this subject was originally studied by El Karoui and Quenez [KQ95]; see also [Ka97] and

[DS94] and the references cited therein.

In [BN15] a superhedging theorem is proven in the case of a non-dominated class of priors P ′ ⊆ P.

The result strongly relies on two technical hypothesis: (i) The state space Ω has a product structure,

Ω = ΩT1 , where Ω1 is a certain fixed Polish space and Ωt1 is the t-fold product space; (ii) The set of

priors P ′ is also obtained as a collection of product measures P := P0⊗ . . .⊗PT where every Pt is

a measurable selector of a certain random class P ′t ⊆ P(Ω1). P ′t(ω) represents the set of possible

models for the t-th period, given state ω at time t. An essential requirement on P ′t is that the

graph(P ′t) must be an analytic subset of Ωt1 × P(Ω1). These assumptions are crucial in order to

apply the measurable selection and stochastic control arguments which lead to the proof of the

superhedging theorem. In our setting we do not impose restrictions on the state space Ω so the

result cannot be deduced from [BN15] for P ′ = M. Moreover, even in the case of Ω = ΩT1 , the

class of martingale probability measures M is endogenously determined by the market and we do

not require that it satisfies any additional restrictions. Furthermore, the techniques employed to

deduce our version of the superhedging duality theorem are completely different, as they rely on

the results of [BFM14].

Different approaches are taken in [AB13, Ri15]. In [Ri15] the continuity assumptions on the

assets allow to embed the problem in the linear programming framework and to obtain the desired

equality in a one period market. In [AB13] from a model independent version of the Fundamental

Theorem of Asset Pricing they deduce the following superhedging duality (Theorem 1.4)

inf
{
x ∈ R | ∃(H,h) ∈ H × Rk s.t. x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ Ω

}
= sup
Q∈MΦ

EQ[g].

(58)

They assume a discrete time market, with one dimensional canonical process S on the path space

Ω = [0,∞)T and an arbitrary (but non empty) set of options on S available for static trading.

Theorem 1.4 in [AB13] relies on two additional technical assumptions: (i) The existence of an

option with super-linearly growing and convex payoff; (ii) The upper semi-continuity of the claim

g.
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The example in Section 3 shows that without the upper semi-continuity of the claim g the duality

in (58) fails and it also points out that the reason for this is the insistence of superhedging over the

whole space Ω, instead of over the relevant set of paths Ω∗. Our result holds for a d-dimensional

(not necessarily canonical) process S and does not necessitate of any specific technical assumptions,

nor of the existence of any options.

1. Aggregation results

In this section we investigate when certain conditions (like superhedging or hedging) which hold

Q-a.s. for all Q ∈M, ensure the validity of the correspondent pathwise conditions on Ω∗.

For G-measurable random variables X and Y , we write X > Y if X(ω) > Y (ω) for all ω ∈ Ω.

When we specify X > Y on a measurable set A ⊂ Ω it means that X(ω) > Y (ω) holds for all

ω ∈ A. Similarly for X ≥ Y and X = Y. We recall that absence of classical arbitrage opportunities,

with respect to a probability P ∈ P, is denoted by NA(P ). For an arbitrary sigma-algebra G we

set

L(Ω,G) := {f : Ω→ R | G-measurable },

L(Ω,G)+ := {f ∈ L(Ω,G) | f ≥ 0}.

The linear space of attainable random payoffs with zero initial cost is given by

K := {(H · S)T ∈ L(Ω,F) | H ∈ H}.

Recall that the set of events supporting martingale measures Ω∗ is defined in (52) and observe that

the convex cones

C := {f ∈ L(Ω,F) | f ≤ k on Ω∗ for some k ∈ K}, (59)

C(Q) := {f ∈ L(Ω,F) | f ≤ k Q-a.s. for some k ∈ K}. (60)

are related by C ⊆ C(Q), if Q ∈M.

The main Theorem 2.1 relies on the following cornerstone proposition that will be proven in Section

4, as its proof requires several technical arguments.

Proposition 2.3. Let g ∈ L(Ω,F) and define

π∗(g) : = inf {x ∈ R | ∃H ∈ H s.t. x+ (H · S)T ≥ g on Ω∗} (61)

πQ(g) : = inf {x ∈ R | ∃H ∈ H s.t. x+ (H · S)T ≥ g Q- a.s. } . (62)

Then

π∗(g) = sup
Q∈Mf

πQ(g) (63)

C =
⋂

Q∈Mf

C(Q). (64)

In particular, if π∗(g) < +∞ the infimum is a minimum.

Corollary 2.4. Let g ∈ L(Ω,F) and x ∈ R. If for every Q ∈Mf there exists HQ ∈ H such that

x + (HQ · S)T ≥ g Q-a.s. then there exists H ∈ H such that x + (H · S)T (ω) ≥ g(ω) for every

ω ∈ Ω∗.
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Proof. By assumption, g − x ∈ C(Q) for every Q ∈ Mf . From C =
⋂
Q∈Mf

C(Q) we obtain

g − x ∈ C. �

Corollary 2.5 (Perfect hedge). Let g ∈ L(Ω,F). If for every Q ∈ Mf there exists HQ ∈
H, xQ ∈ R such that xQ + (HQ · S)T = g Q-a.s. then there exists H ∈ H, x ∈ R such that

x+ (H · S)T (ω) = g(ω) for every ω ∈ Ω∗, and xQ = x for every Q ∈Mf .

Proof. Note first that, from the hypothesis, for every Q ∈Mf there exists HQ ∈ H, xQ ∈ R
such that xQ+(HQ ·S)T (ω) = g(ω) for every ω ∈ supp(Q). We first show that xQ does not depend

on Q. Assume there exist Q1, Q2 ∈Mf such that xQ1 < xQ2 . For every λ ∈ (0, 1) set Qλ := λQ1 +

(1− λ)Q2 ∈Mf . Then there exist HQλ ∈ H and xQλ ∈ R such that xQλ + (HQλ · S)T (ω) = g(ω)

for every ω ∈ supp(Qλ) = supp(Q1) ∪ supp(Q2). Therefore xQλ + (HQλ · S)T (ω) = g(ω) for every

ω ∈ supp(Qi), for any i = 1, 2, and from NA(Qi) we necessarily have that xQλ = xi.

Since x+(HQ ·S)T (ω) = g(ω) for every ω ∈ supp(Q) we can apply Corollary 2.4 which implies the

existence of H ∈ H such that x+(H ·S)T (ω) ≥ g(ω) on Ω∗. Moreover x−x+((H−HQ) ·S)T (ω) ≥
g(ω)− g(ω) for every ω ∈ supp(Q) implies ((H −HQ) · S)T (ω) ≥ 0 for every ω ∈ supp(Q). Since

NA(Q) holds, we conclude ((H−HQ) ·S)T (ω) = 0 for every ω ∈ supp(Q). Thus for every Q ∈Mf

we have x + (H · S)T (ω) = g(ω) on supp(Q) and hence the thesis follows from Proposition 4.18

[BFM14] (or Proposition 2.9). �

Corollary 2.6 (Bipolar representation). Let C be defined in (59). Then

C = {g ∈ L(Ω,F) | EQ[g] ≤ 0 ∀Q ∈Mf} (65)

Proof. Clearly C ⊆ {g ∈ L(Ω,F) | ER[g] ≤ 0 ∀R ∈ Mf} =: C̃. Fix Q ∈ Mf and observe

that L0(Ω,F , Q) ≡ L1(Ω,F , Q) ≡ L∞(Ω,F , Q). For g ∈ L(Ω,F) we denote with the capital letter

G the corresponding equivalence class G ∈ L0(Ω,F , Q). The quotient of K and C(Q) with respect

to the Q-a.s. identification ∼Q are denoted respectively by

KQ : = {K ∈ L0(Ω,F , Q) | K = (H · S)T Q− a.s., H ∈ H},

CQ : = {G ∈ L0(Ω,F , Q) | ∃K ∈ KQ such that G ≤ K Q− a.s.} = KQ − L0
+(Ω,F , Q).

Now we may follow the classical arguments: the convex cone CQ is closed in probability with

respect to Q (see e.g. [KS01a] Theorem 1). As Q ∈ Mf , CQ is also closed in L1(Ω,F , Q) and

therefore:

(CQ)
0

= {Z ∈ L∞(Ω,F , Q) | E[ZG] ≤ 0 ∀G ∈ CQ} ⊆ L∞+ (Ω,F , Q).

Notice that R� Q and R ∈Mf if and only if R� Q and dR
dQ ∈ (CQ)0. Hence:

(CQ)
00

=
{
G ∈ L1(Ω,F , Q) | E[ZG] ≤ 0 ∀Z ∈ (CQ)0

}
=

{
G ∈ L1(Ω,F , Q) | ER[G] ≤ 0 ∀R� Q s.t.

dR

dQ
∈ (CQ)0

}
=

{
G ∈ L1(Ω,F , Q) | ER[G] ≤ 0 ∀R� Q s.t. R ∈Mf

}
(66)

Let g ∈ C̃. By the characterization in (66) the corresponding G belongs to (CQ)
00

. By the bipolar

theorem CQ = (CQ)
00

and therefore G ∈ CQ and g ∈ C(Q) (as defined in (60)). Since this holds for

any Q ∈Mf , from C =
⋂
Q∈Mf

C(Q) (Proposition 2.3) we conclude that g ∈ C. �
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Remark 2.7. One may ask whether the bipolar duality (65) implies that C is closed with respect

to some topology. To answer this question let us introduce on L(Ω,F) the following equivalence

relation: for any X,Y ∈ L(Ω,F)

X ∼ Y if and only if X(ω)− Y (ω) = k(ω) for some k ∈ K and for every ω ∈ Ω∗.

Consider the quotient space L(Ω,F) = L(Ω,F)/ ∼ and the vector space Vf generated by Mf .

We first claim that the couple (L(Ω,F), Vf ) is a separated dual pair under the bilinear form

〈·, ·〉 : L(Ω,F) × Vf → R defined by: 〈[X], µ〉 7→ Eµ[X], for any X ∈ [X]. Notice that the

form 〈[X], µ〉 7→ Eµ[X] is well posed as Eµ[k] = 0 for all k ∈ K and the pairing is obviously

bilinear. Clearly if µ 6= 0 then there exists ω ∈ Ω∗ such that µ({ω}) 6= 0 and Eµ[1ω] 6= 0. Thus we

have showed that 〈[X], µ〉 = 0, for every [X], implies µ = 0.

We now prove that 〈[X], µ〉 = 0 for every µ implies [X] = [0]. By contradiction assume [X] 6= [0].

By assumption, X can not be replicable at a non zero cost. Observe that if X ∈ [X] is replicable

at zero cost in any market (Ω,F ,F, S;Q) for any possible choice Q ∈ Mf then by Corollary 2.5

X is pathwise replicable for every ω ∈ Ω∗, or in other words: [X] = [0].

Hence our assumption [X] 6= [0] implies that there exists a Q ∈ Mf such that the market

(Ω,F ,F, S;Q) is not complete, so that Me(Q) := {Q∗ ∼ Q | Q∗ ∈ M}} 6= {Q}, and X ∈ [X] is

not replicable in such market. Then

inf
Q∗∈Me(Q)

EQ∗ [X] < sup
Q∗∈Me(Q)

EQ∗ [X].

As Q ∈ Mf has finite support, Me(Q) ⊂ Mf and there exists a µ ∈ Me(Q) ⊂ Vf such that

Eµ[X] 6= 0, which is a contradiction.

Now we conclude that the cone C/∼ is closed with respect to the weak topology σ(L(Ω,F), Vf ).

Indeed, from (65) we obtain that

C/∼ = {[g] ∈ L(Ω,F) | EQ[g] ≤ 0 ∀Q ∈Mf} =
⋂

Q∈Mf

{[g] ∈ L(Ω,F) | EQ[g] ≤ 0}

is the intersection of σ(L(Ω,F), Vf )-closed sets.

2. Proof of Theorem 2.1

As shown by the following result from [BF04], the abstract version of the superhedging theorem

is a simple consequence that the cone C and its bipolar cone coincide.

Theorem 2.8 (Theorem 10, [BF04]). Let L,L′ be two vector spaces and let < ·, · >: L× L′ → R
be a bilinear form. Let G ⊆ L be a convex cone satisfying G00 = G, where G0:={z ∈ L′ |< g, z >≤
0 ∀g ∈ G}, G00:={g ∈ L |< g, z >≤ 0 ∀z ∈ G0}, and assume the existence of an element 1 ∈L
such that −1 ∈G. If the set N1 , {z ∈ G0 |< 1, z >= 1} is not empty then for all h ∈ L we have:

inf {x ∈ R | h− x1 ∈ G} = sup {< h, z >| z ∈ N1} . (67)

We also recall from [BFM14] the relevant properties of the set Ω∗ that will be needed several

times in the proofs.
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Proposition 2.9 ( Proposition 4.18, [BFM14] ). In the setting described in the Introduction of

this Chapter we have

M 6= ∅⇐⇒ Ω∗ 6= ∅⇐⇒Mf 6= ∅

Ω∗ = {ω ∈ Ω | ∃Q ∈Mf s.t. Q(ω) > 0} . (68)

The complement of Ω∗ is the maximal M-polar set.

Proof of Theorem 2.1. As already stated in the introduction, we may assume w.l.o.g. that

M 6= ∅, or equivalentlyMf 6= ∅. The first equality of the theorem holds because of the definition

of M-q.s. inequality and the fact that Ω∗ is the maximal M-polar set.

Step 1: Here we show that

inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗} = sup
Q∈Mf

EQ[g].

Consider Vf the vector space generated by Mf . The couple (L(Ω,F), Vf ) form a (not separated)

dual pair under the bilinear form

〈·, ·〉 : L(Ω,F)× Vf → R 〈X,µ〉 7→ Eµ[X].

Set G := C. Adopting for G0, G00 and N1 the notations of Theorem 2.8, we observe that G0 =

(Vf )+, N1 = {µ ∈ (Vf )+ | Eµ[1Ω] = 1} =Mf 6= ∅.
In addition, by Corollary 2.6 we obtain G = G00 and from (67) we then conclude:

inf{x ∈ R | g − x ∈ C} = sup {EQ[g] | Q ∈Mf} .

Step 2: We end the proof by showing that for any g ∈ L(Ω,F)

sup
Q∈M

EQ[g] = sup
Q∈Mf

EQ[g], (69)

where we adopt the convention ∞−∞ = −∞ for those random variables g whose positive and

negative part is not integrable. Set:

m := sup
Q∈M

EQ[g], l := sup
Q∈Mf

EQ[g].

We obviously have that l ≤ m so that we only have to prove the converse inequality. If l = ∞
there is nothing to prove. Suppose then l <∞. We first show that

if Q ∈M satisfy EQ[g] > l⇒ EQ[g] =∞ (70)

Suppose indeed by contradiction that there exists Q ∈M\Mf such that l < EQ[g] <∞. Consider

now an arbitrary version of the process gt := EQ[g | Ft] and extend the original market with the

asset Sd+1
t := gt for t ∈ I. We obviously have that Q is a martingale measure for the extended

market and from Proposition 2.9 this implies the existence of a finite support martingale measure

Qf which, by construction, belongs to Mf . Since EQf [g] = g0 > l, which is the supremum of the

expectations of g over Mf , we have a contradiction.

From (70) we readily infer that if m <∞ then l = m. We are only left to study the case of m =∞
and we show that this is not possible under the hypothesis l < ∞. Consider first the class of

martingale measures Q(g) ⊂M such that EQ[g−] =∞. We obviously have that Q(g)∩Mf = ∅,

moreover, since l < m = ∞ from (70) and from ∞−∞ = −∞, there exists Q̃ ∈ M \ Q(g) such
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that EQ̃[g] =∞ and EQ̃[g−] <∞. Consider now the sequence of claims gn := g∧n for any n ∈ N.

From EQ̃[g−] < ∞ and Monotone Convergence Theorem we have EQ̃[g ∧ n] ↑ EQ̃[g] = ∞, hence,

there exists n ∈ N such that n ≥ EQ̃[g ∧ n] > l. Note now that

sup
Q∈Mf

EQ[g ∧ n] ≤ sup
Q∈Mf

EQ[g] = l < EQ̃[g ∧ n] (71)

Applying (70) to g∧n we get EQ̃[g∧n] = +∞, which is a contradiction since the contingent claim

g ∧ n is bounded.

3. Example: forget about superhedging everywhere!

Let (Ω,F) = (R+,B(R+)). Consider a one period market (T = 1) defined by a non-risky asset

S0
t ≡ 1 for t = 0, 1 (interest rate is zero) and a single risky asset S1

T (ω) = ω with initial price

S1
0 := s0 > 0. In this market we also have two options Φ = (φ0, φ1), where φ0 := f0(ST ) is a

butterfly spread option and φ1 := f1(ST ) is a power option, i.e.

f0(x) := (x−K0)+ − 2(x− (K0 + 1))+ + (x− (K0 + 2))+

f1(x) := (x2 −K1)+.

Assume K0 > s0, K1 > (K0 + 2)2 and that these options are traded at prices c0 = 0 and c1 > 0

respectively. Set c = (c0, c1). The payoffs of these financial instruments are shown in Figure 1 for

K0 = 2, K1 = 25:
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payoff of S1

payoff of φ1

payoff of φ0
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Figure 1. Payoffs.

Definition 2.10. (1) There exists a model independent arbitrage (in the sense of Acciaio et al.

[AB13]) if ∃(H,h) ∈ H × Rk such that (H · S)T (ω) + h(Φ(ω)− c) > 0 ∀ω ∈ Ω.

(2) There exists a one point arbitrage (in the sense of [BFM14]) if ∃(H,h) ∈ H × Rk such that

(H · S)T (ω) + h(Φ(ω)− c) ≥ 0 ∀ω ∈ Ω and (H · S)T (ω) + h(Φ(ω)− c) > 0 for some ω ∈ Ω.

