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Introduction

The State Preference Model or Asset Pricing Model is the base of any mathematical description
of Financial Markets. It postulates that the price of d financial assets is known at a certain initial
time ¢y = 0 (today), while the price at future times ¢ > 0 (tomorrow) is unknown and therefore it
is given by a certain random outcome. The natural framework for the formalization of this model
is that of Stochastic Analysis. We essentially need to fix a set of events 2, where any w €
represents a possible state of the world, and for any future time ¢ € I, we need a random vector
S; : © — R? which provides the price of the d assets S;(w) if the state of the world w occurs.
Typical examples for the set of future times I are I = {0,...,T} (discrete time) and I = [0, T
(continuous time) for a certain fixed T > 0 named time horizon. The financial market will be
also enriched by the specification of a o-algebra F and a filtration F := {F;}+e; C F with the
requirement that the process S := (S;)ies is F-adapted. The interpretation for this reasonable
assumption is that it is not possible to forecast the possible future values of the price process S
with the current information available in the market (which is specified by the filtration F). We
can therefore assert that a Financial Market model is given by the quadruple (2, F,F,S) and we
note that, so far, no probability measure is introduced, neither seems required for the specification
of the model.

In modern Financial Markets a great variety of securities are traded every day. Most of them are
contracts on some underlying assets (e.g. derivative) and the prices for exchanging such contracts
are not directly given by the law of supply and demand. Mathematical models are therefore

developed in order to answer two key questions:

Pricing.: What is a fair price for a traded security according to well established economical
principles?
Hedging.: Every trade is connected to some risks arising from unfavourable future events.

How does an agent cover such possible risks?

These two questions represent the quintessence of Mathematical Finance and the first, fundamental,
answers are contained in the so-called Fundamental Theorem of Asset Pricing (FTAP) and Super-

hedging duality.

1. On Fundamental Theorem of Asset Pricing

In a nutshell the Fundamental Theorem of Asset Pricing asserts that any reasonable pricing system
must be an expectation under a certain (risk-neutral) probability measure and viceversa. A pricing
system is reasonable if it does not admit arbitrage opportunities i.e. it is not possible to create a
portfolio of financial securities in such a way that the initial investment is zero (or even negative),

while the final outcome is always non negative (and in some cases strictly positive). If this was
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4 INTRODUCTION

allowed it would be possible to make an arbitrary large profit with no risk. A first intuition for this
equivalence can be accredited to De Finetti for his work on coherence and previsions (see [deF70]),
while the first systematic approach for understanding the deep relation among no arbitrage pricing
and risk-neutral pricing can be found in the work of Ross on Arbitrage Pricing Theory (see e.g.
[Ross76, Ross77]) and further developed in [Hu82]. Later on in the case of 2 being a finite set of
events a version of FTAP has been proven by Harrison and Pliska [HP81] (see also [HK79, K81])

using geometric arguments and separation in finite dimensional spaces.

THEOREM. Let Q = {wy,...,w,} and let s = (st,...,s?) the initial prices of d assets with random

outcome S(w) = (S1(w),...,S%w)) for any w € Q.

PH € R? such that H -5 <0 PN 3Q € P such that Eg[S'] = s' (1)
and H - S(w) > 0 with > for some w € ) and Q(w;) >0Vi=1,...,n

where P is the class of probability measures on €.

It is immediately clear that in the finite setting no probability measure is needed for the specification
of the model since impossible events are automatically excluded from the construction of the state
space €. On the other hand, linear pricing rules consistent with the observed prices s, ... s,
and not violating the No Arbitrage condition, turn out to be (risk-neutral) probabilities with full
support i.e. they assign positive measure to any state of the world. By introducing a reference
probability measure P with full support and defining an arbitrage as a portfolio with H - s < 0,

P(H-S(w) >0)=1and P(H-S(w) > 0) >0, the thesis in Theorem 1 can be restated as
There is No Arbitrage <= 3Q ~ P such that Eg[S'| =s' Vi=1,...d (2)

This identification allows non-trivial extensions of the Fundamental Theorem of Asset Pricing to
the case of a general, infinite dimensional ). Since it is well known that, on such a space, it is not
possible to find a single measure @) with the property that Q({w}) > 0 for any w € © Theorem 1
cannot hold with  being an infinite dimensional space. The extension suggested by (2) is instead
possible and it has been proven by Dalang-Morton-Willinger in the celebrated work [DMW90],
by use of measurable selection arguments. Nevertheless, this apparently innocuous passage, carries
out what is, at the matter of facts a model assumption i.e. the choice of a reference probability
measure P. This aspect has been recently criticized especially after the recent financial crises: while
it is certainly possible to estimate the probability distribution of a certain asset S from historical
data, this estimation might be not accurate or, even worse, it might be no longer representative
of the stochastic evolution of S due to the prominent dynamic nature of real world markets. For
these situations, the unreliability of the measure P opened new and interesting challenges in several
branches of Mathematical Finance under the name of Knightian Uncertainty. In particular it has
renewed the attention on foundational issues such as option pricing rules and arbitrage conditions
which is the main topic of Chapter 1 of this thesis. Along the lines of the previous discussion we

can distinguish two extreme cases:

(1) We are completely sure about the reference probability measure P. In this case, the
classical notion of No Arbitrage or No Free Lunch with Vanishing Risk can be successfully
applied. In discrete markets several different proofs of the Fundamental Theorem of

Asset Pricing have been provided after the seminal paper [DMW90]. Schachermayer in
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[S92] proposed a simplified approach based on orthogonality in Hilbert spaces; the key
result in the paper is the closure of a certain cone of superreplicable contingent claims
with respect to convergence in probability, in the spirit of [St90]. A different point of
view has been considered by Rogers in [R94] who exploited the solution of a utility
maximization problem to construct the density of an equivalent martingale measure.
Several alternative techniques have been implemented in order to simplify the original
proof by avoiding measurable selection arguments such as in [KK94, KS01b, JS98]. In
continuous time the problem is much more involved and requires a deeper analysis on No
Arbitrage conditions as well as the use of sophisticated tools from the general theory of
semi-martingales (see e.g. [DS94, DS98]).

(2) We face complete uncertainty about any probabilistic model and therefore we must de-
scribe our model independently of any probability. In this case we might adopt a model
independent (weak) notion of No Arbitrage. A pioneering contribution was given by
Hobson in the paper [Ho98] where the problem of pricing exotic options is tackled under
model mis-specification. In his approach the key assumption is the existence of a martin-
gale measure for the market, consistent with the prices of some observed vanilla options
(see also [BHRO1, CO11, DOR14] for further developments). In [DHO7], Davis and
Hobson relate the previous problem to the absence of Model Independent Arbitrages, by
the mean of semi-static strategies. A step forward towards a model-free version of the
First Fundamental Theorem of Asset Pricing in discrete time was formerly achieved by
Riedel [Ril5] in a one period market and by Acciaio at al. [AB13] in a more general

setup.

Between cases 1. and 2., there is the possibility to accept that the model could be described in
a probabilistic setting, but we cannot assume the knowledge of a specific reference probability
measure but at most of a set of priors, which leads to the new theory of Quasi-sure Stochastic
Analysis as in [BK12, DHP11, DMO06, Pel0, STZ11, STZ11a]. The idea is that the classical
probability theory can be reformulated as far as the single reference probability P is replaced
by a class of (possibly non-dominated) probability measures P’. This is the case, for example,
of uncertain volatility (e.g. [STZ11la]) where, in a general continuous time market model, the
volatility is only known to lie in a certain interval [0, o]

In the theory of arbitrage for non-dominated sets of priors, important results were provided by
Bouchard and Nutz [BN15] in discrete time. A suitable notion of arbitrage opportunity with
respect to a class P’, named NA(P’), was introduced and it was shown that the no arbitrage
condition is equivalent to the existence of a family Q' of martingale measure having the same
polar sets of P’. In continuous time markets, a similar topic has been recently investigated also by
Biagini et al. [BBKIN14].

Bouchard and Nutz [BN15] answer the following question: which is a good notion of arbitrage
opportunity for all admissible probabilistic models P € P’ (i.e. one single H that works as an
arbitrage for all admissible models) ? To pose this question one has to know a priori which are

the admissible models, i.e. we have to exhibit a subset of probabilities P’. On the contrary we
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want to investigate arbitrage conditions and robustness properties of markets that are described
independently of any reference probability or set of priors.

To this aim we introduce a flexible notion of arbitrage that we denominate Arbitrage de la classe
S (see Definition 1.1). Since, loosely speaking, an arbitrage opportunity is a a riskless portfolio
which yields a positive profit in some state of the world (denoted by V;; C ), in order to formally
describe this economical principle we need to specify the meaning of a “riskless portfolio”and that
of a “true gain”. While, in a model-free setup, the former can be naturally considered as a strategy
whose returns are non-negative in any state of the world (i.e. Yw € ), it is less intuitively and
more debatable the concept of a true gain. This is exactly the role attributed to the class S. We
say that a riskless portfolio is an arbitrage if it yields a strictly positive return on a sufficiently
significant set of events belonging to S (i.e. VE D A with A € §). Several definitions of arbitrage
considered in the literature can be seen as a particular case of this general postulate. The strongest
notion is obtained with § = {2}, meaning that we have a true gain if we can make a profit in any
state of the world; the weakest notion is instead given by S = {any non-empty measurable set},
meaning that we can consider a true gain whenever it is achieved for at least one state of the world.
In Chapter 1 we provide a model independent version of the Fundamental Theorem of Asset pricing
for a generic class S linking the choice of the class of significant set to the richness of the set of
martingale measures. Note that, for a particular choice of the class S, the No Arbitrage assumption
does not preclude the existence of riskless portfolios with strictly positive gain on a non-significant
set. This situation does not arise in the classical case and it considerably complicates the analysis
of the relations between No Arbitrage conditions and existence of martingale measures. A first
insight into the problem was formerly given in [DHO7]: suppose you have two call options Cy, Cso
with the same initial price ¢y but with different strikes Ko > K;. Anyone would agree that in
this market there is an arbitrage opportunity. Observe however that the strategy C; — Cs yields
a positive gain if the price of the underlying asset ends above K; at maturity. On the contrary if
an agent is convinced that the price of the underlying will remain below K; she would implement
a different strategy, namely a short position in one of the two options (since they will never be
exercized). In Chapter 1 we formally describe situations where there might be a disagreement
on the effective arbitrage strategy and we mathematically treat them by means of a measurable
multifunction, that we called Universal Arbitrage Aggregator and whose task is precisely to capture
all the inefficiencies of the market. This technical tool is the key ingredient that allows us to show

a general model-free version of the Fundamental Theorem of Asset Pricing.

2. On Super-hedging duality

As in the classic theory the Fundamental Theorem of Asset Pricing represents the groundwork for
a formal option pricing theory based on martingale measures. The existence of this peculiar type
of measures and the justification for their use as pricing rules rely on a strong economical basis
such as the absence of arbitrage opportunities. When there is exactly one martingale measure
there is no doubt on the choice of the pricing rule and we therefore univocally assign a single
price to any contingent claim. Markets that exhibit such a behaviour are called complete but, in
real world situations, this is typically not the case. The reason is two-fold. On one hand agents

usually evaluate the same security differently one from another, as it is evident from the existence
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of spreads between bid and ask prices. On the other hand complete markets are not attractive
for investors since when there is agreement on the value of a certain claim there is less room for
making profits. In general we therefore have a whole class of prices for the same contingent claim
g, corresponding to different possible choice of the pricing martingale measure in M. The Super-
hedging duality Theorem relates the supremum of these prices to the cheapest portfolio that gives
a payoff at least as good as g (called super-hedging strategy). It is well known that in the classical
case the convexity of the set of equivalent martingale measures M,.(P) guarantees that the set
of admissible prices for g is an interval, and it is given by (infge, (p) Eql9]: subgem. (p) Eqlg))-
Outside this interval P-Classical arbitrage opportunities can be obtained. More importantly we
have that

sup Eglg] =inf{z € R|3H € H such that z + (H - S)r > g P-as.}
QeEM.(P)

It is therefore natural to pose the question: Can we show an analogous Super-hedging duality
Theorem when no reference probability is considered? The relevance of the problem is revealed by
the increasing amount of literature on this topic in the last decades. Breeden and Litzenberger in
[BL78] observed that the prices of some European call options, with the same maturity 7', reveal
information on the marginal distribution p of the underlying price process at time 7" under the
risk-neutral measure. This key observation has two consequences. Firstly it enables to price other
vanilla derivatives with the same maturity; since these options depend only on the value of the
underlying at time 7', the knowledge of the distribution u is sufficient. Secondly it also permit to
provide robust bounds for exotic path-dependent options.

The first work in this direction is due to Hobson [Ho98] who exploited Skorokhod Embedding
Problem techniques in order to find robust bounds for the price of a lookback option. The idea is
the following: for a certain path-dependent option the first step is to write a pathwise lower /upper
bound by means of a semi-static strategy i.e. a linear combination of payoffs of some vanilla
options (static part) and dynamic trading in the underlying (dynamic part). Since any martingale
measure, compatible with the estimated marginal p, will assign the same price to these portfolios,
the obtained bounds can be legitimate considered model-independent. The second step is to show
that they are also tight, meaning that there exist a model for the price process S which is compatible
with g and which attains the boundaries. This is exactly where the Skorokhod Embedding Problem
comes into play (see the survey [Hol1] or [Ob10] and the reference therein for a full account).
Another important stream of research started with the reformulation of the superhedging duality
in the framework of the Monge-Kantorovich optimal mass transport. Given two probability space
(X1,p1), (Xo,p2) the problem amounts to find a “cheap” way of transporting p; to pe. Any
transport plan is given by a probability measure in the product space X; x X5 with marginals
p1 and po while the cost function is specified by a map g. If we now recall that the marginal
distribution of the price process St can be estimated from market data and that, obviously, the
initial price Sy is observable we can easily identify p; := dg, and po := p where §, is the Dirac
measure centered in x. By defining the cost function as the payoff of a certain path-dependent
option g we have that the primal problem corresponds to minimize the expectations of g over
the set of probability measures compatible with the estimated marginal. Note that differently

from the original Monge-Kantorovich problem it is necessary to impose an additional constraint,
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namely, that the transport plans need to be martingale measures which complicates the analysis.
Nevertheless in many interesting cases the dual problem can be successfully rewritten in terms
of a sub-hedging problem, again by means of semi-static strategies. By exploiting the optimal
mass transport duality, versions of the superhedging theorem can be obtained both in discrete and
continuous time as in [BHLP13, DS13, DS14b, GHLT14, HLOST15, HO15, TT13|.

In any of these papers the underlying process S is the canonical process and given a set of vanilla
options {®;};cs (with no loss of generality with zero-initial price) a semi-static trading strategy
is said to be a superhedge for the claim g if its terminal payoff dominates g in any state of the

world, i.e. the following version of the superhedging problem has been studied
k
inf ¢ z € R | 3(H, h) € H such that  + (H - S)r(w) + Zhj@j(w) > g(w) YVw € Q (3)
j=1

While this requirement appears to be very reasonable from a model-independent point of view, in
some cases it turns out to be too restrictive in order to recover a perfect duality respect to the set
of No Arbitrage prices given by martingale measures. In Chapter 2 we provide an example of a
market where a duality gap appears unless some artificial assumptions are imposed on the payoff of
the claim g. Once again this is essentially a consequences of the fact that No Arbitrage conditions
in the model-free setup are, in general, compatible with the existence of riskless portfolios with
strictly positive gain on certain non-significant sets. While it is certainly true that the set of events
where this is possible is negligible it is likewise true that the corresponding set of trajectories for
the underlying price process is inefficient so that an agent should not be interested in hedging such
a risk. For this reason we propose to weaken the requirement of a pathwise dominating inequality
as in (3) with the validity of the same inequality on an efficient set Q¢ C Q. A full description and
characterization of this set is given in Chapter 2 where we also show some measurability properties
of Q4. This modification of the problem turns out to be crucial to fill the duality gap and to obtain
the validity of a model-free version of the superhedging theorem in a general setting (see Theorem
2.2). A restriction of the set of paths considered for super-replication can also be found in [HO15]
but it is different in spirit. Differently from our approach this set is not endogenously determined
by the market but it is, on the contrary, determined by the modeller whenever she have additional

information that allows her to narrow the set of possible scenarios.

3. Models with transaction costs

The last part of the thesis is devoted to the extension of the previous results to the case of a
discrete time Model Independent framework when proportional transaction costs are taken into
account. The mathematical tools that we employed in the frictionless case are based on measur-
able selection combined with a geometric point of view. This methodology applies very well to
the case of markets with proportional transaction cost which consequently appears to be a natural
prosecution of our analysis.

The setting proposed by Kabanov et al. (see e.g. [KS0la, KRS02|) based on solvency cones,
has already a geometric nature and allows the extension of the aforementioned classical result on

the Fundamental Theorem of Asset Pricing with 2 finite (see [HP81]) to the case of proportional
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transaction costs as in [KS01a]. The result connects the absence of arbitrage to the existence of a
price process with values in the bid-ask spread which is a martingale under a certain risk-neutral
probability. This kind of process have been subsequently denominated “Consistent Price Systems”
(CPS), by Schachermayer [S04] where the equivalence between absence of Arbitrage and existence
of CPS has been proven on a general space (2, F, P). In this paper Schachermayer pointed out
that in order to establish this duality the right concept to use is what he called Robust No Ar-
bitrage. This concept formalize the idea that if a market is arbitrage free then, for a sufficiently
small reduction of the transaction costs, the market should maintain the arbitrage free property.
The same condition is used in the Chapter 3 dropping the reference probability. The possibility
of shrinking the bid-ask spread, even for an arbitrary small amount, is crucial in order to avoid
undesirable complications. We have already discussed that in the frictionless case different agents
might disagree on the effective strategy which realize an arbitrage opportunity. This controversy
relies on a delicate linear dependence among the price processes of different assets. When these
prices can be perturbarted, by the presence of frictions in the market, this dependence diseappear
and the agents not only recognize an arbitrage opportunity but they also agree on the strategy
which they should undertake to take advantage of that.

In Chapter 3 we consider the model-free version of the notion of arbitrage introduced in [S04]
and we provide a Fundamental Theorem of Asset Pricing in this framework. To the best of our
knowledge version of this Theorem in this context has not yet been studied. Only a very short
literature is indeed available for the robust case, when a class of (possibly non-dominated) set of
priors is considered, recent results in this direction are given by [BZ13, BN14].

In the second part of Chapter 3 we investigate the superhedging Theorem in the presence of pro-
portional transaction costs. In the classical framework of a fixed probability measure there is a
huge literature on this topic (for a non exhaustive list see [BT00, CK96, CPT99, LS97, K99,
SSC95, S14|. Likewise the case of the Fundamental Theorem of Asset Pricing there are very
few results in the model-free case. A first important paper on this topic is given by Dolinsky and
Soner [DS14] where the case of a discrete time single-asset market is considered with constant
proportional transaction costs. By defining a Monge-Kanotorovich optimization problem and ex-
ploiting optimal transport techniques the authors succeeded to show that the superhedging price
of a path-dependent European option g coincides with the supremum of the expectation of g in the
set of proability measure called approzimate martingale measures. Roughly speaking a probability
measure belongs to this set if for any u > ¢, the conditional expectation of S,, at time ¢ is contained
in the interval ((1 — k)S;, (1 + k)S;) where k models the proportional transaction costs. A more
recent paper from the same authors [DS15] study the case of a continuous time market with one
risky asset and with semi-static strategies in some vanilla options allowed. Two hedging problems
are considered: in the first one it is required that the super-replication needs to hold for any path
in ; in the second just in the P-a.s. for a suitable P with conditional full support. Using convex
duality techniques they show that the two optimization problems have the same value.

In Chapter 3 we consider the hedging problem in a d-dimensional discrete time market with (ran-

dom) proportional transaction costs.
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CHAPTER 1

Arbitrage and Martingales'

We consider a financial market described by a discrete time adapted stochastic process S := (St):er,
I ={0,...,T}, defined on (Q,F,F), F := (F;)ter, with T < oo and taking values in R? (see
Section 1). Note we are not imposing any restriction on S so that it may describe generic financial
securities (for examples, stocks and/or options). Differently from previous approaches in literature,
in our setting the measurable space (2, F) and the price process S defined on it are given, and we
investigate the properties of martingale measures for S induced by no arbitrage conditions. The
class ‘H of admissible trading strategies is formed by all F-predictable d-dimensional stochastic
processes and we denote with M the set of all probability measures under which S is an F-
martingale and with P the set of all probability measures on (2, F). We introduce a flexible
definition of Arbitrage which allows us to characterize the richness of the set M in a unified

framework.

Arbitrage de la classe S. Let:
Vi ={weQ| Vp(H)(w) >0},

where Vp(H) = Zthl H,-(S;—S;_1) is the final value of the strategy H. It is natural to introduce

several notion of Arbitrage accordingly to the properties of the set V.

DEFINITION 1.1. Let S be a class of measurable subsets of Q such that @ ¢ S. A trading strategy
H € H is an Arbitrage de la classe S if

o Vo(H) =0, Vp(H)(w) > 0Vw € Q and V;; contains a set in S.

The class S has the role to translate mathematically the meaning of a “true gain”. When a
probability P is given (the “reference probability”) then we agree on representing a true gain
as P(Vp(H) > 0) > 0 and therefore the classical no arbitrage condition can be expressed: no
losses P(Vp(H) < 0) = 0 implies no true gain P(Vp(H) > 0) = 0. In a similar fashion, when a
subset P’ of probability measures is given, one may replace the P-a.s. conditions above with P-q.s
conditions, as in [BN15]. However, if we can not or do not want to rely on a set of probability
measures a priori assigned, we may well use another concept: there is a true gain if VE contains
a set considered significant. This is exactly the role attributed to the class S which is the core
of Section 2. Families of sets, not determined by some probability measures, have been already
used in the context of the first and second Fundamental Theorem of Asset Pricing respectively by

Battig Jarrow [BJ99] and Cassese [CO8] (see Section 3.1 for a more specific comparison).

1Chapter 1 is based on the paper: Universal Arbitrage Aggregator in Discrete Time Markets under Uncertainty,
joint work with M. Frittelli and M. Maggis, forthcoming on Finance € Stochastics

11



12 1. ARBITRAGE AND MARTINGALES

In order to investigate the properties of the martingale measures induced by No Arbitrage condi-
tions of this kind we first study (see Section 3) the structural properties of the market adopting a
geometrical approach in the spirit of [HP81] but with  being a general Polish space, instead of a
finite sample space. In particular, we characterize the class A of the M-polar sets i.e. those N C Q
such that there is no martingale measure that can assign a positive measure to V. In the model
independent framework the set N is induced by the market since the set of martingale measure
has not to withstand to any additional condition (such as being equivalent to a certain P). Once
these polar sets are identified we explicitly build in Section 3.6 a process H® which depends only
on the price process S and satisfies:

o Vp(H®)(w)>0VweQ

e N C Vi, for every N € N.

This strategy is a measurable selection of a set valued process H, that we baptize Universal
Arbitrage Aggregator since for any P, which is not absolutely continuous with respect to M,
an arbitrage opportunity H” (in the classical sense) can be found among the values of H. All
the inefficiencies of the market are captured by the process H® but, in general, it fails to be F-
predictable. To recover predictability we need to enlarge the natural filtration of the process S by
considering a suitable technical filtration F:= {f}}te 1 which does not affect the set of martingale
measures, i.e. any martingale measure Q € M can be uniquely extended to a martingale measure
@ on the enlarged filtration.

This allows us to prove, in Section 3.6, the main result of the Chapter:

THEOREM 1.2. Let (Q,]-:T,ﬁ) be the enlarged filtered space as in Section 3.5 and let H be the set

of d-dimensional discrete time F—predictable stochastic process. Then

No Arbitrage de la classe S in He M # & and N does not contain sets of S

In other words, properties of the family S have a dual counterpart in terms of polar sets of the
pricing functional.

In Section 3.6 we further provide our version of the Fundamental Theorem of Asset Pricing: the
equivalence between absence of Arbitrage de la classe S in H and the existence of martingale
measures @@ € M with the property that Q(C) > 0 for all C € S.

Model Independent Arbitrage. When S := {Q} then the Arbitrage de la classe S corre-
sponds to the notion of a Model Independent Arbitrage. As € never belongs to the class of polar

sets NV, from Theorem 1.2 we directly obtain the following result.

THEOREM 1.3.
No Model Independent Arbitrage in He—= M #* .

An analogous result has been obtained in [AB13] when considering a single risky asset S as the
canonical process on the path space 2 = R?_, a possibly uncountable collection of options (¢4 )aca
whose prices are known at time 0, and when trading is possible through semi-static strategies (see
also [Hol11] for a detailed discussion). Assuming the existence of an option ¢ with a specific
payoff, equivalence in Theorem 1.3 is achieved in the original measurable space (2, F,F,H). In

our setup, although we are free to choose a (d + k)-dimensional process S for modeling a finite
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number of options (k) on possibly different underlying (d), the class H of admissible strategies are
dynamic in every S° for i = 1,...d + k. In order to incorporate the case of semi-static strategies
we would need to consider restrictions on H and for this reason the two results are not directly

comparable.

Arbitrage with respect to open sets. In the topological context, in order to obtain full
support martingale measures, the suitable choice for S is the class of open sets. This selection de-

termines the notion of Arbitrage with respect to open sets, which we shorten as “Open Arbitrage”:

e Open Arbitrage is an admissible trading strategy H such that Vo(H) = 0,
Vr(H)(w) > 0 Vw € Q and V;; contains an open set.