It is clear that any long position in the option φ0 is a one point arbitrage but it is not a model

independent arbitrage. We have indeed that there are No Model Independent Arbitrage as:

MΦ 6= ∅.
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More precisely, any Q ∈ MΦ must satisfy Q ((K0,K0 + 2)) = 0, so that (K0,K0 + 2) is an MΦ-

polar set, nevertheless,

ΩΦ = R+ \ (K0,K0 + 2).

One possible way to see this is to observe that on Γ := R+\(K0,K0+2) the option φ0 has zero payoff

and zero initial cost so that any probability P , with supp(P ) ⊆ Γ, that is a martingale measure

for S1, φ1, is also a martingale measure for S0, S1, φ0, φ1. Take now ω1 = 0, ω2 ∈ (K0 + 2,
√
K1),

ω3 >
√
K1 + c1 and observe that the corresponding points x1 := (−s0,−c1), x2 := (ω2 − s0,−c1)

and x3 := (ω3− s0, φ
1(ω3)− c1)) clearly belong to conv(∆X(ω) | ω ∈ Γ) where ∆X is the random

vector [S1
1 − s0;φ1− c1]. Consider now ε := 1

2 min{c1, s0, |ω2− s0|} so that for ω3 sufficiently large

we have

Bε(0) ⊆ conv(∆X(ω) | ω ∈ {ω1, ω2, ω3}) ⊆ conv(∆X(ω) | ω ∈ Γ).

We have therefore that 0 is in the interior of conv(∆X(ω) | ω ∈ Γ) and from Corollary 4.11 item

1) in [BFM14], ΩΦ = Γ = R+ \ (K0,K0 + 2). Note, moreover, that this is true for any value of

the price c1 > 0.

Consider now the digital options gi = Fi(ST ), i = 1, 2, with

F1(x) = 1(K0,K0+2)(x),

F2(x) = 1[K0,K0+2](x)

which differ only at the extreme points of the interval (K0,K0 + 2) and observe that F2 is upper

semi-continuous while F1 is not. From the previous remark g1 has price zero under any martingale

measure Q ∈MΦ, so that

sup
Q∈MΦ

EQ[g1] = 0. (72)

Define:

πΩ(g) := inf
{
x ∈ R | ∃(H,h) ∈ H × Rk such that x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ Ω

}
and recall that

πΦ(g) := inf
{
x ∈ R | ∃(H,h) ∈ H × Rk such that x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ ΩΦ

}
Claim 2.11. In this market:

(1) πΦ(g1) = supQ∈MΦ
EQ[g1] = 0 and πΦ(g2) = supQ∈MΦ

EQ[g2];

(2) πΩ(g1) = min
{
s0
K0
, 1
}
> supQ∈MΦ

EQ[g1] = 0;

(3) πΩ(g2) = supQ∈MΦ
EQ[g2].

Remark 2.12. (i) Item (1) is in agreement with the conclusion of Theorem 2.2.

(ii) Item (2) shows instead that the superhedging duality with respect to the whole Ω does not hold

for the claim g1 (which is even bounded). Note that in this example all the hypothesis of Theorem

1.4 in [AB13] are satisfied except for the upper semi-continuity of g1.

As the comparison between g1 and g2 in items (2) and (3) shows, the assumption of upper semi-

continuity of the claim seems artificial from the financial point of view, even though necessary for

the validity of Theorem 1.4 in [AB13].
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Our results demonstrates that it is possible to obtain a superhedging duality on the relevant

set ΩΦ (or Ω∗ when there are no options) for any measurable claim, regardless of the continuity

assumptions (as well as without the existence of an option with super-linear payoff).

Proof of the Claim 2.11. Item (1) holds thanks to Theorem 2.2. Notice also that the

equalities πΦ(g1) = 0 = supQ∈MΦ
EQ[g1] are consequences of (72) and the fact that (H,h) = (0, 0)

is a superhedging strategy for g1 on ΩΦ. As g2 is upper semi-continuous, the superhedging duality

in item (3) holds thanks to Theorem 1.4 in [AB13], see (58). In the remaining of this section

we conclude the proof by showing πΩ(g1) = min
{
s0
K0
, 1
}

= s0
K0

(by the assumption K0 > s0) and

hence item (2).

Let us consider the model independent superhedging strategies i.e. the set of (H,h) ∈ R2 × R2

such that x+(H ·S)T (ω)+hΦ(ω) ≥ g1(ω) for any ω ∈ Ω. Any admissible trading strategy is given

by (H,h) := [H0, H1, h0, h1] ∈ R4 which correspond to positions in the securities [S0, S1, φ0, φ1]

so that

price: V0(H,h) := H0 +H1s0 + h1c1

payoff: VT (H,h) := H0 +H1ω + h0φ0(ω) + h1φ1(ω)
(73)

Trivial super-hedges There are two immediate strategies whose terminal payoff is a super-hedge

for g1.

(1) S0 (i.e. H0 = 1 in (73) and H1 = h0 = h1 = 0) with initial cost 1.

(2) 1
K0
S1 (i.e. H1 = 1

K0
in (73) and H0 = h0 = h1 = 0) with initial cost s0

K0
.

Consider now a generic superhedging strategy (H,h) for the option g1 and suppose first that

H1 ≥ 0.

Observe that for every ω ∈ [0,K0] we have: VT (H,h)(ω) = H0 + H1ω and g1(ω) = 0. If H0 < 0

there exists ω̃ ∈ [0,K0] such that H0 + H1ω̃ < 0 = g1(ω̃) so that the strategy does not dominate

the payoff of g1. Necessarily H0 ≥ 0.

h1 6= 0 is not optimal for super-hedging g1: If h1 6= 0 we necessarily have h1 ≥ 0, oth-

erwise VT (H,h)(ω) < 0 for ω large enough (because of the super-linearity of f1) and

(H,h) is not a super-hedge for g1. Since f1(x) = 0 on (K0,K0 + 2) and c1 > 0, the most

convenient super-hedge is with h1 = 0 (cfr Figure 2).

: From now on with no loss of generality h1 = 0.

h0 6= 0 is not optimal for super-hedging g1: Since φ0 has a positive payoff, if h0 6= 0 we

might take h0 ≥ 0 otherwise we have a better super-hedge (at the same cost) by replacing

h0φ0 with the zero portfolio. Suppose now h0 > 0. By recalling that H0, H1 ≥ 0 we note

that VT (H,h) as in (73) satisfies

inf
ω∈(K0,K0+2)

H0 +H1ω + h0φ0(ω) = H0 +H1K0

so that the same super-hedge is achieved by trading only in S0 and S1. In other words

with no loss of generality h0 = 0 (cfr Figure 3)

We finally discuss the case H1 < 0.

This is, in general, a more expensive choice for the strategy (H,h). Indeed we have, for instance,

that for ω̃ = K0 + 1, H1S1(ω̃) = H1(K0 + 1) < 0 while g1(ω̃) = 1. Since for any strategy

(H,h) ∈ R4, VT (H,h)(ω̃) = H0 + H1ω̃ we need H0 ≥ 1 − H1(K0 + 1), hence, the initial price
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Figure 2. φ1 has no positive wealth on (K0,K0 + 2).
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Figure 3. h0φ0 does not dominate g1 on (K0,K0 + ε) for any h0 with ε = ε(h0)

V0(H,h) ≥ 1 − H1(K0 + 1 − s0). By choosing the parameters s0,K0 such that K0 + 1 − s0 < 0

any superhedging strategy with H1 < 0 is more expensive than the trivial super-hedge given by

H0 = 1, H1 = h0 = h0 = 0. Note moreover that in order to cover the losses in H1S1 for large

value of ω we would need to take a long position in the option φ1 (whose payoff dominates S1) for

an additional cost of h1c1 > 0 with h1 > −H1 > 0.

We can conclude that the cheapest super-replicating strategies are, in general, given by H0S0 +

H1S1 with H0, H1 ≥ 0 and it is easy to see that

πΩ(g1) = min

{
s0

K0
, 1

}
=

s0

K0
> 0.

�
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4. Technical results and proofs

Recall that {Ft}t∈I is the universal filtration which satisfies in particular that Ft contains the

family of analytic sets of (Ω,FSt ) for any t ∈ I.

We indicate by Mat(d × (T + 1);R) the space of d × (T + 1) matrices with real entries repre-

senting the set of all the possible trajectories of the price process: for every ω ∈ Ω we have

(S0(ω), S1(ω), ..., ST (ω)) ∈Mat(d× (T + 1);R). Fix t ≤ T : we indicate S0:t = (S0, S1, ..., St) and

recall that S−1
0:t (A) = {ω ∈ Ω | S0:t(ω) ∈ A} for A ⊂Mat(d× (t+ 1);R). We set ∆St := St−St−1,

t = 1, ..., T.

4.1. Ω∗ and ΩΦ are analytic sets.

Lemma 2.13. The set Pf = {P ∈ P | P has finite support} is an analytic subset of P endowed

with the sigma-algebra generated by the σ(P, Cb) topology.

Proof. Set E = {δω | ω ∈ Ω} which is σ(P, Cb) closed (Th. 15.8 [AB06]) and observe that

Pf is the convex hull of E. Consider for any n ∈ N the simplex ∆n ⊂ Rn and the map

γn : En ×∆n −→ Pf

defined by γn (δω1 , . . . , δωn , λ1, . . . , λn) =
∑n
i=1 λiδωi which is a continuous function in the product

topology. Since En × ∆n is closed in the product topology of the Borel Space Pn × Rn, then

the image γn (En ×∆n) is analytic (Proposition 7.40 [BS78]). Finally we notice that Pf =⋃
n γn (En ×∆n) which is therefore analytic, being countable union of analytic sets. �

Definition 2.14. Let L∞(Ω,F) := {f ∈ L(Ω,F) | f is bounded}. A subset U ⊂ Pf is countably

determined if there exists a countable set L ⊆ L∞(Ω,F) such that

U := {µ ∈ Pf | Eµ[f ] ≤ 0,∀f ∈ L}

Lemma 2.15. If U ⊆ Pf is countably determined then it is analytic.

Proof. For each fn ∈ L define

Fn : P → R such that Fn(µ) =

∫
Ω

fndµ.

From Theorem 15.13 in [AB06], Fn is Borel measurable so that

U := {µ ∈ Pf | Eµ[fn] ≤ 0 for all n ∈ N} =
⋂
n∈N

(Fn)−1(−∞, 0] ∩ Pf

is analytic, being countable intersection of analytic sets. �

Lemma 2.16. Let Z1(ω) := maxi=1,...,d maxu=0,...,T |Siu(ω)|, Z2(ω) := maxj=1,...,k |φj(ω)| and Z =

max(Z1, Z2) then

PZ =

{
µ ∈ Pf | ∃Q ∈Mf such that

dQ

dµ
=

c(µ)

1 + Z

}
PZ,Φ =

{
µ ∈ Pf | ∃Q ∈MΦ such that

dQ

dµ
=

c(µ)

1 + Z

}
are analytic subsets of P where c(µ) = Eµ

[
(1 + Z)−1

]−1
.
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Proof. Assume PZ 6= ∅ (resp. PZ,Φ 6= ∅) otherwise there is nothing to prove. Fix any

t ∈ {1, ..., T}. Let Mat(d × t;Q) be the countable set of d × t matrices with rational entries

and denote its elements by qn, n ∈ N. For qn ∈ Mat(d × t;Q), consider the set {An} with

An = {ω ∈ Ω | S0:t−1 ≤ qn} ∈ Ft−1. With a slight abuse of notation S0:t−1 ≤ qn stands for

Siu ≤ [qn]i,u for every i = 1, . . . , d and u = 0, 1, . . . , t− 1. Define

f in :=

(
Sit − Sit−1

1 + Z

)
1An ∈ L∞(Ω,F),

gj :=

(
φj

1 + Z

)
∈ L∞(Ω,F). (74)

The following sets

U :=
{
µ ∈ Pf | Eµ[f in] = 0 ∀i, n

}
UΦ :=

{
µ ∈ Pf | Eµ[f in] = 0 and Eµ[gj ] = 0 ∀i, n, j

}
are analytic since they are countably determined. We now show that U = PZ and UΦ = PZ,Φ and

this will complete the proof.

For any fixed µ ∈ U we have by construction:∫
Ω

Sit
1 + Z

1Andµ =

∫
Ω

Sit−1

1 + Z
1Andµ for every An. (75)

Consider the finite set of matrices {sj}mj=1 := {S0:t−1(ω) ∈ Mat(d × t;R) | ω ∈ supp(µ)} where

m = m(µ) depends on µ. Since µ has finite support, for any j = 1, . . . ,m we may find Ani with

i = 0, . . . , d× t such that

µ(Bj) = µ
(
An0
\ ∪d(t−1)

i=1 Ani

)
where Bj := {S0:t−1 = sj}. We conclude∫

Ω

Sit
1 + Z

1Bjdµ =

∫
Ω

Sit−1

1 + Z
1Bjdµ for every j = 1, . . . ,m

and Eµ

(
Sit

1+Z | Ft−1

)
= Eµ

(
Sit−1

1+Z | Ft−1

)
. Define Q by dQ

dµ := c
1+Z where c := c(µ) > 0 is the

normalization constant. Then , Q ∼ µ, Q ∈ Pf and:

Eµ

(
Sit

1 + Z
| Ft−1

)
= Eµ

(
Sit−1

1 + Z
| Ft−1

)
if and only if EQ

(
Sit | Ft−1

)
= Sit−1. (76)

Thus we can conclude Q ∈ Mf and U ⊆ PZ . Take now µ ∈ PZ then there exists Q such that

EQ
(
Sit | Ft−1

)
= Sit−1 and dQ

dµ = c
1+Z . From Equation (76) we have that condition (75) holds and

hence µ ∈ U .

Recall that MΦ is defined in (55) and consider now µ ∈ UΦ ⊆ U . Then there exists Q ∈Mf such

that dQ
dµ = c(µ)

1+Z . Moreover Eµ[gj ] = 0 for every j = 1, . . . , k so that, by (74), EQ[φj ] = 0. In this

way UΦ ⊆ PZ,Φ. Take now µ ∈ PZ,Φ then µ ∈ PZ from the previous part of the proof. Moreover

there exists Q ∈ MΦ such that EQ
(
Φj
)

= 0 and dQ
dµ = c

1+Z . Again by (74) we have Eµ[gj ] = 0

for every j = 1, . . . , k and hence µ ∈ UΦ. �

Proposition 2.17. Ω∗ and ΩΦ are analytic subsets of (Ω,F).
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Proof. Consider the Baire space NN of all sequences of natural numbers. In this proof we

denote by Bε(ω) the closed ball of radius ε, centered in ω in (Ω, d).

Consider a dense subset {ωi}∞i=1 of Ω. For any n = (n1, ..., nk, ...) ∈ NN we denote by n(1), . . . ,n(k)

the first k terms (i.e. n1, ..., nk). Define

An(1) := B1(ωn(1)).

Let now {ωn(1),i}∞i=1 a dense subset of An(1) we define

An(1),n(2) := B 1
2
(ωn(1),n(2)) ∩An(1).

At the kth step we shall have {ωn(1),...,n(k−1),i}∞i=1 a dense subset of An(1),...,n(k−1) and we define

the closed set

An(1),...,n(k) := B 1
k

(ωn(1),...,n(k)) ∩An(1),...,n(k−1).

Notice that for any ω ∈ Ω there will exists an n ∈ NN such that⋂
k∈N

An(1),...,n(k) = {ω}. (77)

We consider the nucleus of the Souslin scheme given by

⋃
n∈NN

⋂
k∈N

An(1),...,n(k) × {Q ∈ PZ | Q(An(1),...,n(k)) > 0}. (78)

Observe that An(1),...,n(k) closed in Ω implies {Q ∈ P | Q(An(1),...,n(k)) ≥ 1
m} is σ(P, Cb)-closed

from Corollary 15.6 in [AB06]. Therefore

{Q ∈ P | Q(An(1),...,n(k)) > 0} =
⋃
m

{Q ∈ P | Q(An(1),...,n(k)) ≥
1

m
}

is Borel measurable in (P, σ(P, Cb)). By Lemma 2.16 we have that {Q ∈ PZ | Q(An(1),...,n(k)) > 0}
is analytic. We can conclude that An(1),...,n(k) × {Q ∈ PZ | Q(An(1),...,n(k)) > 0} is an analytic

subset of Ω× P (which is a Polish space).

From Lemma 2.16 we observe that any µ ∈ PZ admits an equivalent martingale measure with

finite support. From Ω∗ = {ω ∈ Ω | ∃Q ∈Mf s.t. Q(ω) > 0}, if ω /∈ Ω∗ then ω /∈ supp(µ) for

any µ ∈ PZ . Taking (77) into account, if ω /∈ Ω∗ we can find a large enough k̄ such that

An(1),...,n(k̄) ∩ supp(µ) = ∅. We then have

⋂
k∈N

An(1),...,n(k) × {Q ∈ PZ | Q(An(1),...,n(k)) > 0} =

{
{ω} × Pω if ω ∈ Ω∗

∅ if ω /∈ Ω∗
,

where Pω = {Q ∈ PZ | Q({ω}) > 0}.
From Proposition 7.35 and Proposition 7.41 in [BS78] any kernel of a Souslin scheme of analytic

sets is again an analytic set. Then⋃
n∈NN

⋂
k∈N

An(1),...,n(k) × {Q ∈ PZ | Q(An(1),...,n(k)) > 0} = Ω∗ ×
⋃
ω∈Ω∗

Pω

is analytic in Ω× P. Since the projection Π : Ω× P → Ω is continuous we finally deduce that Ω∗

is analytic.

For ΩΦ repeat the same proof replacing PZ with PZ,Φ. �
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Remark 2.18. In one-period markets (T = 1), Ω∗ is a Borel measurable set. To see this observe

that if there are no one point arbitrages then Ω∗ = Ω ∈ B(Ω) by Proposition 4.11 in [BFM14].