This concept admits the following dual reformulation (see Section 5, Proposition 1.64). An Open

Arbitrage consists in a trading strategy H € H and a non empty weakly open set & C P such that
for all P €U, Vo(H) > 0 P-a.s. and P(V};) > 0. (4)

The robust feature of an open arbitrage is therefore evident from this dual formulation, as a certain
strategy H satisfies (4) if it represents an arbitrage in the classical sense for a whole open set of
probabilities. In addition, if H is such strategy and we disregard any finite subset of probabilities
then H remains an Open Arbitrage. Moreover every weakly open subset of U contains a full
support probability P (see Lemma 1.57) under which H is a P-Arbitrage in the classical sense.
Full support martingale measures can be efficiently used whenever we face model mis-specification,
since they have a well spread support that captures the features of the sample space of events
without neglecting significantly large parts. In Dolinski and Soner [DS14] the equivalence of a
local version of NA and the existence of full support martingale measures has been proven (see
Section 2.5, [DS14]) in a continuous time market determined by one risky asset with proportional

transaction costs.

Feasibility and approximating measures. In Section 4 we answer the question: which are
the markets that are feasible in the sense that the properties of the market are nice for “most”
probabilistic models? Clearly this problem depends on the choice of the feasibility criterion, but to
this aim we do not need to exhibit a priori a subset of probabilities. On the opposite, given a market
(described without reference probability), the induced set of No Arbitrage models (probabilities)
for that market will determine if the market itself is feasible or not. What is needed here is a good
notion of “most” probabilistic models.

More precisely given the price process S defined on (€, F), we introduce the set Py of probability

measures that exhibit No Arbitrage in the classical sense:
Po = {P € P | No Arbitrage with respect to P} . (5)

When

Py =P
with respect to some topology 7 the market is feasible in the sense that any “bad” reference
probability can be approximated by No Arbitrage probability models. We show in Proposition
1.58 that this property is equivalent to the existence of a full support martingale measure if we

choose 7 as the weak™ topology.
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One other contribution of this thesis, proven in Section 4, is the following characterization of
feasible markets and absence of Open Arbitrage in terms of existence of full support martingale

measures. We denote with P C P the set of full support probability measures.

THEOREM 1.4. The following are equivalent:

(1) The market is feasible, i.e Pioa(p’cb) =P;

(2) There exists P € Py s.t. No Arbitrage w.r.to P (in the classical sense) holds true;
(3) MAP, #2;
(4) No Open Arbitrage holds with respect to admissible strategies H.

Riedel [Ril5] already pointed out the relevance of the concept of full support martingale measures
in a probability-free set up. Indeed in a one period market model and under the assumption that
the price process is continuous with respect to the state variable, he showed that the absence of a
one point arbitrage (non-negative payoff, with strict positivity in at least one point) is equivalent
to the existence of a full support martingale measure. As shown in Section 5.1, this equivalence
is no longer true in a multiperiod model (or in a single period model with non trivial initial o-
algebra), even for price processes continuous in w. In this Chapter we consider a multi-assets
multi-period model without w-continuity assumptions on the price processes and we develop the
concept of open arbitrage, as well as its dual reformulation, that allows for the equivalence stated
in the above theorem.

Finally, we present a number of simple examples that point out: the differences between single
period and multi-period models (examples 1.13, 1.66, 1.67); the geometric approach to absence of
arbitrage and existence of martingale measures (Section 3.1); the need in the multi-period setting
of the disintegration of the atoms (example 1.26); the need of the one period anticipation of some

polar sets (example 1.32).

1. Financial Markets

We will assume that (§2,d) is a Polish space and F = B(2) is the Borel o-algebra induced by the
metric d. The requirement that €2 is Polish is used in Section 3.3 to guarantee the existence of
a proper regular conditional probability, see Theorem 1.28. We fix a finite time horizon 7' > 1,
a finite set of time indices I := {0,...,T} and we set: I; := {1,...,T}. Let F := {F;}1es be a
filtration with 7y = {@,Q} and Fr C F. We denote with £(Q, F;;R?) the set of F;-measurable
random variables X : Q — R? and with £(Q,F; R?) the set of adapted processes X = (X;)¢cs with
X € L(Q, Fy; RY).

The market consists of one non-risky asset SY = 1 for all ¢t € I, constantly equal to 1, and d > 1
risky assets S7 = (Sg Jter » j = 1,...,d, that are real-valued adapted stochastic processes. Let
S =[S, ..., 8% € £L(Q,F;R?) be the d-dimensional vector of the (discounted) price processes.

In this Chapter we focus on arbitrage conditions, and therefore without loss of generality we
will restrict our attention to self-financing trading strategies of zero initial cost. Therefore, we
may assume that a trading strategy H = (Hy)iez, is an R%-valued predictable stochastic process:
H = [H',... HY, with H; € L£(Q,F;_1;R?%), and we denote with #H the class of all trading
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strategies. The (discounted) value process V(H) = (Vi(H))es is defined by:
t
Vo(H):=0, Vi(H):=>» H;-(Si—Si-1), t>1.

i=1
A (discrete time) financial market is therefore assigned, without any reference probability measure,
by the quadruple [(2,d); (B(R2),F); S; H] satisfying the previous conditions.

NoTAaTION 1.5. For F-measurable random variables X and Y, we write X > Y (resp. X >,
X=Y) if X(w)>Y(w) for allw € Q (resp. X(w) > Y (w), X(w) =Y (w) for allw € Q).

1.1. Probability and martingale measures. Let P := P(2) be the set of all probabilities
on (,F) and Cy := Cp(Q2) the space of continuous and bounded functions on Q. Except when
explicitly stated, we endow P with the weak* topology o(P,Cy), so that (P,c(P,Cy)) is a Polish
space (see [ABO06] Chapter 15 for further details). The convergence of P, to P in the topology
o (P, Cy) will be denoted by P, =+ P and the o (P, Cy) closure of a set @ C P will be denoted with

Q.
We define the support of an element P € P as

supp(P) = ({C € ¢ | P(C) = 1}
where C are the closed sets in (£2,d). Under our assumptions the support is given by
supp(P) = {w € Q| P(B:(w)) > 0 for all £ > 0},
where B.(w) is the open ball with radius € centered in w.
DEFINITION 1.6. We say that P € P has full support if supp(P) = Q and we denote with
Py i={PeP | supp(P) = Q)
the set of all probability measures having full support.

Observe that P € P, if and only if P(A) > 0 for every open set A. Full support measures are
therefore important, from a topological point of view, since they assign positive probability to all

open sets.

DEFINITION 1.7. The set of F-martingale measures is
M(F)={Q € P| S is a (Q,F)-martingale} . (6)
and we set: M := M(IF), when the filtration is not ambiguous, and
My =MnPs,.
DEFINITION 1.8. Let P € P and G C F be a sub o-algebra of F. The generalized conditional
expectation of a non negative X € L(Q, F,R) is defined by:
EplX |G):= lim_EplX An| Gl

and for X € L(Q,F,R) we set Ep|X | G] := Ep|[X* | G| — Ep[X~ | G], where we adopt the
convention 0o — oo = —oo. All basic properties of the conditional expectation still hold true (see
for example [FKV09]). In particular if Q € M and H € H then Eq[H; - (S; — Si—1) | Fie1] =
H; - Eg[(St — Si—1) | Fie1] =0 Q-a.s., so that Eq[Vr(H)] =0 Q-a.s.
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2. Arbitrage de la classe S

Let H € H and recall that V;; := {w € Q| Vr(H)(w) > 0} and that Vo(H) = 0.

DEFINITION 1.9. Let P € P. A P-Classical Arbitrage is a trading strategy H € H such that:

Vr(H) >0 P—a.s., and P(V};) >0

We denote with NA(P) the absence of P-Classical Arbitrage.

Recall the definition of Arbitrage de la classe S stated in the Introduction.

DEFINITION 1.10. Some examples of Arbitrage de la classe S:

(1)

(2)
(3)

(4)

(5)

(6)

H is a 1p-Arbitrage when S = {C € F | C # @}. This is the weakest notion of arbitrage
since V;g might reduce to a single point. The 1p-Arbitrage corresponds to the definition
given in [Ril5]. This can be easily generalized to the following notion of n point Arbitrage:

H is an np-Arbitrage when
S§={C e F|C has at least n elements} ,

and might be significant for Q (at most) countable.

H is an Open Arbitrage when S = {C € B(Q) | C' open non-empty}.

H is a P'-q.s. Arbitrage when S = {C € F | P(C) > 0 for some P € P'}, for a fized
family P' C P. Notice that S = (N'(P’))¢, the complements of the polar sets of P'. Then
there are No P’'-q.s. Arbitrage if:

H € H such that Vr(H)(w) > 0Vw € Q= Vp(H) =0 P'-¢.s.

This definition is similar to the No Arbitrage condition in [BN15], the only difference
being that here we require Vp(H)(w) > 0 Yw € Q, while in the cited reference it is only
required Vp(H) > 0 P’-q.s.. Hence No P’-q.s. Arbitrage is a condition weaker than No
Arbitrage in [BN15].

H is a P-a.s. Arbitrage when S = {C € F | P(C) > 0} for a firxed P € P. As in the
previous example the No P-a.s. Arbitrage is a weaker condition than the No P-Classical
Arbitrage condition, the only difference being that here we require Vp(H)(w) > 0 Yw € Q,
while in the classical definition it is only required Vp(H) > 0 P-a.s.

H is a Model Independent Arbitrage when S = {Q}, in the spirit of [AB13, DHO7,
CO11].

H is an e-Arbitrage when § = {Ce(w) | w € Q}, where € > 0 is fized and Ce(w) is the

closed ball in (2, d) of radius € and centered in w.

Obviously, for any class S,

No 1p-Arb. = No Arb. de la classe S = No Model Ind. Arb. (7)

and these notions depend only on the properties of the financial market and are not necessarily

related to any probabilistic models.

REMARK 1.11. The No Arbitrage concepts defined above, as well as the possible generalization of

No Free Lunch de la classe S, can be considered also in more general, continuous time, financial
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market models. We choose to present our theory in the discrete time framework, as the subsequent

results in the next sections will rely crucially on the discrete time setting.

EXAMPLE 1.12. The flexibility of our approach relies on the arbitrary choice of the class S. Con-
sider Q0 = C°([0, T); R) which is a Polish space once endowed with the supremum norm ||+ ||oo. We

may consider two classes
S = { open balls in || - |oo} and S' ={ open balls in || - |1}

where ||w|1 = fOT |w(t)|dt. Notice that since the integral operator f0T| <|dt = CO([0, T);R) — R is
I |l -continuous every open ball in || - ||1 is also open in || -||oo. Hence every Arbitrage de la classe
S is also an Arbitrage de la classe S but not the converse.

For instance consider a market described by an underlying process S' and a digital option S?,
where trading is allowed only in a set of finite times {0,1,...,T —1}. Define St(w) = so for every
w € Q and S} (w) = w(t) for the underlying and S?(w) = 15(w)17(t) for the option where the set
B is given by B := {w | S}(w) € (s — ¢, 80 +¢€) Vt € [0,T]}. A long position in the option at time
T — 1 is an arbitrage de la classe S even though there does not exist any arbitrage de la classe
St

2.1. Defragmentation. When the reference probability P € P is fixed, the market ad-
mits a P-Classical Arbitrage if and only if there exists ¢ € {1,...,T} and a random vector
n € L%(Q, Fi_1, P;R?) such that n- (S; — S;_1) > 0 P-a.s. and P(n- (S; — S;_1) > 0) > 0
(see [DMW90] or [FS04]|, Proposition 5.11). In our context the existence of an Arbitrage de la
classe S, over a certain time interval [0, T], does not necessarily imply the existence of a single time
step where the arbitrage is realized on a set in S. It might happen, instead, that the agent needs to
implement a strategy over multiple time steps to achieve an arbitrage de la classe S. The following
example shows exactly a simple case in which this phenomenon occurs. Recall that £(Q2, F;R?) is

the set of R%-valued F-measurable random variables on €.

EXAMPLE 1.13. Consider a 2 periods market model composed by two risky assets S*, 5% on (R, B(R))

which are described by the following trajectories

3— 3 we A T— 7 we A
/‘ 5 w € As / 3 w € As
gl 2 — 2<: g2 . 2 — 2/‘
N 1 w € Az Ny 1 w e Az
1— 1 we€E Ay 1— 1 weE Ay

Consider Hy = (—1,4+1) and Hy = (14,044, —14,045)-

Then Hy-(S1—S0) = 414, and Hy-(S2—51) =214,. Choosing A1 = QN(0,1), Ay = (R\Q)N(0,1)
and Az = [1,+00), Ay = (—00,0] we observe that an Open Arbitrage can be obtained only by a two
step strategy, while in each step we have only 1p-Arbitrages.

In general the multi step strategy realizes the Arbitrage de la classe S at time T even though it
does not yield necessarily a positive gain at each time: 1.e. there might exist a t < T such that
{Vi(H) < 0} # @. This is the case of Example 1.32.
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In the remaining of this section AS; =[S} — S} 4,..., 8% — 8¢ |].

LEMMA 1.14. The strategy H € H is a 1p-Arbitrage if and only if there exists a time t € I1, an
a € L(Q, Fi_1;RY) and a non empty A € F; such that

a(w) - ASi(w) >0 Vw e N

a(w) - AS(w) >0 on A. (8)

PROOF. (=) Let H € H be a 1p-Arbitrage. Set
t =min{t € {1,...,T} | Va(H) > 0 with V;(H)(w) > 0 for some w € Q}.

Ift = 1, « = H; satisfies the requirements. If ¢ > 1, {V;_;(H) <0} #@or {V;_;(H) =0} =Q. In
the first case, for @ = Hyl(y:  (m)<oy we have a- AS; > 0 with strict inequality on {V;_,(H) < 0}.
In the latter case o = Hy satisfies the requirements.

(«=) Take a € L(, F;_1;R?) as by assumption and define H € H by H, = 0 for every s # t and
H; = . Hence Vp(H) = V4(H) so that Vp(H) > 0. Note that {w € Q | Vp(H)(w) > 0} = {w €
Q] - ASi(w) > 0} and the proof is complete. O

REMARK 1.15. Notice that only the implication (<) of the previous Lemma holds true for Open
Arbitrage. This means that there exists an Open Arbitrage if we can find a time t € Iy, an
a € L(Q, Fi_1;RY) and a set A € F; containing an open set such that (8) holds true. Similarly for
Arbitrage de la classe S. On the other hand the converse is false in general as shown by Example
1.15.

The following Lemma provides a full characterization of Arbitrages de la classe S by the mean of

a multi-step decomposition of the strategy.

LEMMA 1.16 (Defragmentation). The strateqy H € H is an Arbitrage de la classe S if and only if
there exists:
o a finite family {U;}icr with Uy € Fy, Uy NUs = @ for every t # s and |J,c; Uy contains
a setinS;
e a strateqy H € H such that VT(I;T) >0 on Q, and Hy - AS; >0 on Uy for any U, # @.
PROOF. (=) Let H € H be an Arbitrage de la classe S. Define B, = {V;(H) > 0} and
U =B = Hl-Asl(w)>0 Ywe U
UQZBfﬁBz = HQ'ASQ((U) >0 YweU;
Ur_1 = Bf n...N 3%72 NBr_1 = Hp_q- AST71(w) >0 VYweUr_;
Ur=B{N...NB5_,NBS_ NV{ = Hr-ASr(w) >0 VwéeUr
From the definition of {Uy,Us,...,Ur} we have that V}_; - U;TFZI U,. Set H, = H; and consider
the strategy for every 2 <t < T given by
R t—1 ¢
Hy(w) = Hi(w)lp, ,(w) where Dy = <U Us> .
s=1
By construction H € H and PAIt - ASi(w) > 0 for every w € Uy.

(<) The converse implication is trivial. O
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3. Arbitrage de la classe S and Martingale Measures

Before addressing this topic in its full generality we provide some insights into the problem and we
introduce some examples that will help to develop the intuition on the approach that we adopt.

The required technical tools will then be stated in Sections 3.2 and 3.3.

Consider the family of polar sets of M
N={ACA eF | QA)=0VQeM}.

In Nutz and Bouchard [BIN15] the notion of NA(P’) for any fixed family P’ C P is defined by:
Vr(H)> 0P —qs.= Vr(H)=0P —q.s.

where H is a predictable process which is measurable with respect to the universal completion
of F. One of the main results in [BN15] asserts that, under NA(P’), there exists a class Q' of
martingale measures which shares the same polar sets of P’. If we take P’ = P then NA(P) is
equivalent to No (universally measurable) 1p-Arbitrage, since P contains all Dirac measures. In
addition, the class of polar sets of P is empty. In Section 3.4 we will show that this same result is
true also in our setting as a consequence of Proposition 1.34. The existence of a class of martingale
measures with no polar sets implies that Yw € € there exists Q € M such that Q({w}) > 0 and
since ) is a separable space we can find a dense set D := {w,, }22 ;, with associated Q™ € M, such

that Y7, Q%Q" is a full support martingale measure (see Lemma 1.76).

PROPOSITION 1.17. We have the following implications

(1) No 1p-Arbitrage = M # (.
(2) My # 0 = No Open Arbitrage.

PRrROOF. The proof of 1. is postponed to Section 3.4.
We prove 2. by observing that for any open set O and @ € My we have Q(O) > 0. Since for any
H € H such that Vo(H) > 0 we have Q(V};) = 0, then V;; does not contain any open set. O

EXAMPLE 1.18. Note however that the existence of a full support martingale measure is compatible
with 1p-Arbitrage so that the converse implication of 1. in Proposition 1.17 does not hold. Let
(Q,F) = (RT,B(R")). Consider the market with one risky asset: So =2 and

{3 weRT\Q
Sy =
2 weQT

(9)

Then obuviously there exists a 1p-Arbitrage even though there exist full support martingale measures

(those probabilities assigning positive mass only to each rational).

As soon as we weaken No 1p-Arbitrage, by adopting any other no arbitrage conditions in Definition
1.10, there is no guarantee of the existence of martingale measures, as shown in Section 3.1. In
order to obtain the equivalence between M # & and No Model Independent Arbitrage (the weakest
among the No Arbitrage conditions de la classe §) we will enlarge the filtration, as explained in
Section 3.5.
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3.1. Examples. This section provides a variety of counterexamples to many possible conjec-
tures on the formulation of the Fundamental Theorem of Asset Pricing in the model-free framework.
A financially meaningful example is the one of two call options with the same spot price p; = po
but with strike prices K; > Ky, formulated in [DHO7], which already highlights that the equiva-
lence between absence of model independent arbitrage and existence of martingale measures is not

possible.

We consider a one period market (i.e. T'= 1) with (Q,F) = (R, B(R")) and with d = 2 risky
assets S = [S1,5?], in addition to the riskless asset S° = 1. Admissible trading strategies are

represented by vectors H = (a, 3) € R? so that
Vr(H) = aAS' + BAS?,
where AS? = Si — S¢ for i = 1,2. Let Sy = [SE, S2] = [2,2],

1+ exp(w) weRT\Q
={ 1 w=0 (10)

511—{3 weR\Q .
1+ exp(—w) weQt\ {0}

] 2 weQT ’

and F = F°. We notice the following simple facts.

(1) There are no martingale measures:
M=a.

Indeed, if we denote by M; the set of martingale measures for the it" asset we have
Mi={Q€eP | QRT\Q) =0} and VQ € M2, QRT\ Q) > 0.
(2) The final value of the strategy H = (o, 3) € R? is

a+ Bexp(w) — 1) weRT\Q
Vr(H) = —B w=20

Blexp(—w) — 1) w e QF\ {0}
Only the strategies H € R? having 8 = 0 and a > 0 satisfy Vp(H)(w) > 0 for all
w € Q. For 8 =0and a > 0, V;FI = R*™ \ Q and therefore there are No Open Ar-
bitrage and No Model Independent Arbitrage (but M = &). This fact persists
even if we impose boundedness restrictions on the process S or on the admissible strate-
gies H, as the following modification of the example shows: let Sy = [2,2] and take S} =
[2+exp(—w)]1g+\g +21g+ and S? = [1+exp(w) AN]1gi\g+ 1oy +[1+ exp(—w)]1Q+\{o}.

(3) Set HT :={H € H | Vp(H) >0 and Vy(H) = 0} so that we have J 5+ Vi = RT\Q &
Q. This shows that the condition M = @ is not equivalent to |y cq+ Vip = Q ie. it is
not true that the set of martingale measures is empty iff for every w there exists a strategy
H that gives positive wealth on w and V5(H) = 0. In order to recover the equivalence
between these two concepts (as in Proposition 1.43) we need to enlarge the filtration in
the way explained in Section 3.5.

(4) By fixing any probability P there exists a P-Classical Arbitrage, since the (probabilistic)
Fundamental Theorem of Asset Pricing holds true and M = @. Indeed:
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FIGURE 1. In examples (10) and (11), 0 does not belong to the relative interior of the convex
set generated by the points {[AS!(w), AS?(w)]}wea and hence there exists an hyperplane

which separates the points.

AS, . AS,
6 e 6
Legend: °
® RY\Q . o
x {0} 4 L) .
L]
* Q"\ {0} .
°
2 e
°
L]
L]
[ ]
i —2 0 2 iAs 2 o 2 JAS.
—2 * 2
Ex. (10) Ex. (11)

(a) If P(R*\Q) = 0, then 8 = —1 (a = 0) yield a P-Classical arbitrage, since Vi; = Q*
and P(Vj) =1
(b) If P(RT*\ Q) > 0 then 8 = 0 and o = 1 yield a P-Classical arbitrage, since Vi, =
R*\ Q and P(V};) > 0.
(5) Instead, by adopting the definition of a P-a.s. Arbitrage (Vr(H)(w) > 0 for all w € Q
and P(V};) > 0), there are two possibilities:
(a) If P(R*\ Q) = 0, No P-a.s. Arbitrage holds, since only the strategies H € R?
having 8 = 0 and o > 0 satisfies V7 (H)(w) > 0 for all w € Q and V7 = R\ Q.
(b) If P(R*\Q) > 0, then 8 = 0 and o = 1 yield a P-a.s. arbitrage, since V}; = R*\Q
and P(V}) > 0.
(6) Geometric approach: If we plot the vector [AS!, AS?] on the real plane (see Figure 1)
we see that there exists a unique separating hyperplane given by the vertical axis. As
a consequence 1p-Arbitrage can arise only by investment in the first asset (5 = 0). For
a separating hyperplane we mean an hyperplane in R? passing by the origin and such
that one of the associated half-space contains (not necessarily strictly contains) all the
image points of the random vector [AS!, AS?]. Let us now consider this other example
on (RT,B(R™T). Let Sy = [2,2], and

3 weRT\Q 7 weRT\Q
Si={2 w=0 Si=<2 w=0 (11)
1 weQt\ {0} 0 weQ*\{0}

In both examples (10) and (11) there exist separating hyperplanes i.e. a 1p-Arbitrage
can be obtained (see Figure 1). In example (10) M is empty and we find a unique separat-
ing hyperplane: this hyperplane cannot give a strict separation of the set [AS! (w), AS?(w)],eq+
even though Q% does not support any martingale measure. In example (11) M = {§,—0},
only the event {w = 0} supports a martingale measure and there exists an infinite number
of hyperplanes which strictly separates the image of both polar sets R\ Q and Q™ \ {0},

namely, those separating the convex grey region in Figure 1.
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In conclusion the previous examples show that in a model-free environment the existence of a
martingale measure can not be implied by arbitrage conditions - at least of the type considered so
far. This is an important difference between the model-free and quasi-sure analysis approach (see
for example [BN15]):

e Model free approach: we deduce the ‘richness’ of the set M of martingale measures
starting directly from the underlying market structure (2, F, S) and we analyze the class
of polar sets with respect to M.

e Quasi sure approach: the class of priors P’ C P and its polar sets are given and one for-
mulates a No-Arbitrage type condition to guarantee the existence of a class of martingale

measures which has the same polar sets as the set of priors.

An alternative definition of Arbitrage. The notion of No P-Classical Arbitrage, P(Vpr(H) <
0) = 0 implies P(Vr(H) > 0) = 0, can be rephrased as: Vy(H) = 0 and

{Vr(H) < 0} is negligible = {Vr(H) > 0} is negligible (12)
or in our setting
V5 does not contain sets in S = V;} does not contain sets in S. (13)

where Vg = {w € Q | Vp(H)(w) < 0}. In the definition (13) we are giving up the requirement
Vr(H) > 0, and so the differences with respect to the existence of arbitrage opportunities showed
in Item 5 of the example in this section disappear. However, this alternative definition of arbitrage
does not work well, as shown by the following example. Consider (Q,F) = (R*, B(RT), a one

period market with one risky asset: Sy = 2,

3 w € [1,00)
Si=¢ 2 w=[01\Q (14)
1 welo,1)NQ

Consider the strategy of buying the risky asset: H = 1. Then Vj = [0,1) N Q does not contain
an open set, V;I = [1,00) contains open sets. Therefore, there is an Open Arbitrage (in the
modified definition obtained from (13)) but there are full support martingale measures, for example
Q(0,1)NQ) = Q([1,0)) = % Notice also that by enlarging the filtration the Open Arbitrage
would persist.