When this condition is violated, there exists a strategy H1 ∈ Rd such that H1 · (S1 − S0) ≥ 0

and B1 := {ω ∈ Ω | H1 · (S1(ω) − S0) > 0} is non-empty and Borel measurable. Indeed B1 =

(f ◦S1)−1(0,∞) with f(x) := H1 ·(x−S0) continuous and S1 Borel measurable. Observe now that,

restricted to the set Ω \ B1, one asset is redundant (say Sd) so that the market can be described

by (S0, . . . , Sd−1). If there is no one point arbitrage we have Ω∗ = Ω \ B1 ∈ B(Ω). Otherwise we

can iteratively repeat the same argument to construct Bi := {ω ∈ Ω \ ∪i−1
j=1B

j | Hi · (S1(ω)−S0) >

0} ∈ B(Ω) and dropping iteratively one additional asset. Since the number of assets is finite

the procedure takes β ≤ d steps. On the resulting set there are no one point arbitrages so that

Ω∗ = (∪βi=1B
j)C ∈ B(Ω).

4.2. On the key Proposition 2.3.

Remark 2.19. We point out at this stage that Ω∗ is not only analytic but also it belongs to FT
where FT is the universal completion of σ(St | t ≤ T ). Indeed Ω∗ ⊆ S−1

0:T (S0:T (Ω∗)). Moreover for

any ω1 ∈ S−1
0:T (S0:T (Ω∗)) there exists ω2 ∈ Ω∗ such that S0:T (ω1) = S0:T (ω2). Therefore for any

Q ∈ Mf such that Q({ω2}) > 0 and Q({ω1}) = 0, the measure Q̃ such that Q̃({ω1}) := Q({ω2}),
Q̃({ω2}) := 0 and Q̃ = Q elsewhere is a martingale measure. Necessarily ω1 ∈ Ω∗.

In the proof of Proposition 2.3 we will make use of the following simple fact: set ΩT∗ := Ω∗ ∈ FT
then by backward recursion we have

Ωt∗ := S−1
0:t (S0:t(Ω

t+1
∗ )) ∈ Ft, Ωt+1

∗ ⊆ Ωt∗ for any t = 0, . . . , T − 1, and Ω∗ =

T⋂
t=1

Ωt∗.

Notice that Ωt∗ can be interpreted as the Ft-measurable projection of Ω∗ since Ωt∗ = S−1
0:t (S0:t(Ω∗)).

We also recall that the condition No one point arbitrage holds true on Ω∗. If indeed there exists

H ∈ H such that (H · S)T ≥ 0 with (H · S)T (ω) > 0 for some ω ∈ Ω∗, then any measure P such

that P (ω) > 0 cannot be a martingale measure, which contradicts (52).

4.2.1. Proof of Proposition 2.3. We show, in several steps, that π∗(g) = supQ∈Mf
πQ(g) where

π∗ and πQ are defined in (61) and (62) and g ∈ L(Ω,F).

Step 1: The first step is to construct, for any 1 ≤ t ≤ T , an Ft−1-measurable random set

Rt,X,D ⊆ Rd+1 whose interpretation is the following: if ω occurs, any H1, . . . Hd, Hd+1 ∈ Rt,X,D(ω)

represents a strategy at time t− 1 that allows to super-hedge the random variable X at time t, for

any trajectory in D ⊆ Ω. Here Hd+1 represents the investment in the non-risky asset. Note that

we need to incorporate the additional feature given by the choice of the set D since we want to

super-hedge the random variable g only on Ω∗ ⊆ Ω.

Recall ∆St = St − St−1. Consider, for an arbitrary 1 ≤ t ≤ T , D ∈ Ft and X ∈ L(Ω,F) the

multifunction

ψt,X,D : ω 7→
{

[∆St(ω̃); 1;X(ω̃)] 1D | ω̃ ∈ Σωt−1

}
⊆ Rd+2

where [∆St; 1;X] 1D =
[
∆S1

t 1D, . . . ,∆S
d
t 1D,1D, X1D

]
and Σωt−1 is the level set of the trajectory

ω up to time t − 1 i.e. Σωt−1 = {ω̃ ∈ Ω | S0:t−1(ω̃) = S0:t−1(ω)}. We show that ψt,X,D is an



68 2. MODEL-FREE SUPERHEDGING DUALITY

Ft−1-measurable multifunction. For any open set O ⊆ Rd × R2

{ω ∈ Ω | ψt,X,D(ω) ∩O 6= ∅} = S−1
0:t−1 (S0:t−1 (B)) where B = ([∆St; 1;X] 1D)−1(O).

First [∆St, 1, X] 1D is an F-measurable random vector then B ∈ F . Second Su is a Borel measur-

able function for any 0 ≤ u ≤ t−1 so that we have, as a consequence of Theorem III.18 in [DM82],

that S0:t−1(B) belongs to the sigma-algebra generated by the analytic sets in Mat(d × t;R) en-

dowed with its Borel sigma-algebra. Applying now Theorem III.11 in [DM82] we deduce that

S−1
0:t−1(S0:t−1(B)) ∈ Ft−1 and hence the desired measurability for ψt,X,D.

By preservation of measurability (see [RW98] for instance) the multifunction

ψ∗t,X,D(ω) :=
{
H ∈ Rd+2 | H · y ≤ 0 ∀y ∈ ψt,X,D(ω)

}
is also Ft−1-measurable and thus, the same holds true for −ψ∗t,X,D ∩Rd+1×{−1}. The projection

on the first d+1 components, Rt,X,D := Πx1,...,xd+1
(−ψ∗t,X,D∩Rd+1×{−1}), provides the building

blocks for the super-replicating strategy for g. By the previous construction we have indeed that

Rt,X,D(ω) =

{
H ∈ Rd+1 | Hd+11D +

d∑
i=1

Hi∆Sit(ω̃)1D ≥ X(ω̃)1D ∀ω̃ ∈ Σωt−1

}
(79)

Notice that if D ∩ Σωt−1 = ∅ then Rt,X,D(ω) = Rd+1. Note also that Rt,X,D is, by construction, a

closed set.

Denote by Πxd+1
(Rt,X,D) the projection on the (d+ 1)-th component, which is a random interval

in R with possible values {∅}, {R}. Observe now that the projection is continuous and that the

infimum of a real-valued random set A preserve the measurability since

{ω ∈ Ω | inf{a | a ∈ A(ω)} < y} = {ω ∈ Ω | A(ω) ∩ (−∞, y) 6= ∅}

Conclude, therefore, that Xt−1 := inf Πxd+1
(Rt,X,D) is an Ft−1-measurable function with values

in R ∪ {±∞}.
Step 2. We prove that for every ω ∈ {|Xt−1| <∞} the infimum in Xt−1 is actually a minimum.

To this aim fix ω ∈ {|Xt−1| < ∞} and notice that there might exist L ∈ Rd \ {0} such that

L ·∆St = 0 on Σωt−1∩Ωt∗, meaning that some assets are redundant on this level set. We can reduce

the number of assets by selecting i1, . . . , ik ∈ (1, ..., d) such that l1∆Si1t + . . .+ lk∆Sikt = 0 implies

lj = 0 for every j = 1, . . . , k. Consider the closed set

R̃(ω) =
{
H ∈ Rt,X,D(ω) | Hij = 0 for every j = 1, . . . , k

}
and observe that

Xt−1(ω) = inf Πxd+1
(Rt,X,D(ω)) = inf Πxd+1

(R̃(ω))

= inf Πxd+1

(
R̃(ω) ∩

{
Rd × [Xt−1(ω), Xt−1(ω) + 1]

})
.

The set Ko(ω) := R̃(ω) ∩
{
Rd × [Xt−1(ω), Xt−1(ω) + 1]

}
is closed being the intersection of closed

sets. We claim that Ko(ω) is bounded. By contradiction, suppose it is unbounded. Let Ĥn =

(Hn, H
d+1
n ) ∈ Ko(ω) ⊂ Rd × R, such that ‖Hn‖ → +∞. By definition H

ij
n = 0 for every

j = 1, . . . , k and Hd+1
n is bounded by Xt−1(ω) + 1. For any ω̃ ∈ D ∩ Σωt−1 and any n we have

Xt−1(ω) + 1

‖Hn‖
+

Hn

‖Hn‖
·∆St(ω̃) ≥ Xt(ω̃)

‖Hn‖
.
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Since Hn
‖Hn‖ lies on the unit sphere of Rd, we can extract a subsequence converging to H∗ with

‖H∗‖ = 1. Therefore passing to the limit over this subsequence we have H∗ ·∆St(ω̃) ≥ 0 for every

ω̃ ∈ D∩Σωt−1. From No one point arbitrage condition we deduce H∗ ·∆St = 0 on D∩Σωt−1. Since

Hn ∈ Ko(ω) then (H∗)ij = 0 on the redundant assets and thus H∗ = 0 which is a contradiction.

The setKo(ω) is closed and bounded in Rd+1, hence compact. From the continuity of the projection

Πxd+1
(Ko(ω)) is compact, so that the infimum is attained.

Step 3: We now provide a backward procedure which yields the super-replication price and

the corresponding optimal strategy. By classical arguments, when we fix a reference probability

Q ∈Mf this procedure yields two processes Xt(Q) and Ht(Q) such that

g ≤
T∑

u=t+1

Hu(Q) ·∆Su +Xt(Q) =

T∑
t=1

Ht(Q) ·∆St +X0(Q) Q− a.s. (80)

where Xt(Q) represents the minimum amount of cash that we need at time t in order to super-hedge

g in the Q-a.s. sense. Recall that from NA(Q) we necessarily have Xt(Q) > −∞ on supp(Q).

With no loss of generality set Xt(Q)(ω) = −∞ for any ω /∈ supp(Q). Now we prove the pathwise

counterpart of (80):

Set XT := g and DT := Ω∗ which belongs to FT by Remark 2.19 and consider first the random set

RT,XT ,DT . The random variable XT−1 := inf Πxd+1
(RT,XT ,DT ) represents the minimum amount

of cash that we need at time T − 1 in order to super-hedge g on Ω∗. XT−1 is therefore the FT−1-

measurable random variable that needs to be super-replicated at time T − 2.

For t = T − 1, . . . , 0 we indeed iterate the procedure by taking Xt := inf Πxd+1
(Rt+1,Xt+1,Dt+1

),

Dt = S−1
0:t (S0:t(Dt+1)) ∈ Ft and the random set Rt+1,Xt+1,Dt+1

as defined before. We again have

that Xt is an Ft-measurable function with values in R ∪ {±∞}.

This backward procedure yields the super-hedging price X0 on Ω∗ but also provide the correspond-

ing cheapest portfolio as follows: note first that for every ω ∈ Ω∗, Xt(ω) > −∞. If this is not the

case there exists a sequence (Hn, xn)n∈N ∈ Rd×R such that xn ↓ −∞, xn+Hn∆St+1(ω̃) ≥ Xt+1(ω̃)

for every ω̃ ∈ Dt+1∩Σωt and hence Q-a.s. for every Q ∈Mf such that Q(Σωt ) > 0. This would lead

to a contradiction with Xt(Q) > −∞. From now on we therefore assume that Xt(ω) > −∞. In the

case Xt(ω) <∞ for every t = 0, . . . , T −1, Step 2 provides that Xt is actually a minimum. The Ft-
measurable multifunction given by Πx1,...,xd(Rt+1,Xt+1,Dt+1 ∩

{
Rd ×Xt

}
) is therefore non-empty

for every t = 0, . . . , T − 1 and thus admits a measurable selector Ht+1. The strategy H1, . . . ,HT

satisfy the inequalities

g ≤ HT ·∆ST +XT−1 on DT

XT−1 ≤ HT−1 ·∆ST−1 +XT−2 on DT−1

. . .

X1 ≤ H1 ·∆S1 +X0 on D1
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and it represents a super-hedge on Ω∗ =
⋂T
t=1Dt as

g ≤ HT ·∆ST +XT−1 ≤
T∑

t=T−1

Ht ·∆St +XT−2 ≤ . . . ≤
T∑
t=1

Ht ·∆St +X0 (81)

holds true for any ω ∈ Ω∗. When instead Xt(ω) =∞ for some ω ∈ Ω∗ and for some t ≥ 0 then by

simply taking Xu ≡ ∞ and Hu arbitrary for every u ≤ t, the inequality (81) is trivially satisfied.

Step 4: In order to prove (63) we recursively show that Xt(ω) = supQ∈Mf
Xt(Q)(ω) for any

ω ∈ Ω∗ which, in particular, implies X0 = supQ∈Mf
X0(Q). Obviously Xt(ω) ≥ Xt(Q)(ω) for any

ω ∈ Ω∗ so that Xt ≥ supQ∈Mf
Xt(Q). Thus, we need only to prove the reverse inequality.

For t = T the claim is obvious: XT = g. By backward recursion suppose now it holds true for any

u with t+ 1 ≤ u ≤ T i.e. Xu(ω) = supQ∈Mf
Xu(Q)(ω) for any ω ∈ Ω∗.

From the recursive hypothesis in order to find a super-replication strategy with the same price

for any Q ∈ Mf we need to super-replicate Xt+1. We fix a level set Σωt and recall that Xt is

Ft-measurable, hence it is constant on Σωt . We first treat two trivial cases:

• If Xt+1(ω) = ∞ for some ω ∈ Ω∗ then the claim is not super-replicable at a finite cost

hence the thesis follows with X0 = supQ∈Mf
X0(Q) =∞.

• If Σωt ∩Ωt+1
∗ = ∅ we have two consequences: Σωt is anMf -polar set, hence by assumption,

Xt(Q) = −∞ on Σωt , for any Q ∈ Mf . Moreover, as explained after equation (79),

Πxd+1
(Rt+1,Xt+1,Dt+1

) = R so that Xt(ω) = −∞ and the desired equality follows.

From now on we therefore assume Xt+1 <∞ and Σωt ∩ Ωt+1
∗ 6= ∅. Define, for any y ∈ R, the set

Γy := co
(
conv

{
[∆St+1(ω̃); y −Xt+1(ω̃)] | ω̃ ∈ Σωt ∩ Ωt+1

∗
})

We claim that

0 ∈ int(Γy) =⇒ Xt > y (82)

Indeed from 0 ∈ int(Γy) there is no non zero (H,h) ∈ Rd ×R , such that either h(y−Xt+1) +H ·
∆St+1 ≥ 0 or h(y −Xt+1) +H ·∆St+1 ≤ 0 on Σωt ∩ Ωt+1

∗ . In particular there is no H ∈ Rd such

that y + H ·∆St+1 ≥ Xt+1. Since, as in Step 3, Xt is actually a minimum with a corresponding

optimal super-hedging strategy, (82) follows.

Premise: As in Step 1, we may suppose, without loss of generality, that if for some H ∈ Rd,
H ·∆St+1 = 0 on Σωt ∩ Ωt+1

∗ then H = 0. In fact if this is not the case we can reduce,

with an analogous procedure, the number of assets needed for super-replication on the

level set .

We now distinguish two cases.

Case 1: Suppose there exist (H,h, α) ∈ Rd+2 with (H,h, α) 6= 0 such that h(y − Xt+1) + H ·
∆St+1 = α on Σωt ∩ Ωt+1

∗ . We claim that h 6= 0. Indeed, if h = 0 then α 6= 0, since

H ·∆St+1 = 0 implies (H,h, α) = 0. However, α 6= 0 implies H ·∆St+1 = α on Σωt ∩Ωt+1
∗

which would yield a trivial one point arbitrage on Ω∗, hence a contradiction.

Since h 6= 0 we have y − α
h + H

h · ∆St+1 = Xt+1 on Σωt ∩ Ωt+1
∗ : this means that Xt+1

is replicable implementing the strategy H̄ := H
h in the risky assets and Xt = y − α

h

in the non-risky asset. If now for some Q ∈ Mf such that Q(Σωt ) > 0, we have the

existence of x ≤ Xt and Hx ∈ Rd such that x + Hx · ∆St+1 ≥ Xt+1 Q-a.s. then
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x−Xt + (Hx − H̄)∆St+1 ≥ 0 Q-a.s. hence, since NA(Q) holds true, x ≥ Xt. Therefore

Xt = Xt(Q) on Σωt−1.

Case 2: If a triplet (H,h, α) ∈ Rd+2 such as in Case 1 does not exist then we define

ȳ = sup
{
y ∈ R | ∃H ∈ Rd : y +H ·∆St+1 ≤ Xt+1 on Σωt ∩ Ωt+1

∗
}
.

Obviously ȳ < Xt otherwise we are back to Case 1. For every 0 < ε < Xt − ȳ and for

every H ∈ Rd neither Xt− ε+H∆St+1 ≥ Xt+1 nor Xt− ε+H∆St+1 ≤ Xt+1 holds true

on Σωt ∩Ωt+1
∗ . Moreover if there exists h ∈ R such that h(Xt − ε−Xt+1) +H∆St+1 ≥ 0

(or h(Xt − ε−Xt+1) +H∆St+1 ≤ 0) on Σωt ∩ Ωt+1
∗ necessarily h would be 0 (otherwise

simply divide by h). In such a case H∆St+1 ≥ 0 (or H∆St+1 ≤ 0) on Σωt ∩ Ωt+1
∗ and

by absence of one point arbitrage we get H∆St+1 = 0 and hence H = 0. For this reason

neither h(Xt − ε − Xt+1) + H∆St+1 ≥ 0 nor h(Xt − ε − Xt+1) + H∆St+1 ≤ 0 for any

(H,h) ∈ Rd+1 \ {0} so that 0 ∈ intΓXt−ε.
Take {ωi}ki=1 ⊂ Σωt ∩ Ω∗ (with k ≤ d) such that {[∆St+1(ωi);Xt − ε−Xt+1(ωi)] | i =

1, . . . , k} are linearly independent and generates the same linear space in Rd+1 as ΓXt−ε.