A concept of no arbitrage similar to (12) was introduced by Cassese [CO8], by adopting an ideal
N of “negligible” sets - not necessarily derived from probability measures. In a continuous time
setting, he proves that the absence of such an arbitrage is equivalent to the existence of a finitely
additive “martingale measure”. Our results are not comparable with those by [CO8] since the
markets are clearly different, we do not require any structure on the family & and [C08] works
with finitely additive measures. In addition, the example (14) just discussed shows the limitation in
our setting of the definition (12) for finding martingale probability measures with the appropriate

properties.

3.2. Technical Lemmata. Recall that S = (S;).e; is an R%valued stochastic process defined
on a Polish space ) endowed with its Borel o-algebra F = B(2) and I; :={1,...,T}.
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Through the rest of the Chapter we will make use of the natural filtration F° = {F7 }ier of the

process S and for ease of notation we will not specify S, but simply write F; for F7.

For the sake of simplicity we indicate by Z := Mat(d x (T +1); R) the space of d x (T'+ 1) matrices
with real entries representing the space of all the possible trajectories of the price process. Namely
for every w € Q we have (Sp(w),S1(w),...,S7(w)) = (20,21,...,27) = z € Z. Fix s < t: for
any z € Z we indicate , the components from s to ¢ by zs.t = (2s,...,2:) and 24y = 2z;. Similarly
Se:t = (Ss, Sst1, - - -, St) represents the process from time s to ¢.
We denote with ri(K) the relative interior of a set K C R?. In this section we will make extensive
use of the geometric properties of the image in R? of the increments of the price process AS; :=
S — S¢_1 relative to a set I' C 2. The typical sets that we will consider are the level sets I' = X7,
where:

¥ 1 ={we ] Sot-1(w) =204-1} € Ft1, 2€Z, t€Tq (15)
and I' = A7 ,, the intersection of the level set 37_; with a set A € F;_1:

Af—l = {w cA | ngt_l(w) = ZO:t—l} € Fi_1. (16)
For any I' C Q define the convex cone:
(ASH(I))* := co (conv(AS(T))) U {0} C R™ (17)

If 0 € ri(AS(T"))°¢ we cannot apply the hyperplane separating theorem to the convex sets {0}
and 7i(AS;(T))°, namely, there is no H € R? that satisfies H - AS;(w) > 0 for all w € T with
strict inequality for some of them. As intuitively evident, and shown in Corollary 1.21 below,
0 € ri(AS(T"))¢ if and only if No 1p-Arbitrage are possible on the set I, since a trading strategy
on I" with a non-zero payoff always yields both positive and negative outcomes.

In this situation, for I' = ¥7_,, the level set is not suitable for the construction of a 1p-Arbitrage
opportunity and sets with this property are naturally important for the construction of a martingale
measure. We wish then to identify, for I' = £7_; satisfying 0 ¢ ri(AS:(I"))°¢, those subset of 37,
that retain this property. This result is contained in the following key Lemma 1.20.

Observe first that for a convex cone K C R? such that 0 ¢ 7i(K) we can consider the family
V={veR!||v|=1landv-y>0Vy € K} so that

K={yeR|v-y>0}={yeR v, -y >0},
veV neN

where {v,} = (Q¢NnV)\ {0}.

DEFINITION 1.19. Adopting the above notations, we will call Y7, 2%1% € V the standard sep-

arator.

LEMMA 1.20. Fizt € Iy and T' # @. If 0 ¢ ri(ASy(T))c then there exist § € {1,...,d},
HY,...,HP B', .. BP B* with H € R?, B'CT and B* =T\ (U]_, B7) such that:
(1) Bt # @ foralli=1,...5, and {w € T | AS;(w) = 0} C B* which may be empty;
(2) BPNB) =@ ifi# j;
(3) Vi < B, H' - ASi(w) > 0 for allw € B* and H* - AS;(w) >0 for allw € Uf:iBj U B*.
(4) VH € R? s.t. H-AS; >0 on B* we have H - AS; =0 on B*.
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Moreover, for z € Z, A€ Fy_1 and T = A7_, (or T =37 ;) we have B*, B* € F; and

B
H(w):=> H'lp:(w) (18)
=1

is an F;-measurable random variable that is uniquely determined when we adopt for each H' the
standard separator.
Clearly in these cases, 8, H', H, B' and B* will depend on t and z and whenever necessary they

will be denoted by By ., Hti,z7 H, ., B}, and B; ..

t,z

PROOF. Set A :=T and K° = (AS(I'))° C R? and the possibly empty set Ag := {w € A° |
ASy(w) = 0.

Step 1:: The set K% C R? is non-empty and convex and so 7i (KO) # &. From 0 ¢ ri (KO)
there exists a standard separator H' € R? such that we have: (i) H' - AS;(w) > 0 for all
we A% (ii) B :={we A° | H' - AS;(w) > 0} is non-empty.

Set Al := (A°\ B!) = {w e A" | H! - AS;(w) = 0} and let K' := (AS;(A"))¢, which is
a non-empty convex set with dim(K') <d — 1.

If 0 € ri(K") (this includes the case K' = {0}) the procedure is complete: one cannot
separate {0} from the relative interior of K. The conclusion is that 8 = 1, B* = A! =
A%\ B! which might be empty, and Ag C B*. Notice that if K' = {0} then B* = A,
which might be empty. Otherwise:

Step 2:: If 0 ¢ ri(K") we find the standard separator H? € R? such that H? - ASy(w) > 0,
for all w € A, and B? := {w € A' | H? - AS;(w) > 0} is non-empty. Denote A? :=
(AL\ B?) and let K? = (AS;(A?))* with dim(K?) <d — 2.

If 0 € ri(K?) (this includes K* = {0}) the procedure is complete and we have the
conclusions with 8 = 2 and B* = Al \ B> = A%\ (B! U B?), and Ay C B*. Notice that
if K = {0} then B* = Ag. Otherwise:

Step d-1: If0 ¢ ri(K92) ... Set BI~L £ @, Ad-1 = (A4-2\Bd-1) Kd-1 = (AS,(Ad1))ee
with dim(K?~') < 1. If 0 € ri(K?~!) the procedure is complete. Otherwise:

Step d:: We necessarily have 0 ¢ ri(K91), so that dim(K?~') =1, and the convex cone
K971 necessarily coincides with a half-line with origin in 0. We find a separator H¢ € R¢
with B4 := {w € A4l | HY. AS;(w) > 0} # @ and the set

B*:={we AT | AS;(w) =0} = {w € A | AS;(w) =0} = Ay

satisfies: B* = A971\ Be. Set A? := A9~1\ B? = B* = Ay and K¢ := (AS;(A%))e.
Then K9 = {0}.
Since dim(AS;(T)) < d we have at most d steps. In case 8 = d we have I' = A? = U;‘i=1 B'UA.
To prove the last assertion we note that for any fixed ¢ and z, B' are F;-measurable since B* =
A7 N (foS:)71((0,00)) where f: R? s R is the continuous function f(x) = H?- (z — z;_1) with
H ¢ R? fixed. t
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COROLLARY 1.21. Lett € I, z € Z, A€ Fi_1, T = A7 ;. Then 0 € ri(AS:(T"))% if and only if
there are No 1p-Arbitrage on T, i.e.:

for all H € R s.t. H(S; — z_1) >0 on T we have H(S; — 2z—1) =0 on T (19)

PROOF. Let 0 ¢ ri(AS(T))°°. Then from Lemma 1.20-3) with ¢ = 1 we obtain a 1p-Arbitrage
H'onT = U?ZlBj U B*, since B! # @. Viceversa, if 0 € ri(AS;(T))® we obtain (19) from the

argument following equation (17). O

DEFINITION 1.22. For A € Fi—1 and I' = A7 | we naturally extend the definition of B; , in Lemma
1.20 to the case of 0 € ri(AS(T"))% using

Bi.=0%0€ ri(AS(I))

with BY, = @ and B}, = A; | € Fi_1. In this case, we also extend the definition of the random
variable in (18) as Hy ,(w) = 0.

COROLLARY 1.23. Lett € Iy, z € Z, A € Fyr_y and I' = Af_; with 0 ¢ ri(ASy(T"))¢. For any
PeP st PT) >0 let

=inf{l <i < p| P(B],) > 0}.

j:
If j < oo the trading strategy H(s,w) := H’1p(w)1lgy(s) is a P-Classical Arbitrage.

PROOF. From Lemma 1.20 we obtain: HIAS;(w) > 0on B}, with P(B].) > 0; H/ AS;(w) > 0
on /" Bi,UB;, and P(Bf,) = 0for 1 <k < j. O

1=

REMARK 1.24. Let D C R? and C := (D) C R? be the convex cone generated by D. If 0 € ri(C)
then for any x € D there exist a finite number of elements x; € D such that 0 is a convex
combination of {x,x1,...,Tm} with a strictly positive coefficient of x. Indeed, fix x € D and recall

that for any convex set C C R we have
ri(C):={2€C|VzeC I>0st z—c(x—2)€C}.

As 0 € ri(C) and x € D C C we obtain —ex € C, for some € > 0, and thus: 5 x+ ﬁ(—sx) =0.
Since —ex € C' then it is a linear combination with non negative coefficients of elements of D

Tt A+ Ty 2oy @y = 0, which can be rewritten as: Az + 327" Njz; = 0, with
i € DALY N =1, A >0 and \; > 0. When the set D C R? is the set of the image
J J j=1"\ ) J 9

points of the increment of the price process [ASi(w)]wer, for a fixed time t, this observation shows

and we obtain:

that, however we choose w € I we can construct a conditional martingale measure, relatively to the
period [t — 1,t], which assigns a strictly positive weight to w and has finite support. The measure
is determined by the coefficients {\, A1,..., Am} in the equation: 0 = AAS;(w) + E;’;l AjAS (wj).
This heuristic argument is made precise in the following Corollary and it will be used also in the

proof of Proposition 1.34.
COROLLARY 1.25. Let 2, t, I'= Af_, and B}, as in Lemma 1.20.
For allU C By ,, U € F there exists Q € M(B;,) s.t. Q(U) >0

where M(B) ={Q € P | Q(B) =1 and Eg[S; | Fi—1] = Si—1 Q-a.s.}, for B € F.
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PrOOF. From Lemma 1.20-4) there are no 1p-Arbitrage restricted to I' = B} ,. Applying
Corollary 1.21 this implies that 0 € ri(AS;(B; ,))*. Take any w € U C By, . Applying Remark
1.24 to the set D := ASy(B; ) and to x := AS;(w) € D, we deduce the existence of {wi,...,wn} C
By , and non negative coefficients {\;(w1), ..., At(wy)} and A¢(w) > 0 such that:

A(w) + > Me(wy) =1 and 0= X (w)ASi(w) + D Ae(w;) ASy (w;).

j=1 j=1
Since {w1,...,wm} € B}, and w € B}, we have S;_1(w;j) = 21 and Sy _1(w) = 2;_1. Therefore:
0= A\ (@)(Si(w) = z-1) + Y Melw;)(Se(wy) = ze-1), (20)
j=1
so that Q({w}) = A¢(w) and Q({w;}) = A¢(wj), for all j, give the desired probability. O

EXAMPLE 1.26. Let (Q,F) = (RT,B(R")) and consider a single period market with d = 3 risky
asset Sy =[S}, 52,82 witht =0,1 and Sy = [2,2,2]. Let

1 weRT\Q 2 weRT\Q
Siw)=1492 weQn[l/2,+00) Siw)=q1+w® weQn(l/2,+00)
3 weQnlo,1/2) 1+w? weQnlo,1/2)

24+w? weRT\Q
S (w) =42 weQn[1/2,+00)
2 weQnlo,1/2)

Fix t =1 and z € Z with zyp = Sp. It is easy to check that in this case 5; , = 2 with Btlyz =RT\Q,
B}, =QnN[0,1/2), Bf , = QN[1/2,+00). The corresponding strategies H = [h1, ha, hs] (standard
in the sense of Lemma 1.20) are given by H/ = [0,0,1] and H?, = [1,0,0]. Note that H}, is
a lp-arbitrage with VI_S},Z = B/,. We have therefore that Bj  is a null set with respect to any
martingale measure. The strategy H7, satisfies Vp(HZ,) > 0 on (B} )¢ with VE?‘Z = B}, hence,
Bgz is also an M-polar set. This example shows the need of a multiple separation argument, as
it is not possible to find a single separating hyperplane H € R such that the image points of
B} ,UB}, (which is M-polar), through the random vector AS, are strictly contained in one of the
associated half-spaces. We have indeed that B7, is a subset of {w € Q | H} (51 — So) = 0} where
H{  is the only 1p-arbitrage in this market.

The corollaries 1.23 and 1.25 show the difference between the sets B* and B*. Restricted to the
time interval [t—1, ], a probability measure whose mass is concentrated on B* admits an equivalent
martingale measure while for those probabilities that assign positive mass to at least one B’ an

arbitrage opportunity can be constructed. We can summarize the possible situations as follows.

COROLLARY 1.27. For ' = A7_,, with A € Fi_1, and M(B) defined in Corollary 1.25 we have:
(1) Bf, = A;_, & No 1p-Arbitrage on A7_, & 0 e ri(AS(A7_y))ee.
(2) Bi, =2 <0 ¢ conv(AS(A7_))
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Legend: ASy

0B,
oB;,
o3,

0000000000

ASy
AS;

lo/e/elelo 0

FIGURE 2. Decomposition of  in Example 1.26

(3) Bi- =1 and Bf , # @ = there exists H € R, H # 0 such that B, = {w € A}_, |
H(Si(w) — zt-1) = 0} is “martingalizable” i.e. VU C By, U € F there ezists Q €
M(B; ) s.t. QU) > 0.

PrOOF. Equivalence 1. immediately follows from Corollary 1.21 and Definition 1.22. To show
2. we use the sets K’ for i = 1,..., ;. and the other notations from the proof of Lemma 1.20.
Suppose first that 0 ¢ conv(AS;(I')) which implies 0 ¢ ri(AS,(I'))* and Ay = @. From the
assumption we have 0 ¢ conv(AS,(C)) for any subset C' C I so, in particular, 0 ¢ 7i(K*) unless
K" = {0}. This implies B, =Ag=02.
Suppose now 0 € conv(AS;(T')). If 0 € ri(AS;(T'))*, by Definition 1.22 we have B;, = I which
is non empty. Suppose then 0 ¢ ri(AS,(I'))°. As 0 € conv(AS,(T")) there exists n > 1 such that:
0=27_1 Aj(Si(wj)—2e—1), with 357 A\j = 1, A; > Oand w; € I for all j. If 0 is an extremal point
thenn =1, Si(w1)—2t—1 =0and {w1} € Ay C Bf,. If n > 2 we have 0 € conv(ASi{wr, ..., wn})
so that for any H € R? that satisfies H - AS;(w;) > 0 for any i = 1,...,n we have H - AS;(w;) = 0.
Hence {wi,...,wn} C B}, by definition of B;,. We conclude by showing 3. From Lemma 1.20
items 3 and 4, if we select H = H' then {w € T' | H'(Sy(w) — 2-1) =0} =T\ B}, = B}, # @
and on B, we may apply Corollary 1.25. O

3.3. On M-polar sets. We consider for any ¢ € I the o-algebra §; := (g g .7:,5Q7 where .7:;’2
is the @Q-completion of F;. §; is the universal completion of F; with respect to M = M(F). Notice
that the introduction of this enlarged filtration needs the knowledge a priori of the whole class M
of martingale measures. Recall that any measure () € M can be uniquely extended to a measure
Q@ on the enlarged o-algebra 7 so that we can write with slight abuse of notation M(F) = M(F)
where § := {§: }ter-

We wish to show now that under any martingale measure the sets B;z (and their arbitrary unions)
introduced in Lemma 1.20 must be null-sets. To this purpose we need to recall some properties of
a proper regular conditional probability (see Theorems 1.1.6, 1.1.7 and 1.1.8 in Stroock-Varadhan
[SV06)).
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THEOREM 1.28. Let (2, F,Q) be a probability space, where Q is a Polish space, F is the Borel
o-algebra, @ € P. Let A C F be a countably generated sub o-algebra of F. Then there exists a
proper regular conditional probability, i.e. a function Q4(-,-) : (Q, F) > [0,1] such that:

a) for all w € Q, Q4(w, ) is a probability measure on F;

b) for each B € F, the function Q 4(-, B) is a version of Q(B | A)(-);

¢) IN € A with Q(N) = 0 such that Q 4(w, ):13( )forweQ\NandBeA
d) In addition, if X € L*(, F,Q) then Eg[X | Al(w) = [, X(@)Qa(w,dw) Q — a.s.

Recall that F; = F7, t € I, is countably generated.

LEMMA 1.29. Fix t € I, = {1,...,T}, A € Fi_1, Q € M and for z € Z consider the set
A7 ={we A| So.t-1(w) = z0.t—1}. Then

Ulwe 47 st Qr_,(w, U BL,) > 0}

z€Z

is a subset of an F;_1-measurable Q-null set.

Proor. If Q(A) = 0 there is nothing to show. Suppose now Q(A) > 0. In this proof we set for
the sake of simplicity X := S;, Y := Eg[X | Fi_1] = Si—1 Q-a.s. B:= B¢, and A= F,_1 = Fp ;.
Set

D; = {w € A;_, such that Q4(w, UleB;Z) > 0} .
If z € Z is such that 0 € ri(AS;(A7_))°® then UleBfwz = @ and D; = @. So we can consider
only those z € Z such that 0 ¢ ri(AS:(A47_;))°. Fix such z.

Since A = F; | is countably generated, ) admits a proper regular conditional probability Q 4.
From Theorem 1.28 d) we obtain:

:/X((I))QA(w,dd)) Q —a.s.
Q

As A7, € A, by Theorem 1.28 c) there exists a set N € A with Q(N) = 0so that Qa(w, A7 ;) =1

on A7_; \ N and therefore we have

/QX(@)QA(w,d&)) =/, X(@)Qa(w,dd) Vwe A7 ;\ N. (21)
i

Since 0 ¢ ri(AS;(I'))*® we may apply Lemma 1.20: for any i = 1,..., 3, there exists H* € R? such

that H*- (X (@) —2_1) > 0forall @ € U Bl UB;, and H'- (X (@) —2-1) > 0 for every @ € Bj ..

Now we fix w € D7 \ N C A7 ; \ N. Then the index j := min{l <4 < | Qa(w, B} ,) > 0} is well

defined and: i) H’ - (X (&) — 2;—1) > 0 on Bgz, (i) Qa(w ,B{Z) > 0iii) H’ - (X(®) — 2-1) > 0 on

Uf:jBﬁ’z UBf.; iv) Qalw, B} ) =0 for i < j. From i) and ii) we obtain

Qulw, Af_y N{H? - (X — 1) > 0}) > Qu(w, Bl ) > 0.

From iii) and iv) we obtain:

v

Q.A(wv {Hj : (X - Zt—l) > 0}) Q.A(w7 Uf:jBllf,z U B;:z)

Qalw, A7 1) — Qalw,Uic;B; ) = 1.

v
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Hence

HI. ( » X(0)Q4(w,dd) — zt_1> = " H - (X(®) — 24-1)Qa(w, di) >0

—1

and therefore, from equation (21) and from z;_; = Y (w), we have:
HI . ( A X(©0)Qa(w,d) — Y(w)) > 0.
As this holds for any w € D} \ N we obtain:
DIVNCweR| V(W) # [ X(@)Qu(w.di)} = N € Fiiy

with Q(N*) = 0. Hence, Df C N U N* := Ny with Q(Ng) = 0 and Ny not dependent on z. As

this holds for every z € Z we conclude that (J,., Df € No. O
COROLLARY 1.30. Fizt € I; and Q € M. If
Bz
B,:=J JBi.
z€Z 1=1

for Bi . given in Lemma 1.20 with T = X7 | or I' = A7_, (defined in equations (15) and (16)),

then B, is a subset of an Fy-measurable Q) null set.

PRrROOF. First we consider the case I' = ¥ ;| and Bti’z given in Lemma 1.20 with I' = ¥7_;.

As in the previous proof, we denote the o-algebra F;_; with A := F;_1. Notice that if z € Z
is such that 0 € 7i(AS(T"))° then Uf;’f Bj . = @, hence we may assume that 0 ¢ ri(AS,(T))* .
From the proof of Lemma 1.29

U picNy=NuUN*

2€Z
with Q(Ny) = 0. Notice that if w € Q\ N then, for all z € Z, either w ¢ 37_; or Q 4(w, Uf;fB;z)
0. Hence w € 37 1\ Ny implies @Q 4 (w, Uf;f Bj ) = 0. By Theorem 1.28 ¢) we have Q 4 (w, (¥7_,)¢) =
0 for all w € ¥7_; \ No.
Fix now w € 37 ; \ Ny and consider the completion ftQ 4) of F, and the unique extension on
.F?A(w") of Q4 (w, -), which we denote with Q4 (w, -) : F24“) — [0,1].
From Q4(w, (27_1)¢) = 0 we deduce that B; N (X7_;)° € .7:,9*‘(“)") and Q 4 (w, By N (37_,)¢) = 0.
From B, NY¥} , = Uf;thlZ and QA(w,Uf;’fB;Z) = 0 we deduce: B, N¥7 , € ]:tQA(w") and
Qu(w, B, N7 ;) =0. Then B, = (B, N T7_,) U (B, N (25 ,)°) € F2ACD) and Qa(w,By) = 0.
Since w € X7, \ Ny was arbitrary, we showed that Q(w,B;) = 0 for all w € £7 ; \ Ny and all
z €Z. Since ., (X7 1\ No) = Q\ Ny we have:

z€Z
B, € F24) and Q a(w, By) = 0 for all w € Q\ Ny with Q(Np) = 0. (22)

Now consider the g-algebra
j_‘-t _ ﬂ ISA(w,')
weN\ Ny
and observe that B; € .7?t. Notice that if a subset B C (Q satisfies: B C C for some C € F; with
Qa(w,C) =0 for all w € @\ Ny, then
QAC) = [ QuleC)QU) = [ Quw.C)Q() =0,

Q\No
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so that B € F. This shows that F; C F, C F2. Hence B, € F{. Let Q : F; — [0,1] be defined
by Q) = Jo Qa(w, )Q(dw). Then Q is a probability which satisfies Q(B) = Q(B) for every
B € F; and therefore is an extension on ﬁt of Q. Since Q : ]—'tQ — [0, 1] is the unique extension on
]:tQ of @ and F; C ]?t C ]-'tQ then @ is the restriction of Q on ]?t and
Q) = QB = | Qaw.BIQU) = [ Qe BIQ(d) = 0.
Q

Q\No
Suppose now A € Fy_1, I' = A7_; and set €, := UZGZ{U?:fo,Z} where Bj , is given in Lemma
1.20 with T' = A7 ;. Fix any w € A. Then EfO‘T(w) C A since A € F;_1. As a consequence
¢ C B, O

COROLLARY 1.31. Fizt € I; ={1,...,T} and for A € Fy_1 consider A7 | ={w € A | Sp4—1(w) =
ZO:t—l} 7é a.
Then for any Q € M the set \|J{A7_, | 0 ¢ conv(AS(A7_,))} is a subset of an F,_1-measurable

Q-null set and as a consequence is an M-polar set.

PROOF. From Corollary 1.27, the condition 0 ¢ conv(AS;(A7_,)) implies that Uf;fB@z =
A?_,. From Theorem 1.28 we have Q 4(w, A7_;) = 1on A7 ;\N, D} ={w € A7 |QF,_,(w, A7 ;) >
0} D A7, \ N and

(U{Af,1 10 ¢ conv(AS,(AZ 1))} \ N) clyDicNoeFi

2€Z
O

3.3.1. Backward effect in the multiperiod case. The following example shows that additional

care is required in the multi-period setting:

EXAMPLE 1.32. Let Q = {w1, we,ws,ws} and consider a single risky asset Sy with t =0,1,2.

9 w=uw
8 w e {w,wa} 6 w=uwy
So =17 Sl(w) = SQ(w) =
3 UJE{W37W4} 5 w=uws
4 w=uwy

Fix z € Z with the first two components (zo, z1) equal to (7,3).

First period: 3§ = Q and 0 € ri(conv(AS1(X§))) = (—4,1) and there exists Q1 such that
Q1(w;) >0 fori=1,2,3,4 and Sy = Eq,[S1]. If we restrict the problem to the first period only,
there exists a full support martingale measure for (Sg, S1) and there are no M-polar sets.
Second period: Y5 = {ws,ws}, 0 ¢ conv(AS2(X%)) = [1,2] and hence 3% is not supported by any
martingale measure for S, i.e. if Q € M then Q({ws,ws}) = 0.

Backward: As{ws,w4} is a Q null set for any martingale measure Q € M, then Q({wi,ws}) = 1.
This reflects into the first period by means of 0 ¢ conv(AS;({w1,w=2})) = {1} and we deduce that
also {w1,ws} is not supported by any martingale measure, implying M = &.

This example thus shows that new M-polar sets (as {ws,wq}) can arise at later times creating a
backward effect on the existence martingale measures. In order to detect these situations at time

t, we shall need to anticipate certain polar sets at posterior times.
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More formally we need to consider the following iterative procedure. Let
QT = Q

Q= \ J{¥71 |0 ¢ conv(AS(5f,))}, tel,
z€Z

where

if—l = {w e Qy | So.t—1 = ZO:t—l}» tel.

We show that the set B} _ obtained from Lemma 1.20 with I' = f)f belong to the family of polar

t,z
set of M(F):
N:={ACA eF | QA)=0V Qe M(F)}

More precisely,

LEMMA 1.33. For allt € I and z € Z consider the sets B;Z from Lemma 1.20 with I' = ifﬁl,
Let

Bo= J{uliBl} D= {10 ¢ com(asi G}

z€Z z€Z

For any Q € M, %t is a subset of a Fi-measurable Q-null set and ®¢_1 is a subset of an Fi_1-

measurable Q-null set.