By Proposition 2.9, and the convexity of the set of martingale measures, there exists

Q ∈Mf such that Q({ωi}) > 0 for any i = 1, . . . , k. For such a Q we get

ΓXt−ε = co (conv{[∆St+1(ω̃);Xt − ε−Xt+1(ω̃)] | ω̃ ∈ supp(Q) ∩ Σωt })

so that, from 0 ∈ intΓXt−ε, there exists no H(Q) ∈ Rd such that Xt−ε+H(Q) ·∆St+1 ≥
Xt+1 Q-a.s. We can conclude that Xt ≥ supQ∈Mf

Xt(Q) ≥ Xt − ε. Letting ε ↓ 0 we get

supQ∈Mf
Xt(Q) = Xt as desired.

Step 5: finally we prove (64). Notice that C ⊆
⋂
Q∈Mf

C(Q). Moreover if g ∈
⋂
Q∈Mf

C(Q)

then (80) holds with X0(Q) ≤ 0 for every Q ∈ Mf . Therefore also in Equation (81) we have

X0 = supQ∈Mf
X0(Q) ≤ 0 and g ≤

∑T
t=1Ht ·∆St on Ω∗ i.e. g ∈ C.

4.3. Proof of Theorem 2.2. Recall that πΦ is defined in (57) and MΦ in (55). Set

π̃Φ(g) := inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ ΩΦ} .

Lemma 2.20. Let g : Ω 7→ R and φj : Ω 7→ R, j = 1, ..., k, be F-measurable random variables.

Then

πΦ(g) = inf
h∈Rk

π̃Φ(g − hΦ).

Proof. For every h ∈ Rk we have πΦ(g) ≤ π̃Φ(g − hΦ) so that πΦ(g) ≤ infh∈Rk π̃Φ(g − hΦ).

By contradiction assume πΦ(g) < infh∈Rk π̃Φ(g − hΦ), then there exist (x̄, h̄, H̄) ∈ (R,Rk,H) such

that

x̄ < inf
h∈Rk

π̃Φ(g − hΦ) and

x̄+ (H̄ · S)T (ω) + h̄Φ(ω) ≥ g(ω) for all ω ∈ ΩΦ

Clearly we have a contradiction since

x̄ < π̃Φ(g − h̄Φ) = inf
{
x ∈ R | ∃H ∈ H s. t. x+ (H · S)T (ω) ≥ g(ω)− h̄Φ(ω) ∀ω ∈ ΩΦ

}
≤ x̄.

�
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Proof of Theorem 2.2. Since also ΩΦ is analytic (Proposition 2.17), by comparing the

definition of ΩΦ in (56) with (68), we may repeat step by step the same arguments used in the

proof of Theorem 2.1 and Proposition 2.3 replacing Ω∗ with ΩΦ. We then conclude that π̃Φ(g) =

supQ∈MΦ
EQ[g] for any F-measurable random variable g. Since EQ[hΦ] = 0 for all Q ∈ MΦ and

h ∈ Rk, for the F-measurable random variable g − hΦ we have

π̃Φ(g − hΦ) = sup
Q∈MΦ

EQ[g − hΦ] = sup
Q∈MΦ

EQ[g], ∀h ∈ Rk.

The Lemma 2.20 then implies: πΦ(g) = infh∈Rk π̃Φ(g − hΦ) = supQ∈MΦ
EQ[g]. �



CHAPTER 3

Models with proportional transaction costs1

Arbitrage and Consistent Price Systems. We consider here a model independent version

of the Robust No Arbitrage condition introduced in [S04]. Whenever this condition holds true

the broker still have room for proposing a discount on the bid-ask spread without creating with

this operation arbitrage opportunities. In this sense the terminology “robustness” of the No Arbi-

trage condition should be interpreted rather than the probability-free setup. Differently from the

approach of [S04] we are not defining arbitrage in terms of physical units of assets, while we are

choosing a numeràire and we are evaluating a sure gain in terms of the value process of a certain

strategy. Nevertheless we show the same equivalence under the name of FTAP:

There are No Robust Model Independent Arbitrage iff there exists a CPS (83)

A related paper in this direction is the recent work of Bayraktar and Zhang (see [BZ13]). In

this paper the authors replaced the single reference probability with a (possibly non-dominated)

set of priors P and considered the case of a multi-period market with a single risky asset. By

using a strong continuity assumption and the tools of Quasi-Sure Analysis they were able to show

the analogous equivalence (83). We point out that even by choosing the extreme class of priors

P as the set of all possible probabilities P the Model Independent case is not covered and hence

the desired equivalence is not automatically achieved. In particular, in this Chapter we study a

multi-period, multi-asset model and we show that when no reference probabilities are fixed, we

do not need any continuity assumption in order to show (83). To this aim we will make use of

the general theory of random sets and measurable selection which have already been considered

by Rokhlin in [Ro08] for the probabilistic case. Nevertheless in [Ro08] the author provided an

equivalent condition to the existence of CPSs based on random sets. This condition turns out to

be also equivalent to No Robust Arbitrage due to the equivalence (83) which was already known

from [S04]. Since in this Chapter we do not have (83) while, on the contrary, it is exactly what

we want to show, the extension to the model-free setup of some results of [Ro08] is only partially

useful.

Super-hedging Theorem. The second part of the Chapter is devoted to the proof of the

Super-hedging Theorem in the presence of proportional transaction costs. Denote Q the class of

probability measure Q ∈ P such that there exists a price process S with values in the bid-ask

spread for which the couple (Q,S) is a consistent price systems. Recall that from (83) this class

is non-empty if No Model Independent Arbitrage holds true. Denote also by S, the family of

processes S̃ for which QS̃ 6= ∅. For a given claim g, in Section 3, we formally prove the following

1Chapter 3 is based on the working paper: Arbitrage and Hedging in Model Independent Markets with frictions.
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equality

sup
Q∈Q

EQ[g] = inf{x ∈ R | ∃H ∈ H s.t. x+ VT (H) ≥ g ∀ω ∈ Ω∗} =: p(g) (84)

where Q is the set of probability measures Q for which there exist a process S̃ ∈ S. The set Ω∗ ⊆ Ω

for which we require the superhedging inequality is given by

Ω∗ := {ω ∈ Ω | ∃Q ∈ Q such that Q({ω}) > 0}

and we denominate it the support of the consistent price system CPS (See Definition (3.14)). As a

consequence of (83) this equality is meaningful when the condition No Robust Model Independent

Arbitrage holds true but nevertheless, by assuming the convention that the superhedging inequality

is always satisfied when Ω∗ = ∅, then (84) is true in general.

The idea of the proof is very simple. By simply writing explicitly the value process VT (H) of a

certain strategy H we obtain that

VT (H) =

T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1≤H
j
t }

)
where Sjt and S

j

t are, respectively the cost of selling and buying a share of asset j at time t. We

observe that for any H, the value process VT (H) is simply the (discrete time) stochastic integral

of a certain process SH laying at the boundaries of the bid-ask spread. Since any process S̃ ∈ S
defines a frictionless market it is possible to compute the superhedging price for g that we denote

pS̃ . From Chapter 2 the equality

sup
Q∈QS̃

EQ[g] = pS̃(g)

holds true and when pS̃(g) is finite it is actually a minimum with a corresponding set of cheapest

strategies HS̃ . If there exist now a strategy H S̃ ∈ HS̃ such that the stochastic integral (H S̃ ◦ S̃)T

and the value process VT (H S̃) require the same initial capital to superreplicate g we then have

pS̃(g) + (H S̃ ◦ S̃)T ≥ g and pS̃(g) + VT (H S̃) ≥ g

From which supQ∈Q EQ[g] ≥ p(g) holds true which is the difficult part in showing (84).

In order to show the existence of such a process we construct an auxiliary set-valued superhedging

problem (see Definition 3.16) by considering at a certain time t the whole set of random vectors

which are convex combinations of random vectors at time t + 1. Note that for such processes an

obvious conditional martingale with finite support exists and it is given by the convex combination.

We will show in Section 3 that by solving the set-valued superhedging problem we will obtain the

desired S̃ ∈ S.

1. Setting and notations

Fix (Ω,B(Ω)) a measurable space, where Ω is Polish, and F := B(Ω) is the Borel sigma-algebra.

Let P = P(Ω) be the set of probability measures on (Ω,F). We consider a discrete time interval

I = {0, . . . , T} on a finite time horizon T ∈ N and we introduce a (d + 1)-dimensional stochastic

process (St)t∈I which is Borel-measurable and which represents the discrete time evolution of

the price process of d + 1 assets where the first one serves as a numeràire. With no loss of

generality we may therefore assume S0
t ≡ 1 for any t ∈ I. The setup of Kabanov et al. (for
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example [KS01a, KRS02]) can be defined also when a reference probability is absent. For any

t ∈ I a Borel-measurable stochastic matrix Λt = [λijt ]i,j=0,...,d is given, where any λijt models the

transaction cost for exchanging one unit of the asset i for the corresponding value in units of the

asset j, at time t. Following the notation of Kabanov and Stricker [KS01a] and Schachermayer

[S04], one can also define the matrix Πt = [πijt ]i,j=0,...,d given by

πijt :=
Sj

Si
(1 + λijt )

where any πijt represents the physical unit of asset i that an agent need to exchange, at time t, for

having one unit of asset j. Clearly λiit = 0 and consequently πiit = 1 for any t ∈ I. A standard

assumption is that agents are smart enough to take advantage of favourable exchange between

assets so that, for any t ∈ I, for any ω ∈ Ω, one may assume

πijt ≤ π
ik1
t πk1k2

t · · ·πknjt

for any combination of asset k1, . . . , kn.

Differently from the frictionless case when an agent wants to implement a trading strategy she

needs to consider the cost of rebalancing the portfolio after each trade date. The definition of

self-financing strategies, goes as follows:

Definition 3.1. Denote by ei with i = 0, . . . d the vector of the canonical base of Rd+1 and define

Kt := co
(
conv

{
ei, π

ij
t ei − ej | i, j = 0, . . . , d

})
the so-called solvency cone. Any portfolio in Kt can be indeed reduced to the 0 portfolio up to

suitable exchanges of assets and up to “throwing away” some money if necessary. The cone of

portfolio available at cost 0 at time t, is simply given by −Kt and Ft := Kt ∩ −Kt is the set

of portfolio which are exchangeable with the zero portfolio.

A self-financing trading strategy H := (Ht)1≤t≤T is a predictable process with

Ht −Ht−1 ∈ −Kt−1 for any t = 1, . . . , T

meaning that rebalancing the portfolio is obtained at zero cost.

In this paper the asset S0 serves as a numeràire and the value of any portfolio is evaluated in

terms of S0. This amounts to the choice of πijt = πi0t π
0j
t in the above setting for any t ∈ I.

We have therefore that the stochastic interval [ 1
πj0 , π

0j ] represents the bid-ask spread of the asset

j ∈ {1, . . . , d}.

Notation 3.2. In the following, the bid-ask spread
[

1

πj0t
, π0j
t

]
will be shortly denoted as [Sjt , S

j

t ]

for t = 0, . . . , T and j = 1, . . . , d.

For any t ∈ I, for any ω ∈ Ω, define

Ct(ω) :=
[
S1
t (ω), S

1

t (ω)
]
×, . . . ,

[
Sdt (ω), S

d

t (ω)
]
⊆ Rd (85)

Assumption 3.3. We assume that int(Ct) 6= ∅, known as the efficient friction hypothesis, mod-

elling non-trivial transaction costs, and we assume that, for every ω fixed, Ct(ω) is bounded.
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We finally set FS := {FSt }t∈I , where FSt := σ{Su, Su | 0 ≤ u ≤ t} denotes the natural filtration of

the processes S and S, and we consider the Universal Filtration F := {Ft}t∈I , namely,

Ft :=
⋂
P∈P

FSt ∨NP
t , where NP

t = {N ⊆ A ∈ FSt | P (A) = 0};

For any 0 ≤ t ≤ T , we denote by L0(Ft;V ) the set of Ft-measurable functions with values in

V ⊆ Rd. For technical purposes we will also adopt the following notation:

Notation 3.4. For a random set Ψ in Rd we denote by Ψ∗ the (positive) dual of Ψ and for ε > 0

we introduce the ε-dual of Ψ as

Ψ∗(ω) := {v ∈ Rd | v · x ≥ 0 ∀x ∈ Ψ(ω)}

Ψε(ω) :=
{
v ∈ Rd | v · x ≥ ε ∀x ∈ Ψ(ω) \ {0}

}
which they both preserve the same measurability as Ψ as discussed in the Appendix (see Lemma

3.25 and Proposition 3.27).

2. Arbitrage and Consistent Price Systems

In this Section we consider the class of strategies on {0, . . . , T + 1} of the form (H0, . . . ,HT+1)

where H0 = HT+1 = 0 and H1, . . . ,HT is a self-financing strategy as in Definition 3.1. Denote by

H the class of admissible strategies. Since HT+1 = H0 +
∑T
t=0 ξt with ξt ∈ −Kt any admissible

strategy has no initial endowment (H0 = 0), it is implemented by subsequently rebalancing the

portfolio at zero cost and at time T any open position must be closed (HT+1 = 0).

We consider the value process Vt(H) of a certain admissible strategy H ∈ H as the position in the

numeràire S0 at time t after rebalancing. The terminal value is given by

VT (H) =

T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1≤H
j
t }

)
(86)

One can easily verify the above formula. If, for instance, at time t the agent switch from a long

position to a short one in asset j then she needs to liquidate Hj
t obtaining Hj

t S
j
t and then selling

Hj
t+1 shares of the asset at the same price, yielding (Hj

t −H
j
t+1)Sjt which coincides with the second

term in (86) since obviously Hj
t+1 ≤ Hj

t . If instead she wants only to diminish the amount of

shares in the long position, then Hj
t+1 ≤ Hj

t and she needs to liquidate the amount Hj
t − H

j
t+1

obtaining in return (Hj
t −H

j
t+1)Sjt . The remaining cases follow similarly.

Using a similar argument as in Schachermayer [S04] we may introduce, and motivate, the following

definition of Arbitrage,

Definition 3.5. We say that a bid-ask process Π̃ has smaller transaction costs than Π if and only

if for any ω ∈ Ω, for any t ∈ I[
1

π̃j0t
, π̃0j
t

]
$
[

1

πj0t
, π0j
t

]
for any j = 1, . . . , d

Observe that clearly VT (H) depends also on Π and, in particular, VT (H)(Π̃) > VT (H)(Π) if Π̃ has

smaller transaction costs than Π. We will omit this dependence when it is clear from the context.
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Definition 3.6. Consider a market with bid-ask spread Π. We say that a trading strategy H ∈ H is

an Enhanceable Model Independent Arbitrage if for any arbitrary small reduction of the transaction

costs Π̃ we have VT (H)(Π̃) > 0 for any ω ∈ Ω.

This definition is the model-free version of the Robust Arbitrage condition introduced (in negation

form NAr) in [S04] but in order to avoid misleading terminology in the context of model uncertainty

we decide to stick to the introduced definition. If the condition No Enhanceable Arbitrage holds

true the broker still have room for proposing a discount on the transaction costs without creating

arbitrage opportunity. On the contrary if this condition is not satisfied it is sufficient to have an

infinitely small discount to get an arbitrage opportunity on a certain set of events. Since transaction

costs are often subject of negotiation it looks quite natural to consider markets that exclude these

possibilities.

Before stating our version of the Fundamental Theorem of Asset pricing we lastly need to formulate

the definition of the so-called consistent price systems, in this model-free context.

Definition 3.7. We say that a couple (Q, S̃) is a consistent price system on [0, T ] if S̃ := (S̃t)t∈I

is a (d + 1)-dimensional, F-adapted stochastic process with S̃0
t ≡ 1, for any t ∈ I and which is a

martingale under the measure Q ∈ P(Ω). In addition S̃jt takes values in the interior of the bid

ask-spread defined by Π i.e.

S̃jt ∈
(

1

πj0t
, π0j
t

)
for any ω ∈ Ω and for any j = 1, . . . , d.

Denote MΠ the class of price systems consistent with Π.

2.1. Model free FTAP. We are now ready to introduce one of our main results. The

arguments used in [KS01a] and [S04] to show the probabilistic versions of this Theorem are based

on properties of the dual cones K∗t . The formulation of the problem illustrated in Section 2,

allows for making use of a geometric approach similar in spirit as the one used in [BFM14] for

showing the Fundamental Theorem in the frictionless case, which is essentially based on separating

hyperplane theorems in finite dimensional spaces and measurable selection arguments. We will also

use an iterative modification of the bid-ask spread in order to capture the arbitrage opportunities.

This idea is similar in spirit as in [BZ13] but different in its implementation. In particular no

additional hypothesis on S such as continuity is required. Differently from previous approaches we

also stress that we do not solve first the problem for the one period case and then expanding to the

multi-period case but we directly tackle the dynamic case. This appear to be very natural in the

context of transaction cost since, arbitrage strategies might involve different times of execution.

The simple example in the Introduction of [BZ13] clarify this intuition: consider a single asset

with deterministic bid-ask spread [1, 3] at time 0 and [2, 4] [3.5, 5] at time 1 and 2 respectively.

There is an arbitrage opportunity given by the strategy: buy at time 0 and selling at time 2.

Theorem 3.8. LetMΠ the set of consistent price systems as in Definition 3.7. We haveMΠ = ∅
iff there exists an Enhanceable Model Independent Arbitrage
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Before giving the proof we need some preliminary results.

For any t ∈ I, for any ω ∈ Ω, define iteratively, the following random sets

ΘT+1(ω) := Rd

Θt−1(ω) := Ct−1(ω) ∩ conv
(
Θt(Σ

ω
t−1)

)
for t = T + 1 . . . , 1

(87)

where Σωt−1 denotes the level set of ω i.e. Σωt−1 = {ω̃ ∈ Ω | S0:t−1(ω̃) = S0:t−1(ω)}. Here S0:t−1(ω)

is a shorthand for the trajectory of the process S up to time t − 1. Since FS ⊆ F we have

Σωt−1 ∈ Ft−1 for every 1 ≤ t ≤ T .

The random sets Θt represents a backward modification of the bid-ask spread. The intuition

behind this operation is the following. Consider first t = T and observe that ΘT is simply CT .

The random set ΘT−1 is given by the intersection of the bid-ask spread at time T − 1 and the set

of all convex combination of elements with values in the bid ask-spread at time T . Consider now

a probability measure P ∈ P with finite support and suppose P (ΣωT−1) > 0. We note that if P is

a martingale measure for some (XT−1, XT ) ∈ CT−1 × CT then the conditional expectation XT−1

needs to be a convex combination of XT . We are therefore excluding from CT−1 those values that

cannot represents a conditional expectation of an F̂T -measurable random vector with values in CT

for any probability measure with finite support. This will lead us to the proof of the Fundamental

Theorem of Asset Pricing. We begin with the following

Lemma 3.9. For any t = 0, . . . , T + 1 the random set Θt as in (87) is Ft-measurable.

Proof. For t = T + 1 the claim is obvious. Suppose now that the claim holds for any

s ∈ {t, . . . , T + 1}, we show that Θt−1 is Ft−1-measurable. Observe first that Ct−1(ω) is the closed

convex hull of the multifunction ω 7→ p1(ω)×· · ·×pd(ω) where pj = 1

πj0t−1

∪π0j
t−1 for j = 1 . . . d. All

the pj are Ft−1-measurable random sets being union of two Ft−1-measurable random sets (whose

values are singletons), by preservation of measurability through the operations of finite cartesian

product, convexity and closure we have that Ct−1(ω) is also Ft−1-measurable (see Proposition 3.27).

We turn now to the set Θt(Σ
ω
t−1). Denote by dom Θt := {ω | Θt(ω) 6= ∅} Since, by hypothesis,

Θt is Ft-measurable it admits a Castaing representation, i.e. there exists a collection {ϕn} of Ft-
measurable function ϕn : dom Θt → Rd such that {ϕn(ω) | n ∈ N} = Θt(ω) for any ω ∈ Ω. Define

therefore for n ∈ N the multifunctions Gn : ω 7→ {ϕn(ω̃) | ω̃ ∈ Σωt−1} which are Ft−1-measurable

since

∀O ⊆ Rd open {ω ∈ Ω | Gn(ω) ∩O 6= ∅} = S−1
0:t−1

(
S0:t−1

(
ϕ−1
n (O)

))
belong to Ft−1. Recall indeed that image and counterimage of Borel sets through Borel mea-

surable functions are analytic and that the Universal Filtration contains the class of analytic

sets of Ft−1(See for example Theorem III.18 and Theorem III.11 in [DM82]). Observe now

that Θt(Σ
ω
t−1) = ∪n∈NGn. The inclusion ⊇ is obvious, while taking x ∈ Θt(Σ

ω
t−1) and a se-

quence xk → x we note that xk ∈ ∪n∈NGn for every k, since this set contains the collection

{ϕn(ω) | n ∈ N, ω,∈ Σωt−1} induced by the Castaing representation of Θt on the level set Σωt−1. It

therefore follows that x ∈ ∪n∈NGn. We conclude that

Θt−1(ω) := Ct−1(ω) ∩ conv
(
Θt(Σ

ω
t−1)

)
= Ct−1(ω) ∩ conv (∪n∈NGn) (88)
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is Ft−1-measurable since the random sets Ct−1 and {Gn}n∈N share the same measurability property

and the transformations involved in (88) preserve measurability (see Proposition 3.27). �

Corollary 3.10. The random sets Ct(ω), Θt+1(Σωt ) and conv (Θt+1(Σωt )) are Ft-measurable for

any t = 0, . . . , T .

Proof. Measurability of Ct follows from the first part of the proof of Lemma 3.9, measurability

of Θt+1(Σωt ), and therefore of conv (Θt+1(Σωt )), follows from (88) and the discussion right before.

�

Remark 3.11. Note that with no loss of generality we may assume that if Θt(ω) 6= ∅ then

int(Θt(ω)) 6= ∅. For t = T this is true since, by construction, ΘT = CT and int(CT ) 6= ∅
by Assumption 3.3. If this is true up to time t + 1 then it is true for time t by considering, if

needed, a bid-ask spread with smaller transaction costs Π̃t. Indeed, since Ct and conv
(
Θt(Σ

ω
t−1)

)
have non empty interior by hypothesis, if the intersection has empty interior it is sufficient to

consider an arbitrary small reduction of the bid-ask spread process to obtain Θt = ∅. Take for

example π̃0j
t := π0j

t − ε(ω) and 1/π̃j0t := 1/πj0t + ε(ω) where ε(ω) := ε
(
π0j
t (ω)− 1/πj0t (ω)

)
> 0

for an arbitrary small ε > 0.

Lemma 3.12. Let Θt for t = 0 . . . T as defined in (87) then

{ω ∈ Ω | Θt(ω) 6= ∅ ∀t = 0 . . . T} 6= ∅ =⇒MΠ 6= ∅

Proof. Our aim is to build up a consistent price system iteratively. By definition of Θt and

from the hypothesis, for any y ∈ Θt(ω) 6= ∅ there exist λ1, . . . , λm > 0 with
∑m
i=1 λi = 1 and

y1, . . . ym ⊆ Θt+1(Σωt ) ⊆ Ct+1(Σωt ) such that y =
∑m
i=1 λiyi.

Start therefore with an arbitrary x0 ∈ int(Θ0(ω)) which is non-empty from the hypothesis and

from Remark 3.11. Associate to x0 the real number p(x0) = 1. Suppose a set of trajectories

Zt := {x0:t ∈Mat(d× (t+ 1))} has been chosen up to time t with associated p(x0:t) > 0 summing

up to one. Here Z0 = {x0}. By applying the above procedure to xt where xt is the value at time

t of a trajectory x0:t ∈ Zt, we can construct a new set

Zt+1 := {[x0:t, y1(x0:t)], . . . , [x0:t, ym(x0:t)] | x0:t ∈ Zt}

with associated p([x0:t, yi(x0:t)]) = λip(x0:t).

Observe that given the set ZT for any x0:T ∈ ZT there exists ω ∈ Ω such that ×x0:T ∈ C0(ω) ×
· · · ×CT (ω). Moreover, defining S̃t(ω) := xt and the probability measure Q(ω) := p(x0:T ) we have

that S̃t is Ft-measurable for any t = 0, . . . T and

EQ[S̃t | Ft] = S̃t−1, for t=1,. . . T (89)

Thus, Q is a martingale measure for S̃ which by construction lays in the bid-ask spread. �

We are now able to prove the Fundamental Theorem of Asset Pricing.
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proof of Theorem 3.8. The “if” part is easy and we prove it by contraposition. Suppose

MΠ 6= ∅, hence there exist S̃ = (S̃t)t∈I and Q ∈ P such that S̃t ∈ int(Ct) and S̃t is a Q-martingale.

Let H ∈ H such that VT (H) ≥ 0. By adding and subtracting S̃tj in (86) we note that the term

T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)(
(S

j

t − S̃
j
t )1{Hjt≤H

j
t+1}

+ (Sjt − S̃
j
t )1{Hjt+1≤H

j
t }

)
is always non positive and hence we get

0 ≤ VT (H) ≤
T∑
t=0

(Ht −Ht+1) · S̃t =

T∑
t=1

Ht · (S̃t − S̃t−1)

by also recalling that H0 = HT+1 = 0. By taking now expectation on both sides we get VT (H) = 0

for some ω ∈ Ω from which No (Enhanceable) Model Independent Arbitrage is possible.

We prove now the “only if” through several steps.

Step 1: Define first the random time

τ(ω) := inf{0 ≤ t ≤ T | Θt = ∅ and conv (Θt+1(Σωt )) 6= ∅}

Observe that τ is a stopping time: for any t ∈ I the set {τ ≤ t} coincides with the set ∪ts=1({ω :

Θs(ω) = ∅} ∩ {ω : conv (Θs+1(Σωs )) 6= ∅}) which belongs to Ft from Lemma 3.9 and Corollary

3.10. Observe now that under the assumptionMΠ = ∅, as a consequence of Lemma 3.12, for any

ω there exists s = s(ω) such that Θs(ω) = ∅.

Moreover τ is a finite stopping time since straightforwardly from definition (87) it follows ΘT (ω) =

CT (ω) 6= ∅ and hence conv
(
ΘT (ΣωT−1)

)
6= ∅. We can therefore deduce that τ(ω) ≤ T − 1 for any

ω ∈ Ω.

Step 2: For any t ∈ {0, . . . T} let H = {Hs | s ≤ t} with H0 = 0 and Hs ∈ L0(Fs−1;Rd) be given.

For ξ := sgnHt, we introduce the following process Ŝξt which take values at the boundary of the

bid-ask spread.2

Ŝξt :=
(
S1
t1{H1

t≥0} + S
1

t1{H1
t<0}, . . . , S

d
t1{Hdt ≥0} + S

d

t1{Hdt <0}

)
(90)

We introduce also the sets At and Bt as follows:

At := {τ = t} ∩
t⋂

s=0

{Hs = 0}, Bt := {Ht 6= 0} ∩ {Ŝξt /∈ Θt}

For an interpretation of these sets see Remark 3.13.

We now show that At and Bt are Ft-measurable. The measurability of At is obvious from τ being a

stopping time and the measurability of Hs for s ≤ t. Now, observe that sgn(Ht) is Ft−1-measurable

since for any x ∈ Ξ := {x ∈ Rd | xi ∈ {−1, 0, 1}}, sgn(Ht)
−1(x) = H−1

t (x1(0,∞)×, . . .× xd(0,∞))

where with a slight abuse of notation xi(0,∞) is either (0,∞), (−∞, 0) or {0} according to x being

respectively 1, −1 or 0.

2The choice for the event {Hi
t = 0} can be actually arbitrary without affecting the value of the strategy, for

the sake of simplicity it is included here in the positive case.
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Ŝξt is instead Ft-measurable since for any Borel set of the form O := O1 × . . .×Od ⊆ Rd with Oi

open for i = 1, . . . d, we have

(Ŝξt )−1(O) =
⋂d
i=1 (Si)−1(Oi) ∩ (ξ)−1[0,∞) ∪

(S
i
)−1(Oi) ∩ (ξ)−1(−∞, 0)

The set {Ŝξt ∈ Θt} is Ft-measurable since it is the projection on Ω of the intersection of Graph(Ŝξ)

and Graph(Θt). We easily conclude that Bt is Ft-measurable.

Step 3: Consider the sets At as in step 2. We show that for any t = 1, . . . T and for any ε > 0,

there exists an Ft−1-random variable HA
t such that ∀ω ∈ At−1

HA
t (ω) · (y − x) ≥ ε ∀y ∈ Θt(Σ

ω
t−1), ∀x ∈ Ct−1(ω) (91)

For any ω ∈ At−1 since Θt−1 = ∅, by (87) the random sets Ct−1(ω) and conv
(
Θt(Σ

ω
t−1)

)
are

closed, convex and disjoint. In particular Hahn-Banach Theorem applies and for every ω ∈ At−1

there exists ϕ ∈ Rd such that ϕ · x > ε > ϕ · y for any x ∈ Θt(Σ
ω
t−1), y ∈ Ct−1(ω). We have

therefore that the random set (Θt(Σ
ω
t−1)−Ct−1(ω))ε (see Notation 3.4) is non-empty on At−1 and

Ft−1-measurable by Corollary 3.10 and Lemma 3.25. Take therefore HA
t a measurable selector of

this set.

Let us stress that the value ε can be arbitrary.

Step 4: We are now ready to construct iteratively the strategy that will realize an arbitrage

opportunity and, in particular, with an arbitrary δ > 0, it will satisfy the following

Vt−1(H) +Ht · y ≥
δ

2t−1
for any y ∈ Θt(Σ

ω
t−1) and for any ω ∈ At−1 ∪Bt−1. (92)

with Ht = 0 otherwise. For t = 1 Equation (92) is trivially satisfied by HA
1 as in (91) with ε = δ

arbitrary: we have indeed that B0 = ∅ and from (86), V0(HA
1 ) + HA

1 · y = HA
1 · (y − x̂) for

x̂ := S
j

t1{0≤Hj1}
+ Sjt1{Hj1≤0} ∈ C0(ω) Define therefore H1 := HA

1 and suppose we are given a

strategy H = (Hu)tu=1 satisfying (92).

Recall ξ := sgnHt. For any η ∈ Ξ denote the partial order relation on Rd given by

h1 �η h2 iff h1 − h2 ∈ η1[0,∞)× · · · × ηd[0,∞)

and consider now

fη := ω 7→
{
h ∈ Rd | Ht(ω) �η h and V ht (H) + h · y ≥ δ

2t
∀y ∈ Θt+1(Σωt )

}
where V ht (H) := Vt−1(H) + (Ht − h) · Ŝηt (ω) is the value of the strategy H = H1, . . . ,Ht extended

with Ht+1(ω) = h (cfr Equation (86)). We first show that for any η ∈ Ξ , fη is Ft-measurable.

Then we show that for any ω ∈ At ∪ Bt, for at least one η ∈ Ξ, the set fη is non-empty so that

by choosing a measurable selector of ∪η∈Ξf
η (which exists by Proposition 3.27 and Theorem 3.28)

we get the desired inequality (92) for time t.
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For the sake of measurability we consider the (δ/2t)-dual of the Ft-measurable set [Θt+1(Σωt ) −
Ŝηt (ω);Vt−1(H) +Ht · Ŝηt ] (see Corollary 3.10 and recall Notation 3.4) i.e.{

(h, hd+1) ∈ Rd × R | h · (y − Ŝηt (ω)) + hd+1(Vt−1(H) +Ht · Ŝηt ) ≥ δ

2t
∀y ∈ Θt+1(Σωt )

}
and take the intersection with the Ft-measurable random set

η1(−∞, H1
t (ω)]×, . . .× ηd(−∞, Hd

t (ω)]× {1}

fη2 coincides with the projection on the first d components of the resulting set and it is thus Ft-
measurable (see again Proposition 3.27).

We now show that for any ω ∈ At ∪ Bt fixed, the set ∪η∈Ξf
η(ω) is always non-empty. On At we

consider again HA
t+1 as in (91) with ε = δ/2t and the conclusion follows as above.

We now turn to ω ∈ Bt. Observe first that if Ŝξt (ω) ∈ Θt(ω) then the position can be closed with

a strictly positive gain. Indeed with h = 0 we get from (86) and the iterative hypothesis (92)

V ht (H) = Vt−1(H) +

d∑
j=1

(
Hj
t − 0

)(
S
j

t1{Hjt≤0} + Sjt1{0≤Hjt }

)
≥ δ

2t−1
>

δ

2t

If Ŝξt (ω) /∈ Θt(ω). The position cannot be closed without a loss at time t. We show that never-

theless it is possible to rebalance the portfolio in order to maintain a positive wealth, namely we

show that (92) holds also at time t.

Consider set of vertices of Ct(ω)

V :=
⋃{

[Sjt1{ηj≥0} + S
j

t1{ηj<0}]
d
j=1 | η ∈ {−1, 0, 1}d

}
and the set

L := {y ∈ Rd | Vt−1(H) +Ht · y < 0} ∩ V

From the inductive hypothesis we have: i) Bt ⊆ At−1 ∪Bt−1 since Ht(ω) 6= 0 only on At−1 ∪Bt−1

and ii) Θt(ω) ∩ L(ω) = ∅. Moreover, since Ŝξt (ω) as in (90) is a vertex and Ŝξt (ω) /∈ Θt(ω), we

thus have Ŝξt (ω) ∈ L(ω). Consider now the set

F :=
{
h ∈ Rd | h · (y − l) ≥ 0 ∀y ∈ Θt+1(Σωt ), ∀l ∈ L(ω)

}
which is non-empty for ω ∈ Bt: by definition Θt(ω) := Ct(ω) ∩ conv(Θt+1(Σωt )) (see (87) above)

from which the sets conv(L(ω)) and conv(Θt+1(Σωt )) are disjoint and applying Hyperplane sepa-

rating Theorem we obtain the assertion. Note, moreover, that since the separation is strict for any

h 6= 0 there exists ε > 0 such that h · (y − l) ≥ ε ∀y ∈ Θt+1(Σωt ), ∀l ∈ L(ω).

For any h ∈ Rd define now

[Ŝht ]j := S
j

t1{Hjt≤hj}
+ Sjt1{hj≤Hjt }

(93)

where [·]j denotes the jth component of a vector. We can distinguish two cases:

(1) there exists h ∈ F such that Ŝht ∈ L.

(2) for all h ∈ F , Ŝht ∈ V \ L.
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In case (1) there exists h ∈ F and ε > 0 such that h · (y − Ŝht ) ≥ ε for all y ∈ Θt+1(Σωt ). Define

now

α1 := max

{
1

ε

(
−Vt−1(H)−Ht · Ŝht +

δ

2t−1

)
, 1 +

δ

2t−1

}
≥ 1 +

δ

2t−1
, h̄ := α1h ∈ F (94)

and observe that

Vt−1(H) +Ht · Ŝht + h̄ · (y − Ŝht ) ≥ δ

2t−1
∀y ∈ Θt+1(Σωt ) (95)

In order to retrieve the value V h̄t (H) in (95) we need to replace Ŝht with Ŝh̄t . By showing that

(Ht − h̄) · Ŝh̄t ≥ (Ht − h̄) · Ŝht , it will follow from (95) that

V h̄t (H) + h̄ · y = Vt−1(H) + (Ht − h̄) · Ŝh̄t + h̄ · y ≥

Vt−1(H) + (Ht − h̄) · Ŝht + h̄ · y ≥ δ

2t−1
∀y ∈ Θt+1(Σωt )

and hence the desired inequality. To show the claim let j ∈ {1, . . . , d}. If hjHj
t ≤ 0 or |hj | ≥ |Hj

t |
then from (93) and α1 > 1 we get [Ŝh̄t ]j = [Ŝht ]j . Suppose now Hj

t ≤ hj < 0 then again from (93)

and α1 > 1 we obtain [Ŝh̄t ]j ≤ [Ŝht ]j from which

(Hj
t − h̄j)[Ŝh̄t − Ŝht ]j ≥ 0

One can easily check that the same is true for 0 < hj ≤ Hj
t .