PRrROOF. We prove this by backward induction. For ¢ = T the assertion is true from Corollary
1.30 and Corollary 1.31. Suppose now the claim holds true for any £k + 1 < ¢t < T. From the
inductive hypothesis there exists IV, kQ € Fi such that ©; C N, kQ with Q(N, ,? ) = 0. Introduce the

auxiliary Fg-measurable random variable
X2 = Sio1lye + Siliye). (23)

and notice that Eg[XZ | Fr_1] = Sp_1 Q-as. From AXZ := X2 — 5, ; = 0 on NZ and
Q\ NkQ C O\ Dy, we can deduce that
0 ¢ ri(ASK(E7_1))* = 0 & ri(AX (S7_1))* (24)

which implies B, C ‘Bk(X,?) UN, kQ where we denote B k(XkQ) the set obtained from Corollary 1.30
with I' = ¥7_; and X,? which replaces S. According to Corollary 1.30 we find MkQ € Fi with
Q(M,?) =0 so that By, C ‘Bk(X,?) U N,? C M,? U N,?. Since @) is arbitrary we have the thesis.
We now show the second assertion.

For every Q € M and g = (¢,...,¢) € R with € > 0 we can define
S]? = (Sk-1 +§)1N§UM§ + Skl(N,?UMA?)C (25)
and EQ[S’E2 | Fr—1] = Sk—1. With AS,&2 = S,? — SL_1 we claim

D1 € | J{Z5 1 10 ¢ conv(ASZ (57 1))} (26)

2€Z

Indeed let z € Z such that X7 _; C ®_; and observe that

0 ¢ conv(ASK(Z:_ 1)) < 0 ¢ conv(ASK(ZE_, \ Dr)). (27)
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Since 7, \ NZ C %2, \ D, C By C NZ UM, then

Po= (ZENN2UEI\ND) S NPuMP
c Uz 10¢ cono(ASE(Si)}
z€Z

for any ¥7_; € ©j_1. Hence the claim since |J {X7_, |0 ¢ conv(ASg(Ez_l))} is a subset of an
Fi_1-measurable @Q-null set. O

3.4. On the maximal M-polar set and the support of martingale measures. The
sets introduced in Sections 3.2 and 3.3.1 provide a geometric decomposition of €2 in two parts,
Q = Q, U Q¢ specified in Proposition 1.34 below. The set €2, contains those events w supported
by martingale measures, namely, for any of those events it is possible to construct a martingale
measure (even with finite support) that assign positive probability to w. Observe that such a

decompostion is induced by S and it is determined prior to arbitrage considerations.

PROPOSITION 1.34. Let {Q;}ier as defined in Section 3.5 and, for any z € Z, let py . and By, be
the index B and the set B* from Lemma 1.20 with I' = iffl, Define

T
Q, = ﬂ (U Bf)z> .
t=1 \z€Z
We have the following
M#AD = QA #D <= MNPy #2,
where
Py :={P e P | supp(P) is finite}

is the set of probability measures whose support is a finite number of w € Q2.
If M # @ then for any w. € Q. there exists Q € M such that Q({w.}) > 0, so that QS is the

maximal M-polar set, i.e. QS is an M-polar set and

VN € N we have N C Q¢. (28)
PROOF. Observe first that:
T
Q=%
t=1

From Lemma 1.33, %t is an M-polar set for any ¢t € I;, which implies Q¢ is an M-polar set.
Suppose now that €2, = @ so that Q = Uthl %t is a polar set. We can conclude that M = &.

Suppose now that Q, # @. We show that for every w, € €, there exists a Q € M such that
Q({ws+}) > 0. Observe now that for any ¢ € I and for any w € Q., 0 € ri(ASy(B; ,))* with
z = So.r(w). As we did in Corollary 1.25, we apply Remark 1.24 and conclude that there exists a

finite number of elements of B} ,, named C}(w) := {w,w1,...,wm} € B}, such that
Si—1(w) = M(w)Se(w) + > Ae(w;)Se(w;) (29)
j=1

where A (w) >0 and Ay(w) + 3770 M(wj) = 1.
Fix now w, € Q.. We iteratively build a set Q? which is suitable for being the finite support of a

discrete martingale measure (and contains wy ).
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Start with Q% = C;(w,) which satisfies (29) for ¢ = 1. For any t > 1, given Q;‘l, define Qf :=

{Ci(w) |w € Qtf_l}. Once Q? is settled, it is easy to construct a martingale measure via (29):

QU{w}) = H A(w) VweQF
Since, by construction, A¢(w,) > 0 for any t € I, we have Q({ws}) >0 and Q@ € M NPy .

To show (28) just observe from the previous line that Q. is not M-polar, while Q¢ = U?:l B, is
M-polar thanks to Lemma 1.33. O

PROOF OF PROPOSITION 1.17. The absence of 1p-Arbitrages readly implies that Q, = Q (see
Corollary 1.27). Take a dense subset {wy, }nen of : from Proposition 1.34 for any w,, there exists
a martingale measure Q" € M such that Q"({w,}) > 0. From Lemma 1.76 in the Appendix
Q= 2, ¢ € M, moreover Q({wn}) > 0Vn € N. Since {w,, }nen is dense, @ is a full support

martingale measure. O

3.5. Enlarged Filtration and Universal Arbitrage Aggregator. In Sections 3.2 and 3.3
we solve the problem of characterizing the M-polar sets of a certain market model on a fixed time
interval [t —1,¢] for t € Iy = {1,...,T}. In particular, if we look at the level sets 37 ; of the price
process (S¢)ier, we can identify the component of these sets that must be polar (Corollary 1.30)
which coincides with the whole level set when 0 ¢ conv(AS;(X7_,)) (Corollary 1.31). Further care
is required in the multiperiod case due to the backward effects (see Section 3.3.1), but nevertheless

a full characterization of M-polar sets is obtained in Section 3.4 .

In this section we build a predictable strategy that embrace all the inefficiencies of the market.
Unfortunately, even on a single time-step, the polar set given by Corollary 1.30 belongs, in general,
to §: (the universal M-completion), hence the trading strategies suggested by equation (18) in
Lemma 1.20 fail to be predictable. This reflects into the necessity of enlargement of the original
filtration by anticipating some one step-head information. Under this filtration enlargement, which
depends only on the underlying structure of the market, the set of martingale measures will not

change (see Lemma 1.41).

DEFINITION 1.35. We call Universal Arbitrage Aggregator the strategy

H, . 5rsz
- 0 U

0 on zgl\UBtZBl
fort eI, = {1,...,T}, where z € Z satisfies zo..—1 = So.t—1(w) and Hy ., B} = B, comes from
(18) and Lemma 1.20 with T = ¥7_,
This strategy is predictable with respect to the enlarged filtration F = {ﬁt}te[ given by

(30)

Fi : =FNVo(H,.. . Hy,), te{0,...,.T -1} (31)
Fr : =FpVo(H!,... HY). (32)

REMARK 1.36. The strategy H® in equation (30) satisfies Vr(H®) > 0 and

VE. = U %t- (33)
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Indeed, from Lemma 1.20 Hy .- AS, > 0 on Uf;f Bj ., so that UtT:1 B, C Viie. On the other hand,
Vite C{H? #0 for some t} C U;l By.
Fort <T we therefore conclude that .7?,5 CFV Uiill N, C F:, where
, VCZ
Ny:=< A= U U B; , | for some - U Dy,
b TG E L )
while fort =T, Fr CFrV Ustle CFr.
For any Q € M and t € I, any element of Ny is a subset of a Fi-measurable Q-null set .

From now on we will assume that the class of admissible trading strategies H is given by all F
predictable processes. We can rewrite the definition of Arbitrage de la classe S using strategies
adapted to F. Namely, an Arbitrage de la classe S with respect to H is an ﬁ—predictable processes
H = [HY, ..., H% such that Vp(H) > 0 and {Vz(H) > 0} contains a set in S.

REMARK 1.37. No Arbitrage de la classe S with respect to H implies No Arbitrage de la classe S
with respect to H.

REMARK 1.38. (Financial interpretation of the filtration enlargement) Fiz t € I, z € Z,
the event ¥7_; = {Sot—1 = 20:t—1} and suppose the market presents the opportunity given by
0 ¢ ri(AS(Z7_1)). Consider two probabilities P, € P, k = 1,2, for which Py(¥{_;) > 0.
Following Lemma 1.20, if ji, :=1inf{i = 1,...,8 | Px(Bj ) > 0} < oo, then the rational choice for
the strategy is H'*, as shown in Corollary 1.28. Thus it is possible that jp < oo holds for both
probabilities, so that the two agents represented by Pi and P agree that ¥7_, is a non-efficient
level set of the market, although it is possible that j1 # jo so that they might not agree on the
trading strategy H* that establish the Py-Classical Arbitrage on ¥7_,. In such case, these two
arbitrages are realized on different subsets of 37_, and generate different payoffs. Nevertheless
note that any of these agents is able to find an arbitrage opportunity among the finite number of
trading strategies {Hfz}f;f given by Lemma 1.20 (recall By, < d). The filtration enlargement
allows to embrace them all. This can be referred to the analogous discussion in [DHO7]: “A weak

arbitrage opportunity is a situation where we know there must be an arbitrage but we cannot tell,

without further information, what strategy will realize it”.

We expand on this argument more formally. Recall that Lemma 1.20 provides a partition of any

level set ifﬂ with the following property: for any w € QS there exists a unique set B;Z, identified

by i = i(w), such that w € B , with z = Sp.7(w). Define therefore, for any ¢ € I; the multifunction
H, (w) = {H e RY| H - AS,(@) > 0 for any & € U Bl U B;Z} (34)

if w e Q¢ and Hy(w) = {0} otherwise.

Observe that for any ¢ € Iy, if wy,ws satisfy Sp.;—1(w1) = So.t—1(w2) and i(w1) = i(ws) they belong

to the same Bé,z

)

¢~ and therefore

and H;(w;) = Hy(w2). In other words H; is constant on any B

for any open set V C R% we have

Bu-
fweQHwnV o= B, |H(B.)NV # o}

z€Z 1=1
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from which H; is measurable with respect to F;_; V Uzzl N;. Note that since H (w) € H;(w) for
any w € 2, we have that H} is a selection of H; with the same measurability. We now show how the
process H := (H;):cy, provides P-Classical Arbitrage as soon as we choose a probabilistic model
P € P which is not absolutely continuous with respect to the capacity v(A) := supge Q(A),
A € F (see Lemma 1.68 for more details on the properties of v). The case of P <« v is discussed
in Remark 1.40.

THEOREM 1.39. Let H be defined in (34). If P € P is not absolutely continuous with respect to v

then there exists an FF -predictable trading strateqgy HY which is a P-Classical Arbitrage and
HP (w) € H(w) P-a.s.
where F denote the P-completion of Fy and FP := {FF }ier.

PROOF. See Appendix 6.1. O

From Lemma 1.68 if P € P fulfills the hypothesis of Theorem 1.39 there exists an F-measurable
set F C ()¢ with P(F) > 0. Note that from Remark 1.69 such a P always exists if Q¢ #
@. Theorem 1.39 asserts therefore that for any probabilistic models which supports Q¢ an F'-
predictable arbitrage opportunity can be found among the values of the set-valued process H.
This property suggested us to baptize H as the Universal Arbitrage Aggregator and thus H® as a
(standard) selection of the Universal Arbitrage Aggregator. Note that we could have considered a
different selection of H satisfying the essential requirement (33). Since this choice does not affect

any of our results we simply take H®.

REMARK 1.40. Recall from (5) that any P € (Py)¢ admits a P-Classical Arbitrage opportunity.
We can distinguish between two different classes in (Py)°.

The first one is: Pay :={P € (Pp)¢ | P << v} or, in other words, an element P € (Py)¢ belong
to Py iff any subset of QS is P-null. Then for each probability P in this class, there exists a
probability P’ with larger support that annihilates any P-Classical Arbitrage opportunity. Recall
Ezample 1.26 where 2, = QN[1/2,+00). By choosing P = 6{%} € P we clearly have P-Classical
Arbitrages. Nevertheless by simply taking P’ = Adgiy+ (1=X)dg2y for some 0 < A < 1 this market
is arbitrage free. From a model-independent point of view these situations must not considered as
market inefficiencies since they vanish as soon as more trajectories are considered. This feature is
captured by the Universal Arbitrage Aggregator by means of the property: H® =0 on €,.