Suppose now we are in case (2). Recall that Ŝξt ∈ L(ω). For any h ∈ F there exists ε > 0 such

that for any y ∈ Θt+1(Σωt ),

h · (y − Ŝht ) + h · (Ŝht − Ŝ
ξ
t ) ≥ ε =⇒ h · (y − Ŝht ) ≥ ε− h · (Ŝht − Ŝ

ξ
t )

There exists α2 > 0 such that α2(ε− h · (Ŝht − Ŝ
ξ
t )) ≥ −δ/2t. Denote

α2 := min

{
δ

2tε|1− h · (Ŝht − Ŝ
ξ
t )|
, 1

}
h̄ := α2h ∈ F (96)

Similarly as above h̄ · (Ŝht − Ŝh̄t ) ≥ 0 and hence

h̄ · (y − Ŝh̄t ) = h̄ · (y − Ŝht ) + h̄ · (Ŝht − Ŝh̄t ) ≥ h̄ · (y − Ŝht ) ≥ −δ/2t

Observe now that in case (2), Vt−1(H) +Ht · Ŝh̄t ≥ δ/2t−1 and hence

Vt−1(H) +Ht · Ŝh̄t + h̄ · (y − Ŝh̄t ) ≥ δ/2t

as desired.

Step 5: Let (Hu)Tu=1 the iterative strategy constructed in step 4. For every ω ∈ Ω we have

τ(ω) ≤ T − 1 and Hτ(ω)+1 6= 0. Moreover, since ΘT = CT we obviously have BT = ∅ and hence

there exists t̄(ω) ≤ T such that ŜsgnHt̄t (ω) ∈ Θt(ω). From step 4, VT (H)(ω) > δ/2t̄. Since ω ∈ Ω

is arbitrary we have the conclusion.

�

Remark 3.13. The sets At and Bt represents two different actions that must be undertaken in

order to realize a Model Independent Arbitrage opportunity. Note indeed that At ∩ Bt = ∅. Fix

ω ∈ Ω and t. If ω ∈ At, a new position is taken. No strategy has been open before t since we are

working on
⋂t
s=0{Hs = 0} and this is the first time where we can make a model independent gain

by trading in S since τ(ω) = t. At this stage we are not concerned about liquidating the position.
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Suppose that at time t we already have an open position (so ω ∈ As for some s ≤ t). If ω /∈ Bt
then it can be liquidated at this time producing a strictly positive wealth with zero initial cost. If

ω ∈ Bt then it is not possible to liquidate the position at this time and we need to keep (or modify)

the position and close it at subsequent times. By noting that BT is always the empty set, either

because the position is closed before T or because by (92) {ŜsgnHTT /∈ ΘT } = ∅ on {HT 6= 0} we

see that it is always possible to close the position opened on As.

3. On Superhedging

Recall the definition of the class MΠ of price systems consistent with the bid-ask spread Π (see

Definition 3.7) and the definition of Ct in (85). Consider the following

Q :=
{
Q ∈ P | ∃S a Q-martingale with St ∈ L0(Ft;Ct) for t = 0, . . . , T

}
(97)

or, in other words, the projection of MΠ on the set of probability measures and

S :=
{
S = (St)t∈I | St ∈ L0(Ft;Ct) and ∃Q ∈ P s.t. S is a Q-martingale

}
(98)

i.e. the projection of MΠ on the set of F-adapted process. For any S ∈ S define also the section

of MΠ as

QS := {Q ∈ Q | S is a Q-martingale} (99)

The maximal QS-polar set has been characterized in [BFM14] and denoted as (Ω∗)
c. We here

adapt the definition of Ω∗ in this market with frictions. In particular let

Definition 3.14. Let Q as in (97). We define the support of the consistent price system Π as

Ω∗ := {ω ∈ Ω | ∃Q ∈ Q such that Q({ω}) > 0}

The aim of this section is to prove the following version of the superhedging Theorem:

Theorem 3.15. Let g : Ω 7→ R F-measurable

sup
Q∈Q

EQ[g] = inf{x ∈ R | ∃H ∈ H s.t. x+ VT (H) ≥ g ∀ω ∈ Ω∗} =: p(g) (100)

where Q is defined in (97) and Ω∗ in Definition 3.14.

proof of (≤). Let S = (St)t∈I be a process in S. Take x ∈ R, H ∈ H such that x+VT (H) ≥
g. Consider now equation (86) from which we add and substract Sjt for any t ∈ I and for any

j = 1, . . . d as follows:

VT (H) =

T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1≤H
j
t }
− Sjt + Sjt

)

=

T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)
Sjt +

=

T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)(
(S

j

t − S
j
t )1{Hjt≤H

j
t+1}

+ (Sjt − S
j
t )1{Hjt+1≤H

j
t }

)

≤
T∑
t=0

d∑
j=1

(
Hj
t −H

j
t+1

)
Sjt =

d∑
j=1

(
T∑
t=1

Hj
t S

j
t −

T∑
t=1

Hj
t S

j
t−1

)
= (H ◦ S)T
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where (H ◦ S)T is the usual (discrete time) stochastic integral. Note that the previous inequality

follows from the fact that Sjt ∈ (Sjt , S
j

t ) for any j and for any t, while all the equalities are simply

rearrangement of the terms. Recall also H0 = HT+1 = 0. We have therefore obtained that for any

strategy H and for any S ∈ S
VT (H) ≤ (H ◦ S)T (101)

Observe now that by taking expectation with respect to a martingale measure Q for the process

S in both sides we get EQ[VT (H)] ≤ 0. Since (101) holds true for an arbitrary couple (S,Q) and

by recalling that Ω∗ is the support of the consistent price system (see Definition 3.14) we have

g(ω) ≤ x+ VT (H)(ω) ∀ω ∈ Ω∗ =⇒ EQ[g] ≤ x ∀Q ∈ Q

Take now the supremum over Q ∈ Q in both sides and then the infimum over x ∈ R to obtain

sup
Q∈Q

EQ[g] ≤ p(g)

as desired. �

As usual one implication is easy. In order to prove the opposite we need some preliminary results.

We first rewrite the explicit expression of the wealth process (86) in the following way

VT (H) =

d∑
j=1

V jT (H) (102)

where

V jT (H) =

T∑
t=0

(
Hj
t −H

j
t+1

)(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1<H
j
t }

)

=

T∑
t=0

Hj
t

(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1<H
j
t }

)

+

T∑
t=0

−Hj
t+1

(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1<H
j
t }

)
By recalling the convention H0 = HT+1 = 0 and by changing the index in the second sum we get

VT (H) =
∑T
t=0Ht ·∆SHt where

[∆SHt ]j =
(
S
j

t − S
j

t−1

)
1{Hjt−1≤H

j
t≤H

j
t+1}

+
(
S
j

t − S
j
t−1

)
1{Hjt<H

j
t−1}∩{H

j
t≤H

j
t+1}

+
(
Sjt − S

j
t−1

)
1{Hjt+1<H

j
t<H

j
t−1}

+
(
Sjt − S

j

t−1

)
1{Hjt≥H

j
t−1}∩{H

j
t>H

j
t+1}

We will construct now an auxiliary superhedging problem which involves a family of processes in

S where S is defined in (98).

Introduce first,

FT (ω, x) = g(ω) and ST (ω) := CT (ω) (103)

Define iteratively for t = T − 1, . . . , 1 the random sets

St(ω) := conv{St+1(ω̃) | ω̃ ∈ Σωt } ∩ Ct (104)
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Note that for every t, St is Ft-measurable. Indeed, for t = T it is obvious; suppose this is true for

t + 1 ≤ s ≤ T . Consider St+1(Σωt ) which is obviously an Ft-measurable map since for any open

set O ⊆ Rd we have

{ω ∈ Ω | St+1(Σωt ) ∩O 6= ∅} = S−1
0:t (S0:t({ω ∈ Ω | St+1(ω) ∩O 6= ∅}) ∈ Ft

the measurability of St follows therefore from Proposition 3.27 in the Appendix.

Definition 3.16. We call the set-valued superhedging problem the following backward procedure.

For any t = T, . . . , 1, for any y ∈ R define

Hyt (ω, x) =
{
H ∈ Rd | y +H · (s− x) ≥ Ft(ω, s) ∀s ∈ St(ω̃), ∀ω̃ ∈ Σωt−1

}
and

Ft−1(ω, x) := inf {y ∈ R | Hyt (ω, x) 6= ∅}

We simply denote by Ht(ω, x) := HFt−1(ω,x)
t (ω, x) the set of optimal strategies at time t ∈ I.

F0(x0) will be called the set-valued superhedging price for the initial value x0 ∈ Rd.

The next Proposition is crucial for the well-posedness of the prescribe procedure. It provides

fundamental measurability properties for the whole scheme. Its proof, as well as the proof of the

subsequent results, is technical and hence they are all postponed at Section 3.1.

Proposition 3.17. Let Ft(·, ·) : Ω×Rd 7→ R∪{±∞} for t = 0, . . . T as in Definition 3.16. Denote

by DFt(ω) := {x ∈ Rd | Ft(ω, x) > −∞} the effective domain.

We have that

(1) For every x ∈ Rd fixed, the map Ft(·, x) is Ft-measurable.

Moreover, when finite, Ft(·, x) is a minimum.

(2) For every ω ∈ Ω the map Ft(ω, ·) restricted to DFt(ω) is continuous.

(3) For every ω ∈ Ω, DFt(ω) is convex.

Items 1 and 2 imply that Ft(·, ·) is a so-called Charatéodory map in its effective domain.

Proof. We postpone the proof at Section 3.1. �

For any initial value x0 ∈ R the set-valued superhedging price F0(x0), from Definition 3.16, rep-

resents (when finite) the minimum amount of cash needed for superhedging Ft(ω, s), for any time

t ∈ I, for any ω ∈ Ω∗ and for any intermediate value s ∈ St(ω̃). This value looks too conservative

since it consider many possible intermediate values for St. We nevertheless now show the exis-

tence of x̄0 ∈ C0 such that: i) there exists a process (St)t∈I with S0 = x̄0 and with values in the

bid-ask spread such that the superhedging price of g with no frictions is F0(x0). ii) the collection

of strategies provided by the solution of the set-valued problem compose a self-financing trading

strategy such that

F0(x̄0) + VT (H) ≥ g ∀ω ∈ Ω∗

We prove this in a constructing way. More precisely we need the following step-forward iteration:

suppose that at time t ≥ 1 the random variables St−1 ∈ L0(Ft−1) and Ht ∈ L0(Ft−1;Ht) are given

and define

Xt−1(ω) := Ft−1(ω, St−1(ω)),
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Lemma 3.18. Suppose Xt−1(ω) <∞ for any ω ∈ Ω. There exists a random vector St ∈ L0(Ft;Ct)
such that, for all ω ∈ Ω,

Xt−1(ω) = inf{y ∈ R | ∃H ∈ Rd s.t. y +H ·∆St(ω̃) ≥ Ft(ω̃, St(ω̃)) ∀ω̃ ∈ Σωt−1}

where ∆S := St − St−1. Moreover, if Xt−1(ω) > −∞, Ht(ω) is an optimal strategy.

Proof. We postpone the proof at Section 3.1. �

Proposition 3.19. For every x0 ∈ C0 there exists a price process S = (St)t∈I such that:

• S0 = x0, St ∈ L0(Ft;Ct) for every 0 ≤ t ≤ T .

• Let Ω∗(S) := {ω ∈ Ω | ∃Q ∈ QS s.t. Q({ω}) > 0}. Then,

inf {x ∈ R | ∃H ∈ H s.t. x+ (H ◦ S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗(S)} = F0(x0)

where QS is defined in (99).

Proof. We postpone the proof at Section 3.1. �

We now construct, for a given initial value x0 ∈ C0, a strategy H := (H1, . . . HT ) whose terminal

payoff dominates g. We first need the following step-forward iteration. Recall from Definition

3.16 that Ht+1(·, ·) is the set of optimal strategies for the (conditional) set-valued superhedging

problem.

Proposition 3.20. There exist a random vector Ŝt ∈ Lt(Ft;Ct) and a trading strategy Ht+1 ∈
L0(Ft) such that, for every ω ∈ {Xt−1 <∞}, we have Ht+1(ω) ∈ Ht+1(ω, Ŝt(ω)),

Xt−1(ω) +Ht · (Ŝt(ω̃)− St−1(ω̃)) ≥ Ft(ω̃, Ŝt(ω̃)) ∀ω̃ ∈ Σωt−1, (105)

and the following properties:

• if Hi
t(ω) < Hi

t+1(ω) then Ŝit(ω) = S
i
(ω)

• if Hi
t(ω) > Hi

t+1(ω) then Ŝit(ω) = Si(ω)

In particular if Ŝit ∈
(
Si(ω), S

i
(ω)
)

we necessarily have Hi
t(ω) = Hi

t+1(ω).

Proof. We postpone the proof at Section 3.1. �

Remark 3.21. With a slight abuse of notation, when Xt−1(ω) = −∞ we intend that there exists

a sequence {(yn, Hn)} ⊆ R × L0(Ft) with yn → −∞, such that for every n ∈ N the conditions of

Proposition 3.20 are satisfied. The same apply to Corollary 3.22 when F0(x0) = −∞.

Corollary 3.22. For every x0 ∈ C0 with F0(x0) < ∞ there exists a predictable process H :=

(H1, . . . HT ) such that

F0(x0) + (0−H1 · x0) +

T∑
t=1

d∑
j=1

(
Hj
t −H

j
t+1

)(
S
j

t1{Hjt≤H
j
t+1}

+ Sjt1{Hjt+1<H
j
t }

)
≥ g on Ω∗
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Proof. Note first that if F0(x0) < ∞ then Xt < ∞ ∀t = 0, . . . T . Applying iteratively

Proposition 3.20, there exists a process Ŝ with Ŝ0 = x0 which satisfy the following inequalities

F0(x0) +H1 ·∆Ŝ1 ≥ X1

F0(x0) +H1 ·∆Ŝ1 +H2 ·∆Ŝ2 ≥ X2

. . .

F0(x0) +

T∑
t=1

Ht ·∆Ŝt ≥ XT = g

on A := {ω ∈ Ω | Xt(ω) > −∞ ∀t = 0, . . . T}. Note that, by construction, Xt(ω) = −∞ for some

t = 0, . . . T if and only if Q({ω}) = 0 for every Q ∈ Q, so that A = Ω∗. Rearranging the terms in

the summation as
T∑
t=1

Ht ·∆Ŝt =

T∑
t=1

(Ht −Ht+1) · Ŝt −H1 · x0

the properties of Ŝ yield the desired inequality. �

For any starting point x0 we can therefore find the desired process by iterative application of

Lemma 3.18. This lead us to the proof of Theorem 3.15 as follows:

proof of (≥) in (100) of Theorem 3.15. Let F0(x) the solution of the superhedging prob-

lem in Definition 3.16. Take

m := sup
x∈C0

F0(x)

Suppose first that m = ∞. There exists a sequence xn ∈ C0 such that F0(xn) → ∞. From

Proposition 3.19 there exists a sequence of processes Sn := (Snt )t∈I ⊆ S whose superhedging price

explode to∞ and hence the inequality is trivial. Ifm = −∞ then by Corollary 3.22 and (≤) in (100)

the equality follows again trivially as a degenerate case. If m is finite then m = supx∈DF0
F0(x).

By Proposition 3.17 F0 is non-random, continuous and DF0 is a closed subset of a compact set

C0. Thus m is a maximum and we denote by x̄0 a maximizer. By Proposition 3.19 there exists a

process (S̃t)t∈I with S̃0 = x̄0 whose superhedging price is m, namely,

m = inf
{
x ∈ R | ∃H ∈ H s.t. x+ (H ◦ S̃)T (ω) ≥ g(ω) ∀ω ∈ Ω∗(S̃)

}
= sup
Q∈QS̃

EQ[g] (106)

where the last equality derives from Theorem 1.1 in [BFM15].

On the other hand by adding a fictitious node t = −1 to the set-valued problem in Definition 3.16,

with S−1 = x̄0, we have that the minimization

inf
{
y ∈ R | H ∈ Rd s.t. y +H · (s− x̄0) ≥ F0(s) ∀s ∈ S0,

}
has the obvious solution X−1 = m, with corresponding optimal strategy H0 = 0. By applying

Proposition 3.20 we obtain H1 such that

H1 · x0 =

d∑
j=1

Hj
t+1

(
S
j

t1{0≤Hjt+1}
+ Sjt1{Hjt+1<0}

)
Apply now Corollary 3.22, with x0 = x̄0, to get the existence of a trading strategy (Ht)t∈I such

that (cfr equation (102))

m+ VT (H)(ω) ≥ g(ω) ∀ω ∈ Ω∗ (107)
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The desired inequality follows from (106) and (107):

sup
Q∈Q

EQ[g] = sup
S∈S

sup
Q∈QS

EQ[g] ≥ sup
Q∈QS̃

EQ[g] = m ≥ p(g)

�

3.1. Proofs.

proof of Proposition 3.17. For t = T the claim is trivial. Suppose it is true for all t+ 1 ≤
s ≤ T − 1.

1. We first show that St+1 takes value in the effective domain of Ft+1(ω, s). From (104), any

s̄ ∈ St+1(ω) is limit of convex combinations of elements in St+2(Σωt ). Let sn → s̄. Therefore, for

any n ∈ N, there exist:

• ω1, . . . , ωk(n) with ωi ∈ Σωt for every i;

• z1, . . . , zk(n) with zi ∈ St+2(ωi) for every i;

• λ1, . . . λk(n), with 0 < λi < 1 for every i;

such that sn :=
∑k(n)
i=1 λizi. Consider a frictionless, one-period model, on {z1, . . . , zn} with S̃0 = xn,

S̃1(zi) = zi for every i. Q({zi}) := λi define a martingale measure for the process S̃.

Denote by M(S̃) the set of martingale measures for S̃ and πS̃(g) the superhedging price for

g(zi) := Ft+2(ωi, zi) in the one-period model. From the classical theory

−∞ < xn ≤ sup
Q∈M(S̃)

EQ[g] = πS̃(g) ≤ Ft+1(ω, xn)

where the last inequality follows from Ft+1 being the solution of the set-valued problem. We thus

have that sn ∈ DFt+1
(ω) for every n and hence s̄ ∈ DFt+1

(ω).

Observe now that, from the inductive hypothesis, s 7→ (s − x, Ft+1(ω, s)) is a Charatéodory map

in the domain of Ft+1. Since St+1 takes value in DFt+1
, Lemma 3.29 in the Appendix, implies that

the multifunction

ψ(ω) : ω 7→ (St+1(ω)− x, Ft+1(ω,St+1(ω))

is Ft-measurable. Applying now Lemma 3.31 with ∆S̃t = ψ, X = 0 C = Rd × {−1}. This

particular choice yields

AC(ω) =
{

(H, y) ∈ Rd+1 | y +H · (s− x) ≥ Ft+1(ω, s) ∀s ∈ St+1(ω̃), ∀ω̃ ∈ Σωt
}
,

so that the resulting Xt, Ht+1 from Lemma 3.31 represents, for any ω ∈ Ω the minimum amount

of cash needed for superhedging Ft+1(ω, s) for any intermediate value s ∈ St+1(ω̃), and the corre-

sponding optimal strategies as desired.

3. We first show item 3.

Fix ω ∈ Ω. If DF = ∅ there is nothing to show. Denote by

A(x) := {H ∈ Rd | H · (s− x) ≥ 0 ∀s ∈ St+1(Σωt ) with > 0 for some s̄}
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We show that the set C := {x ∈ DFt(ω) | A(x) = ∅} is convex and DFt(ω) = C from which the

thesis follows. Denote by

Γ := conv{St+1(Σωt )}

Take now x1, x2 ∈ C and recall that, from Hyperplane separation Theorem, A(xi) = ∅ if and

only if xi ∈ ri(Γ). As Γ is a convex set for any 0 ≤ λ ≤ 1, λx1 + (1 − λ)x2 ∈ ri(Γ) and hence

A(λx1 + (1− λ)x2)) = ∅.

We now show that if x ∈ DF (ω) then there exists a sequence xk ∈ C such that xk → x. Take

x /∈ C otherwise is trivial. Note first that x ∈ Γ otherwise by Hyperplane separation Theorem

there would exists v ∈ Rd and ε > 0 such that v · (St+1(Σωt )−x) ≥ ε which would give x /∈ DF (ω).

Take now x̃ ∈ ri(Γ), for every k ∈ N

xk :=

(
1− 1

k

)
x+

x̃

k
∈ ri(Γ)

clearly xk → x as k →∞ and again from Hyperplane separation Theorem xk ∈ C.

2. First observe that if there exists x̃ such that Ft(ω, x̃) = +∞ then Ft(ω, ·) ≡ +∞ and hence:

DFt(ω) = Rd and Ft(ω, ·) is trivially continuous. Indeed, since Ft(ω, x̃) = +∞, for any H ∈ Rd

there exists a sequence {(ωn, sn)} such that H · (sn − x̃) − Ft+1(ωn, sn) → −∞. Therefore the

same holds true for the sequence H ·(sn−x)−Ft+1(ωn, sn) with x arbitrary. Thus, Ft(ω, x) = +∞.

We may now suppose that Ft(ω, ·) < +∞. We first show that F (ω, ·) is upper semi-continuous at

x ∈ DFt(ω).

For x ∈ DFt(ω), Lemma 3.31 implies that there exists an optimal strategy H such that

Ft(ω, x) +H · (s− x) ≥ Ft+1(ω, s) ∀s ∈ St+1(ω̃), ∀ω̃ ∈ Σωt (108)

Let now {xk}∞k=1 such that xk → x for k →∞. Observing that H ·(s−x) = H ·(s−xk)+H ·(xk−x)

we get, from (108), Ft(ω, xk) ≤ Ft(ω, x) + H · (xk − x). By taking limits in both sides we can

conclude that Ft(ω, ·) is upper semi-continuous:

lim sup
k→∞

Ft(ω, xk) ≤ Ft(ω, x) (109)

The case of x /∈ DFt(ω) is similar. Since Ft(ω, x) = −∞ there exists a sequence {Hn} such

that (108) is satisfied with (−n,Hn) replacing (Ft(ω, x), H). We analogously obtain Ft(ω, xk) ≤
−n+Hn · (xk − x). By taking the limit in k in both sides we get lim supk→∞ Ft(ω, xk) ≤ −n for

any n ∈ N, from which the upper semi-continuity follows.

We now turn to the lower semi-continuity. Let x ∈ DFt(ω). If x /∈ DFt(ω), i.e. Ft(ω, x) = −∞,

from the previous step we already have continuity. Suppose therefore x ∈ DFt(ω). Lemma 3.31

implies that there exists an optimal strategy H such that (108) is satisfied.

case a) If the inequality in (108) is actually an equality we have perfect replication and hence

for any x̃ ∈ DFt(ω) we have Ft(ω, x̃) = Ft(ω, x) + H · (x̃ − x): if indeed there exists (z,Hz) a
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superhedging strategy with l := z − Ft(ω, x) +H · (x̃− x) < 0 then it is easy to see that

(Hz −H) · (St+1(Σωt )− x̃) ≥ −l > 0

from which x̃ /∈ DFt(ω).

By considering {xk}∞k=1 such that xk → x we obtain

lim
k→∞

Ft(ω, xk) = lim
k→∞

(Ft(ω, x) +H · (xk − x)) = Ft(ω, x)

as desired.

case b) Define

Gt(ω, x) := sup
{
y ∈ R | ∃H ∈ Rd : y +H · (s− x) ≤ Ft+1(ω̃, s), ∀s ∈ St+1(ω̃), ∀ω̃ ∈ Σωt

}
.

and, for all y ∈ R, the set

Γy(x) := co (conv {[s− x ; y − Ft+1(ω̃, s)] | s ∈ St+1(ω̃), ω̃ ∈ Σωt }) ⊆ Rd × R

Note that Ft(ω, x) > Gt(ω, x) and int(Γy(x)) 6= ∅ otherwise there is perfect replication and we

are back to case a). Take therefore y ∈ (Gt(ω, x), Ft(ω, x)).

If 0 ∈ int(Γy(x)) there exists ε̄ > 0 such that for every ε ≤ ε̄, B2ε(0) ⊆ int(Γy(x)). For any

(0, x̃) ∈ Bε(0) with x̃ ∈ Rd, we have 0 ∈ int(Γy(x̃)), hence, there is no non-zero (H,h) ∈ Rd × R ,

such that either

h(y − Ft+1(ω̃, s)) +H · (s− x̃) ≥ 0 or h(y − Ft+1(ω̃, s)) +H · (s− x̃) ≤ 0 (110)

for every s ∈ St+1(ω̃) and ω̃ ∈ Σωt . In particular there is no H ∈ Rd such that y + H · (s − x̃) ≥
Ft+1(ω̃, s) for every s ∈ St+1(ω̃) and ω̃ ∈ Σωt . Thus, Ft(ω, x̃) > y. Since the same holds true for

every x̃ such that ‖x̃− x‖ < ε, we get

lim inf Ft(ω, xk) ≥ Ft(ω, x)− ε (111)

Since ε is arbitrary small we obtain the thesis.

If 0 /∈ int(Γy(x)) there exists a separator (H,h) ∈ Rd × R such that (110) holds true but since

y ∈ (Gt(ω, x), Ft(ω, x)) we necessarily have h = 0. Consider now a separator Ĥ := (H, 0) with

H ∈ Rd and denote by Ĥ++, Ĥ+ the positive and non-negative half-spaces associated to Ĥ.

Analogously Ĥ−−, Ĥ−. Define

A := {z ∈ Rd+1 | Ĥ · z = 0} ∩ Γy(x)

Claim 3.23. 0 ∈ ri(A).

Observe that since Γy(x) ⊆ Ĥ+ and 0 ∈ ri(A), there exists ε̄ > 0 such that for every ε ≤ ε̄,

we have B2ε(0) ∩ Ĥ++ ⊆ int(Γy(x)). As in case a) for every (0, x̃) ∈ Bε(0) ∩ Ĥ++ we have

0 ∈ int(Γy(x̃)). This implies Ft(ω, x̃) > y. In order to conclude observe that if (0, x̃) ∈ Bε(0)∩H−

then x̃ /∈ ri(DFt(ω)). If indeed x̃ is such that H · (x̃− x) ≤ 0 then

H · (s− x̃) ≥ 0 ∀s ∈ St+1(ω̃), ω̃ ∈ Σωt (112)
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It is easy to see that in every neighbourhood of x̃ there exists an element x̄ for which, replacing x̃

with x̄ in (112) the inequality is satisfied with a lower bound. Thus x̄ is not in DFt(ω).

We have therefore obtained that if xk → x with xk ∈ ri(DFt(ω)) then (111) holds true and hence,

also in case b), the thesis.

We are only left to show Claim 3.23. Suppose by contradiction that there exists r ∈ Rd+1 such that

Ĥ ·r = 0 and αr /∈ A for every α > 0. Note that from r /∈ A we have dist(r,Γy(x)) > 0 so that there

exists δ > 0 such that Bδ(r)∩Γy(x) = ∅. Since Γy(x) is a cone we can conclude that the segment

[0, r̃] with r̃ ∈ Bδ(r) has empty intersection with Γy(x). Since obviously 0 ∈ ∪0≤α≤1αBδ(r) we can

infer that there exists (H̃, h̃) with h̃ 6= 0 such that

h̃(y − Ft+1(ω̃, s)) + H̃ · (s− x) ≥ 0 ∀s ∈ St+1(ω̃), ω̃ ∈ Σωt

which is a contradiction since y ∈ (Gt(ω, x), Ft(ω, x)).

�

Remark 3.24. Observe that from the proof of Proposition 3.17 we actually obtained that Ft(ω, ·)
is upper semi-continuous in the whole space Rd and note only on DFt(ω). Note, moreover, that for

showing the lower semi-continuity one could argue that Ft(ω, x) ≤ Ft(ω, xk) +Hk · (x− xk), where

Hk is an optimal strategy associated to Ft(ω, xk), and then take the limit. Nevertheless in order

to conclude that Ft(ω, ·) is lower semi-continuous we would need, for instance, that the sequence

{Hk} is bounded, which in general cannot be guaranteed.

proof of Lemma 3.18. For any m ∈ N let

{rm,n}∞n=1 :=

{
r ∈ Qd+1 | ‖r‖ =

1

m

}
∩ (−∞, 0)× Rd (113)

denoting rm,n = (r1
m,n, r̄m,n) ∈ Q×Qd we define for any m,n ∈ N,

Xm,n(ω) := Xt−1(ω) + r1
m,n, Hm,n(ω) := Ht(ω) + r̄m,n

Note that for any m,n ∈ N these functions are obviously Ft−1-measurable and we can extend

the definiton with X0,0 := Xt−1, H0,0 := Ht. Observe now that for any m,n ∈ N2 ∪ {(0, 0)} the

function Gm,n : Ω× Rd 7→ R defined by

Gm,n(ω, x) := [Xm,n(ω) +Hm,n(ω) · (x− St−1(ω))− F (ω, x)]1{|Xt−1(ω)|<∞} (114)

is a Charathéodory map. Since St is a closed valued Ft-measurable set, from Theorem 3.30 in the

Appendix, the set

Em,n := {ω ∈ Ω | ∃x ∈ St(ω) with Gm,n(ω, x) ∈ (−∞, 0]} (115)

is Ft-measurable and there exists a measurable function Sm,n : Em,n 7→ Rd such that

Sm,n(ω) ∈ St(ω), Gm,n(ω, Sm,n(ω)) ≤ 0

Note that Em,n is non-empty since Xt−1, when finite, is a minimum and when infinite Gm,n(ω, x) ≡
0.

Define, for any m ∈ N, Sm :=
∑∞
n=1 Sm,n1Em,n\∪n−1

j=1 Em,j
; by denoting Em := ∪n∈NEm,n and

E := ∪m∈NEm we define
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St :=

( ∞∑
m=1

Sm1Em\∪m−1
k=1 Ek

)
1E + Ŝt1Ec

where Ŝt ∈ L0(Ft) is an arbitrary measurable selector of St.
As (Xt−1, Ht) solves the set-valued problem in Definition 3.16 in particular it satisfies, when finite,

Xt−1(ω) +Ht(ω) · (St(ω)− St−1(ω))− F (ω, St(ω)) ≥ 0 ∀ω ∈ Ω (116)

We now show that this is also optimal.

If Xt−1(ω) = −∞ equation (116) holds by replacing (Xt−1(ω), Ht(ω)) with (yn, Hn) and yn → −∞.

The desired inequality is therefore obvious.

Let ω ∈ Ω such that |Xt−1(ω)| <∞. Suppose by contradiction that for some ω ∈ Ω∗ there exists

and optimal value y < Xt−1(ω) with optimal strategy Hy ∈ Rd. Consider the acceptance set given

by

A :=
⋂

ω̃∈Σωt−1

{
(x, h) ∈ R1+d | x+ h ·∆St(ω̃) ≥ Ft(ω̃, St(ω̃))

}
(117)

Clearly the optimal value satisfy a1 := (y,Hy) ∈ A. Moreover, since a2 := (Xt−1(ω), Ht(ω)) is

optimal for the set-valued problem we also have a2 ∈ A. Observe now that A is a closed convex

cone in Rd+1 and hence for any ε > 0, the ball with radius ε with center in a1, denoted by Bε(a1),

intersects the relative interior of A. Take now ε < d(a1, a2). Note that since y < Xt−1(ω), there

exist r := (r1, r̄) ∈ Q1+d with r1 < 0, and λ > 0, such that a := a2 + λr ∈ Bε(a1) ∩ ri(A). With

no loss of generality we can choose ‖r‖ ≤ 1 and λ > 1 so that, by construction, r = rm,n for some

m,n ∈ N2 as defined in (113). We claim that for some ω̃ ∈ Σωt−1,

a · [1; ∆St(ω̃)] ≤ Ft(ω̃, St(ω̃))

but since a ∈ ri(A) we necessarily have a · [1; ∆St(ω̃)] > Ft(ω̃, St(ω̃)) which is a contradiction.

We are only left to show the claim. Note first that Gm,n(ω̃, St(ω̃)) ≤ 0 for some ω̃ ∈ Σωt−1 which

can be rewritten as (a2 + r) · [1; ∆St(ω̃)] ≤ Ft(ω̃, St(ω̃)). Consider the half-line R := {a2 + λ(a−
a2) | λ ∈ R+} and the hyperplane L := {(x, h) ∈ R1+d | (x, h) · [1; ∆St(ω̃)] = Ft(ω̃, St(ω̃))}.
Denote by L+, L− the non-negative and non-positive half-spaces associated to L and observe

that a2 + r ∈ L−. Since a2 ∈ L+ we have that L ∩ R 6= ∅ and there exists (x0, h0) in the

intersection such that (x0, h0) = a2 + λ̄r for some λ̄ ≤ 1. By a change of coordinate, we can rewrite

L = {(x, h) ∈ R1+d | (x − x0, h − h0) · [1; ∆St(ω̃)] = 0}. Recall now that a = a2 + λr with λ > 1

and a2 + r ∈ L−, hence,

(1− λ̄)r · [1; ∆St(ω̃)] ≤ 0 ⇒ (λ− λ̄)r · [1; ∆St(ω̃)] ≤ 0

which is the desired inequality in the new coordinate system. �

proof of Proposition 3.19. Start with S0 := x0 and suppose first F0(x0) < ∞. From

Lemma 3.18 there exists S1 such that F0(x0) + H1∆S1 ≥ X1. Applying iteratively Lemma 3.18
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we get the inequalities

F0(x0) +H1 ·∆S1 ≥ X1

F0(x0) +H1 ·∆S1 +H2 ·∆S2 ≥ X2

. . .

F0(x0) +

T∑
t=1

Ht ·∆St ≥ XT = g

and hence the cheapest super-hedge from the minimality of Xt for t = 0, . . . T . Obviously S belongs

to the bid-ask spread since St ∈ St for every t.

Suppose now that F0(x0) =∞. Note that if Fs(ω, x) =∞ for some s ∈ I, x ∈ Rd then Fs(ω, ·) ≡
∞. Let t := min{s ∈ I | Fs(ω, ·) <∞ ∀ω ∈ Ω} ≥ 1. For all y ∈ R, consider the set

Γy(St) := co
(
conv

{
[s− x ; y − Ft(ω̃, s)] | s ∈ St(ω̃), ω̃ ∈ Σωt−1

})
⊆ Rd × R

Observe first that if for a finite set {ω1, . . . ωk} (or for the empty set) we have 0 /∈ int(Γy(U)) with

U := St(Σωt−1) \ {St(ω1), . . .St(ωk)} then there exists (H,h) \ (0, 0) ∈ Rd × R , such that

h(y − Ft(ω̃, s)) +H · (s− x) ≥ 0 (118)

If h > 0 then y + H/h · (s − x) ≥ Ft(ω̃, s) for all such s. From the continuity of Ft(ω, ·) (see

Proposition 3.17) and from St being closed and bounded we have that the quantities

lj := min{y +H/h · (s− x)− Ft(ωj , s) | s ∈ St(ωj)} < 0, l := −min
j
lj

are well defined and finite. Observe now that (y + l,H/h) solves the set-valued superhedging

problem of Definition 3.16 which is a contradiction since Ft−1(ω, x) =∞.

If h < 0 then y + H/h · (s − x) ≤ Ft(ω̃, s) for every s ∈ St(ω̃) and ω̃ ∈ Σωt−1 \ {Σ
ω1
t , . . .Σ

ωk
t }. In

particular for an arbitrary measurable random variable St with values in Ct satisfies

inf{x ∈ R | x+H ·∆St(ω̃) ≥ Ft(ω̃, St(ω̃)) ∀ω̃ ∈ Σωt−1} ≥
inf{x ∈ R | x+H ·∆St(ω̃) ≥ Ft(ω̃, St(ω̃)) ∀ω̃ ∈ Σωt−1 \ {ω1, . . . ωk}} ≥ y

(119)

If now the set of Y := {y ∈ R such that (119) holds} is unbounded from above then an arbitrary

St satisfies the desired equality.

For any y > supY we are left with two cases: i) 0 ∈ int(Γy(St)) or ii) 0 /∈ int(Γy(St)) and (118) is

satisfied iff h = 0.

Start with y1 > supY . Observe first that there exist a finite number of vectors U1 := {s1, . . . , sk1} ⊆
Γy1(St) such that in case i) 0 ∈ int(conv(U1)), in case ii) 0 /∈ int(conv(U1)) but (118) is satisfied

for any s ∈ U1 iff h = 0. If 0 ∈ int(Γy1
(St)) it is obvious. In case ii) it follows from Claim 3.23

which implies implies 0 ∈ ri{A} where A := {z ∈ Rd+1 | Ĥ · z = 0} ∩ Γy(x).

For any j = 1, . . . , k1, sj = limn→∞ snj for some snj ∈ Γy1(St). If snj eventually belong to St(ωj)
for some ωj , the sequence snj can be taken constantly equal to sj since St(ωj) is closed. Moreover,

with no loss of generality, if si, sj ∈ Γy1
(St) we may suppose that the corresponding ωi, ωj satisfy
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St(ωi) 6= St(ωj) for i 6= j. Indeed, by the previous considerations, having s1, . . . , sl it is possible to

find sl+1 in St(Σωt−1)\{St(ω1), . . .St(ωl)}. If si ∈ Γy1
(St)\Γy1

(St) me may suppose that sni ∈ St(ωni )

with ωni 6= ωmj for any m 6= n, j 6= i.

Let E1 := ∪k1
j=1 ∪∞n=1 {ωnj | snj ∈ St(ωnj )} and set

S1
t (ω) :=

snj if ω ∈ Σ
ωnj
t

Ŝt(ω) otherwise

where Ŝt is an arbitrary measurable random variable with values in Ct. S
1
t has the same measur-

ability of Ŝt since they coincide up to an union of countably many measurable sets. Note that by

construction

inf{x ∈ R | x+H · (S1
t (ω̃)− St−1(ω̃)) ≥ Ft(ω̃, St(ω̃)) ∀ω̃ ∈ Σωt−1} ≥ y1 (120)

Define now yn := y1 +n. For any n ∈ N we can apply the same procedure which yields a collection

{Snt }n∈N with the property that (120) is satisfied with Snt and yn. Moreover with no loss of

generality we can choose Un+1 ⊇ Un and hence En+1 ⊇ En in order to have Sn+1
t = Snt on En.

We therefore have that St := limn→∞ Snt is well defined and

inf{x ∈ R | x+H · (St(ω̃)− St−1(ω̃)) ≥ Ft(ω̃, St(ω̃)) ∀ω̃ ∈ Σωt−1} ≥ sup
n
yn =∞

�

proof of Proposition 3.20. Similarly as in the proof of Proposition 3.18 the function G :

Ω× Rd 7→ R defined by

G(ω, x) := Xt−1(ω) +Ht(ω) · (x− S̃t−1(ω))− Ft(ω, x) (121)

is a Charathéodory map and since St is a closed valued Ft-measurable set, the set

Yt(ω) := inf
{
Xt−1(ω) +Ht(ω) · (s− S̃t−1(ω))− Ft(ω, s) | s ∈ St

}
(122)

is Ft-measurable. Note that since St(ω) is a bounded set for every ω ∈ Ω∗, the infimum is equal

to −∞ if and only if Ft(ω, s) =∞ for every s ∈ St(ω). In such a case Xt−1(ω) =∞ and Ht, Ht+1

can be chosen arbitrarily. We may therefore suppose, without loss of generality, that Yt(ω) is a

minimum for every ω ∈ Ω∗. From Theorem 3.30 in the Appendix, the set E := {ω ∈ Ω | ∃x ∈
St(ω) with G(ω, x) = Yt(ω)} is Ft-measurable and there exists a measurable function m : E 7→ Rd

such that

m(ω) ∈ St(ω), G(ω,m(ω)) = Yt(ω), ∀ω ∈ E ⊆ Ω∗. (123)

We now show that there exists Ht+1 ∈ L0(Ft) such that, for any ω ∈ Ω∗, Ht+1(ω) ∈ Ht+1(m(ω))

and

• if Hi
t(ω) < Hi

t+1(ω) then mi(ω) = S
i
(ω)

• if Hi
t(ω) > Hi

t+1(ω) then mi(ω) = Si(ω)

and hence the desired random vector is Ŝt := m.
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Fix a level set Σωt with ω ∈ Ω∗. For simplicity we set m := m(ω), as no confusion arise here. We

also use the following shorthand: S̄t+1 is the set of s̄ := (ωs, s) ∈ Σωt × St+1(Σωt ) with s ∈ St+1(ωs)

and, for s̄ ∈ S̄t+1, we denote Xt+1(s̄) := Ft+1(ωs, s).

Step 1. Observe that for any H̃ ∈ Ht+1(m)

inf
{
Ft(ω,m) + H̃ · (s̄−m)− Xt+1(s̄) | s̄ ∈ S̄t+1

}
= 0 (124)

otherwise H̃ would not be optimal. Since the inner product is continuous there exist a minimizing

sequence {yn}∞n=1 ⊆ S̄t+1 with y := limn→∞ yn and X(y) := limn→∞Xt+1(yn) such that the

minimum is attained i.e.

Ft(ω,m) + H̃ · (y −m) = X(y) (125)

Let

Y :=
{

lim
n→∞

yn | {yn}∞n=1 ⊆ S̄t+1 and (125) is satisfied
}

(126)

In a first step we show that, for any y ∈ conv(Y ), H̃ is still optimal for the price process (y,St+1),

that is, H̃ ∈ Ht+1(y).

Take y :=
∑n
i=1 λiyi ∈ Y . The set-valued superhedging price Ft(ω, y) must satisfy, in particular,

the constraints

x+ α · (yi − y) ≥ X(yi) ∀i = 1, . . . , n

and hence Ft(ω, y) ≥
∑n
i=1 λiX(yi). Note however that H̃ satisfies

Ft(ω,m) + H̃ · (s̄−m) ≥ Xt+1(s̄) ∀s̄ ∈ S̄t+1 (127)

Ft(ω,m) + H̃(s̄− y) + H̃ · (y −m) ≥ Xt+1(s̄) ∀s̄ ∈ S̄t+1 (128)
n∑
i=1

λiX(yi) + H̃ · (s̄− yt) ≥ Xt+1(s̄) ∀s̄ ∈ S̄t+1 (129)

where the last inequality follows from the fact that (125) holds for every yi with i = 1, . . . , n and

hence

Ft(ω,m) + H̃ · (y −m) =

n∑
i=1

λi

(
Ft(ω,m) + H̃ · (yi −m)

)
=

n∑
i=1

λiX(yi)

We have therefore that H̃ ∈ Ht+1(y).

Step 2 We now prove that for any y0, y1 ∈ Rd, for any 0 ≤ λ ≤ 1

Ht+1(y0) ∩Ht+1(y1) ⊆ Ht+1((1− λ)y0 + λy1) (130)

Denote yλ := (1−λ)y0 +λy1. Let H̃ ∈ Ht+1(y0)∩Ht+1(y1). We need to show that H̃ is optimal for

any price process (yλ,St+1). For λ = 0, 1 the claim is trivial. Note that in analogy with (128), for

any 0 ≤ λ ≤ 1, the payoff of H̃ ·(S̄t+1−yλ) dominates Xt+1(S̄t+1) by adding Ft(ω, y0)+H̃(yλ̄−y0).

Suppose that for some λ ∈ (0, 1) this is not optimal and hence there exists a dominating strategy

Hλ̄ with

Ft(ω, yλ̄) < Ft(ω, y0) + H̃(yλ̄ − y0) (131)
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From

Ft(ω, yλ̄) +Hλ̄(y0 − yλ̄) +Hλ̄(s̄− y0) ≥ Xt+1(s̄) ∀s̄ ∈ S̄t+1

Ft(ω, yλ̄) +Hλ̄(y1 − yλ̄) +Hλ̄(s̄− y1) ≥ Xt+1(s̄) ∀s̄ ∈ S̄t+1

we get

Ft(ω, y0) ≤ Ft(ω, yλ̄) +Hλ̄(y0 − yλ̄) (132)

Ft(ω, y1) = Ft(ω, y0) + H̃(y1 − y0) ≤ Ft(ω, yλ̄) +Hλ̄(y1 − yλ̄) (133)

From (131) and (132) we have (H̃ −Hλ̄)(yλ̄ − y0) > 0. As yλ̄ − y0 = λ(y1 − y0) we thus obtain

(H̃ −Hλ̄)(y1 − y0) > 0 (134)

Now, from (131) and (133) we get

H̃(y1 − y0) < H̃(yλ̄ − y0) + Hλ̄(y1 − yλ̄) from which H̃(y1 − yλ̄) < Hλ̄(y1 − yλ̄). Since y1 − yλ̄ =

(1− λ)(y1 − y0) we thus obtain

(H̃ −Hλ̄)(y1 − y0) < 0 (135)

Equation (135) clearly contradicts (134).

Step 3 We now conclude the proof of the Proposition. As H ∈ Ht(ω) is fixed, for simplicity, we

can translate H in the origin. Denote by

Iu := {i ∈ {1, . . . d} | mi = S
i
(ω)}

Id := {i ∈ {1, . . . d} | mi = Si(ω)}

ξi := 1Iu(i)− 1Id(i)

and define

R := ξ1[0,∞)×, . . .× ξd[0,∞)

where with a slight abuse of notation ξi[0,∞) is either [0,∞), (−∞, 0] or {0} according to ξi being

respectively 1,−1 or 0.

Suppose that there is no H̃ ∈ Ht+1(m) that meets the requirement that is

Ht+1(m) ∩R = ∅

As Ht+1(m) and R are both closed convex sets in Rd, by Hahn Banach Theorem, there exists

η ∈ Rd, γ ∈ R such that

η · H̃ ≥ γ > sup
r∈R

η · r ∀H̃ ∈ Ht+1(m)

Note that ∀i ∈ Iu and ∀α ≥ 0 we have that αei ∈ R where ei is the ith element of the canonical

basis of Rd. Since supr∈R η · r is bounded from above we infer that ηi ≤ 0 if i ∈ Iu. Similarly

ηi ≥ 0 if i ∈ Id. Any separator η must therefore satisfy

ηi ≤ 0 if i ∈ Iu (136)

ηi ≥ 0 if i ∈ Id (137)

Note moreover that as 0 ∈ R
η · H̃ > 0 ∀H̃ ∈ Ht+1(m) (138)
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Denote by l := d(Ht+1(m), R) the distance between the two sets and denote by Ĥ the minimizing

strategy which exists since Ht+1(m) is closed.

Let Y = Y (Ĥ) as in (126) in Step 1 and introduce the convex cone V := co (conv{y −m | y ∈ Y }).
We show that that the dual cone

V ∗ = co(H̃ − Ĥ | H̃ ∈ Ht+1(m))

satisfies w · (y −m) ≥ 0 The inclusion ⊇ is obvious since, from (125), any y ∈ Y satisfies

Ft(ω,m) + H̃ · (y −m) ≥ X(y) = Ft(ω,m) + Ĥ · (y −m)

from which (H̃ − Ĥ) · (y −m) ≥ 0. For the converse inclusion observe that any y ∈ Y defines a

supporting hyperplane for the set Ht+1(m) − Ĥ at 0. Since w ∈ V ∗ is in the positive half-space

generated by Y there exists α > 0 such that α(w − Ĥ) ∈ Ht+1(m) − Ĥ from which the claim

follows.

Observe now that η ∈ V ∗∗ = V and hence η = y −m, for some y ∈ Y . Equations (136) and (137)

imply that

yit ≤ mi if i is such that mi = S
i
(ω) (139)

yit ≥ mi if i is such that mi = Si(ω) (140)

Since Ĥ ∈ Ht+1(m), from Step 1, we have Ĥ ∈ Ht+1(y). Thus, from Step 2, Ĥ ∈ Ht+1(λm+ (1−
λ)y) is also true for every 0 ≤ λ ≤ 1. From (139) and (140) there exists λ sufficiently close to 1

such that yλ := (1− λ)m+ λy ∈ Ct and

Ft(ω, yλ) = Ft(ω,m) + Ĥ(yλ − y0) (141)

Note moreover that, by construction, yλ ∈ St(ω). By recalling that η = λ(yλ − m) and by

translating back 0 in H, equation (138) implies Ĥ · (yλ −m) > H · (yλ −m). In combination with

(141) and the fact that Ft(ω,m) = Xt−1(ω)−Yt(ω) +H · (m−St−1(ω)) from equations (122) and

(123), it yields

Ft(ω, yλ) = Ft(ω,m) + Ĥ · (yλ −m)

> Ft(ω,m) +H · (yλ −m)

= Xt−1(ω)− Yt(ω) +H · (m− St−1(ω)) +H · (yλ −m)

= Xt−1(ω)− Yt(ω) +H · (yλ − St−1(ω))

which is a contradiction since yλ ∈ St(ω) and Yt(ω) is a minimum in (122). �

4. Appendix

Let (Ω,A) a measurable space.

Lemma 3.25. Let Ψ : Ω 7→ 2R
d

a A-measurable multifunction. Let ε > 0 then

Ψε : ω 7→
{
v ∈ Rd | v · s ≥ ε ∀s ∈ Ψ(ω) \ {0}

}
is a A-measurable multifunction.
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Proof. see Appendix of [BFM14] �

Theorem 3.26. [Theorem 14.5 [RW98]] The following are equivalent

• Ψ : Ω 7→ 2R
d

is a closed valued, A-measurable multifunction

• Ψ admits a Castaing representation: there is a countable family {ψn}n∈N of A-measurable

function ψn : domΨ 7→ Rd such that for any ω ∈ Ω

Ψ(ω) = cl {ψn(ω) | n ∈ N}

Proposition 3.27. [Proposition 14.2-11-12 [RW98]] Consider a class of A-measurable set-valued

functions. The following operations preserve A-measurability: countable unions, countable inter-

sections (if the functions are closed-valued), finite linear combination, convex/linear/affine hull,

generated cone, polar set, closure, cartesian product of a finite number of A-measurable multi-

functions.

Theorem 3.28. [Corollary 14.6 [RW98]] A closed-valued measurable mapping always admits a

measurable selector.

Lemma 3.29. [Example 14.15 in [RW98]] Let F : Ω × Rn 7→ Rm be a Charatéodory map and let

X(ω) ⊆ Rn be closed-valued and A-measurable then the following map are A-measurable

• ω 7→ F (ω,X(ω))

• ω 7→ (X(ω), F (ω,X(ω)))

Theorem 3.30. [Theorem 14.16 in [RW98]] Let F : Ω × Rn 7→ Rm be a Charatéodory map and

let X(ω) ⊆ Rn and D(ω) ⊆ Rm be closed sets that depends measurably on ω. Then the set

E := {ω ∈ Ω | ∃x ∈ X(ω) with F (ω, x) ∈ D(ω)}

is Ft-measurable and there exists a measurable function x : E 7→ Rd such that

x(ω) ∈ X(ω) and F (ω, x(ω)) ∈ D(ω) ∀ω ∈ E

Lemma 3.31. Let 1 ≤ u ≤ T and Σωu−1 be the level sets specified by S. Let X : Ω⇒ [−∞,+∞] and

∆S̃u : Ω ⇒ Rd be multi-functions measurable with respect to F , Fu, respectively. Given a closed

valued, Ft−1-measurable random set of constraints C ⊆ Rd, the following multi-function is Fu−1

measurable

AC(ω) =

{
(H, y) ∈ C × R | y +

d∑
i=1

Hi∆S̃iu(ω̃) ≥ X(ω̃) ∀ω̃ ∈ Σωu−1

}
,

Moreover, denoting with Πx1,...,xd(·) and Πxd+1
(·) the canonical projection on the first d components

and on the (d+ 1)th component, respectively, we have that

Xu−1 = min Πxd+1
(AC), Hu = Πx1,...,xd

(
AC ∩

{
Rd ×Xu−1

})
are also Fu−1-measurable multi-functions.

Proof. First consider the multifunction

ψ : ω 7→
{

∆S̃u(ω̃)× 1×X(ω̃) | ω̃ ∈ Σωu−1

}
⊆ Rd+2
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which is Fu−1-measurable multifunction since for any open set O ⊆ Rd × R2

{ω ∈ Ω | ψ(ω) ∩O 6= ∅} = S−1
0:u−1 (S0:u−1 (B)) ∈ Fu−1

where B =
{
ω ∈ Ω | {∆S̃u(ω)× 1×X(ω)} ∩O 6= ∅

}
∈ F from Proposition 3.27. By preservation

of measurability (again Proposition 3.27) the multifunction

ψ∗(ω) :=
{
H ∈ Rd+2 | H · y ≤ 0 ∀y ∈ ψ(ω)

}
is also Fu−1-measurable and thus, the same holds true for −ψ∗ ∩ C × R× {−1}. It is easy to see

now that AC = Πx1,...,xd+1
(−ψ∗ ∩ C × R × {−1}) which is measurable from the continuity of the

projection maps.

Observe now that the measurability of AC implies now those of Xu−1 and Hu. Ā := Πxd+1
(AC)

is again measurable by the continuity of projections. We have now that by taking the infimum of

the real random set Ā the measurability is preserved since, for any y ∈ R, it easily follows that{
ω ∈ Ω | inf{a | a ∈ Ā(ω)} < y

}
=
{
ω ∈ Ω | Ā(ω) ∩ (−∞, y) 6= ∅

}
∈ Fu−1

As in the classical case, the infimum is actually a minimum by repeating the same arguments

as in Proposition 2.3 in Chapter 2. Finally Hu is again Fu−1-measurable by preservation of

measurability. �
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