On the other hand when P € (Py)® \ Pam then P assigns a positive measure to some M-polar
F-measurable set F' € N'. Therefore, any other P’ € P with larger support will satisfy P'(F) >0
and the probabilistic model (Q, F,F, S, P') will also exhibit P’'-Classical Arbitrages. In the case
of Example 1.26 Q¢ = B! U B? where B! = R™ \ Q and B?> = QN [0,1/2). If P(Q¢) > 0 the
market exhibits a P-Classical Arbitrage, but this is still valid for any probabilistic model given by
P" with P << P'. In particular if P'(B') > 0 then H' := [0,0,1] is a P’-Classical Arbitrage,
while if P'(B') = 0 and P'(B?) > 0 then H? := [1,0,0] is the desired strategy. In this example,
A} = H' ooy + H*1gonio.1/2))-

LEMMA 1.41. M(F) S M(fF) with the following meaning
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o the restriction of any Q € M(F) to Fr belongs to M(F);
e any Q € M(F) can be uniquely extended to an element of./\/l(ﬁ)

PROOF. Let Q € M(F) and Q € P(Q) be the restriction to Fy. For any ¢t € I; and A € Fy_;
we have Eq[(Sy — Si-1)1a] = Eg[(S; — Se-1)14] = 0. Let now @ € M(F). There exists a unique
extension to Fr of @ that we call Q. For any A € F;_; with t € I, there exists A € F;_1 such that
Q(A) = Q(A) = Q(A). Hence Eg[(S; — S;-1)13] = E5[(Si — Si-1)1a] = Eq[(S; — Si—1)14] =0,
where the first equality follows from Q(A\A) = 0 and the second one from the Fr-measurability
of (St — Si-1)14. We conclude that Eg[S; | Fi—1] = Si_1, hence Q € M(F). O

REMARK 1.42. The filtration enlargement F has been introduced to guarantee the aggregation of
1p-Arbitrages on the sets B};Z obtained from Lemma 1.20 with I' = if_l. If indeed we follow
[C12] we can consider any collection of probability measures ©; := {P;_} on (Q, F) such that
P} (Bj.) =1. Observe first that

F& oo (U{B;Z |2eV,ie J(z)})

with V and J(z) arbitrary. For any P}, we have indeed that ]-'tPti’z contains any subset of (B} ,)°.
Therefore if A = U{B;Z |zeV,ie J(z)} we have 7

o ifz¢Vorig¢J(z) then A€ ]-'tPti’z trivially because A C (Bj )

o ifzeVandie€ J(z) then A€ ftPZ’z because A = B} , U A with A C (Bj ,)°
It is easy to check that ©; has the Hahn property on F; as defined in Definition 3.2, [C12], with

®y := Oy |x,. We can therefore apply Theorem 3.16 in [C12] to find an F*- measurable function
Hy such that Hy = H} , P} _-a.s. which means that Hy(w) = H} , for every w € BY .

3.6. Main Results. Our aim now is to show how the absence of arbitrage de la classe S
provides a pricing functional via the existence of a martingale measure with nice properties.
Clearly the “No 1p-Arbitrage” condition is the strongest that one can assume in this model indepen-
dent framework and we have shown in Proposition 1.17 that it automatically implies the existence
of a full support martingale measure. On the other hand we are interested in characterizing those

markets which can exhibit 1p-Arbitrages but nevertheless admits a rational system of pricing rules.

The set €2, introduced in Section 3.4 has a clear financial interpretation as it represents the set of
events for which No 1p-Arbitrage can be found. This is the content of the following Proposition.
Let (QJ-V'T, ﬁ), H as in Section 3.5 and define

HE = {H eH| Vp(H)(w) > 0Yw e Q and Vo(H) = o}.

PROPOSITION 1.43. (1) Ve =Upyens Vi = Q8
(2) M # @ if and only if Uy cq+ Vi is strictly contained in ().

Proo¥F. (2) follows from (1) and Proposition 1.34. Indeed: M # @ iff Q, # @ iff Qf & Q iff
Urnen+ Vi € Q. Now we prove (1). Given (33), we only need to show the inclusion Unen+ Vi C
Q¢ Let W € Uyeqs Vi, then there exists H € Ht and ¢ € I; such that Hy(w) - ASy(w) > 0
Vw € Q and H (@) - AS; (@) > 0. Let 2 = Sp.7(w). From Lemma 1.20 there exists i € {1,...,3: .}
such that @ € By, hence we conclude that @& € B, and therefore @ € QC. d
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PROOF OF THEOREM 1.2. We prove that
J an Arbitrage de la classe S in H < M =@ or N contains sets of S.

Notice that if H € H satisfies Vp(H)(w) > 0 Vw € Q then, if M # @, Vi € N, otherwise
0 < Eq[Vr(H)| = Vo(H) =0 for Q € M. If there exists an H-Arbitrage de la classe S then Vi
contains a set in S and therefore A/ contains a set in S. If instead M = & we already have the
thesis. For the opposite implication, we exploit the Universal Arbitrage H® € H as defined in
equation (30) satisfying Vr(H®)(w) > 0 Vw € Q and Vj;. = Ule B, = Q°. If M = & then, by
Proposition 1.34, Q¢ = Q and H* is an H-Model Independent Arbitrage and hence (from (7)) H*
is also an Arbitrage de la classe S. If M # & and N contains a set C in S then C C Q¢ = VIJ;.
from (28) and Proposition 1.43, item 1. Therefore H® is an ﬁ-Arbitrage de la classe S. O

DEFINITION 1.44. Define the following conver subset of P:
Rs:={QeP|Q(C) >0 forallC € S}. (35)

The martingale measures having the property of the class Rs will be associated to the Arbitrage

de la classe S.

ExXAMPLE 1.45. We consider the examples introduced in Definition 1.10. Suppose there are no
Model Independent Arbitrage in H. From Theorem 1.2 we obtain:
(1) 1p-Arbitrage: S = {C € F | C # @}.
e No lp-Arbitrage in H iff N = ;
o Rs =P, if Q finite or countable; otherwise Rs = .

e In the case of np-Arbitrage we have:
Rs={Q €P|Q(A) >0 for all A C Q having at least n elements}

No np-Arbitrage in H iff N does not contain elements having more than n — 1
elements.
(2) Open Arbitrage: S = {C € B(Q) | C open non-empty}.
e No Open Arbitrage in H iff N does not contain non-empty open sets;
o Rs="P+.
(3) P'-q.s. Arbitrage: S = {C € F | P(C) > 0 for some P € P'}, P CP.
e No P'-q.s. Arbitrage in H iff N may contain only P’-polar sets;
e Rs={QeP|P <«Q foral PP}
(4) P-a.s. Arbitrage: S ={C € F | P(C) >0}, P P.
e No P-a.s. Arbitrage in H iff N may contain only P-null sets;
e Rs={QeP|P<Q}.
(5) Model Independent Arbitrage: S = {Q}.
e Rs=7P.
(6) e-Arbitrage: S = {C:(w) | w € Q}, where € > 0 is fized and C(w) is the closed ball in
(Q,d) of radius € and centered in w.
e No e-Arbitrage in H iff N does not contain closed balls of radius ¢;
e Rs={Q e P|Q(C:(w)) >0 for all w € 2}.
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COROLLARY 1.46. Suppose that the class S has the property:
I{Cn},en €S 5.t. VC €S In s.t. Oy CC. (36)

Then:
No Arb. de la classe S in H < M NRs # @. (37)

PROOF. Suppose Q € M NRs # @. Then any polar set N € N does not contain sets in
S (otherwise, if C € § and C C N then Q(C) > 0 and Q(N) = 0, a contradiction). Then,
from Theorem 1.2, No Arbitrage de la classe S holds true. Conversely, suppose that No Arbitrage
de la classe S holds true so that M # & and let {C,},ec € S be the collection of sets in the
assumption. From Theorem 1.2, we obtain that N € A does not contain any set in S, and so
each set C,, is not a polar set, hence for each n there exists @,, € M such that Q,(C,,) > 0. Set
Q:=> " 3:Qn € M (see Lemma 1.76). Take any C' € S and let Cz C C. Then

~—

QC) > 5:0n(0) > o

and Q € MNTRs. O

Qn(Cx) >0

3=

COROLLARY 1.47. Let S be the class of non empty open sets. Then the condition (36) is satisfied

and therefore

No Open Arbitrage in H < M, # @. (38)

PrOOF. Consider a dense countable subset {wy }nen of Q, as Q is Polish. Consider the open
balls:

B™(wy,) = {w € Q| dw,w,) < 1}, m €N,
m

The density of {wy, }nen implies that Q = J,, .y B™(wy) for any m € N. Take any open set C' C Q.
Then there exists some 7 such that wy € C. Take m € N sufficiently big so that B (wz) C C. O

COROLLARY 1.48. Suppose that Q is finite or countable. Then the condition (36) is fulfilled and

therefore:

No Arb. de la classe S in H < MNRs # . (39)
In particular:
No 1p-Arbitrage in H <= M, # 0. (40)
No P-a.s. Arbitrage in H — 3 QeMst PKQ. (41)
No P'-q.s. Arbitrage inH <= JQeM st. P <QVP P, (42)

PRrROOF. Define Sy := {{w} | w € Q such that there exists C' € S with w € C}. Then Sy is at

most a countable set and satisfies condition (36). O

REMARK 1.49. While (40) holds also for 1p-Arbitrage in H (see Proposition 1.65)), (41) and (42)
can not be improved. Indeed, by replacing in the example (10) RT with Q* and QT with N, Q is
countable, we still have M = & but there are No P-a.s. Arbitrage in H if P(QT\N) = 0 (see
Section 3.1, item 5 (a)).
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REMARK 1.50. There are other families of sets satisfying condition (36). For example, in a topo-
logical setting, nowhere dense subset of Q (those having closure with empty interior) are often
considered “negligible” sets. Then the class of sets which are the complement of nowhere dense
sets, satisfies condition (36).

REMARK 1.51. Condition (36) is not necessary to obtain the desired equivalence (37). Consider
for example the class S defining e-Arbitrage in Example 1.45 item 6. In such a case condition
(36) fails, as soon as ) is uncountable. However, we now prove that (37) holds true, when Q = R.
We already know by the previous proof that M N Rs # & implies No Arbitrage de la classe S
in H. For the converse, from No Arbitrage de la classe S in H we know that each element in

S:=A{[r—e,r+¢]|r €R} is not a polar set. Consider the countable class
G:={lg—¢c,q+e]lqeQ} CS.

Each set G,, € G is not a polar set, hence for each n there exists Q, € M such that Q,(G,) > 0.
Set Q=30 5=Q, € M (see Lemma 1.76). The set

D:={reR|Q(r—er+c¢]) =0}

is at most countable. Indeed, any two distinct intervals J := [r —e,r+¢] and J = [r' —e, 1’ + ¢,
with v,7" € D, must be disjoint, otherwise for a rational q between r and r' we would have:
[ —¢e,q+¢e] CJTJUJ" and thus Q([q — &, q +¢€]) = 0, which is impossible by construction of Q. For
each r, € D the set [r, —e,r,, + €] € S is not a polar set, hence for each n there exists @n eM
such that @n([rn —&,rpt¢]) > 0. Set Q= > %@n e M. Thus Q = 1Q + %Q\ EMNRs is

the desired measure.

4. Feasible Markets

We extend the classical notion of arbitrage with respect to a single probability measure P € P to

a class of probabilities R C P as follows:

DEFINITION 1.52. The market admits R-Arbitrage if
o for all P € R there exists a P-Classical Arbitrage.
We denote with No R-Arbitrage the property: for some P € R, NA(P) holds true.

REMARK 1.53 (Financial interpretation of R-Arbitrage.). If a model admits an R-Arbitrage then
the agent will not be able to find a fair pricing rule, whatever model P € R he will choose. Howewver,
the presence of an R-Arbitrage only implies that for each P there erists a trading strategy HY
which is a P-Classical Arbitrage and this is a different concept respect to the existence of one
single trading strategy H that realizes an arbitrage for all P € R. In the particular case of R =P
this notion was firstly introduced in [DHO7] as “Weak Arbitrage opportunity” and further studied
in [CO11, DORI14]| and the reference therein. The No R-Arbitrage property above should not
be confused with the condition NA(R) introduced by Bouchard and Nutz [BN15] and recalled in

Section 3 as well as in Definition 1.10, item 3.

We set:
P(P)={P' €P|P' ~P}, M(P)={QeM|Q~P}
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In discrete time financial markets the Dalang-Morton-Willinger Theorem applies, so that N A(P)
ifft M (P) # @.

PROPOSITION 1.54. Suppose that R C P has the property: P € R implies P.(P) C R. Then
No R-Arbitrage iff MNR # @.
In particular
No Rs-Arbitrage iff MNRs # O,
No Pi-Arbitrage iff My # @,
No P-Arbitrage iff M # 2.
where R is defined in (35) and all arbitrage conditions here are with respect to H.

PROOF. Suppose Q@ € MNR # &. Since Q € R and NA(Q) holds true we have No R-
Arbitrage. Viceversa, suppose No R-Arbitrage holds true. Then there exists P € R for which
NA(P) holds true and therefore there exists Q@ € M.(P). The assumption P.(P) C R implies
Q € M (P):= MNP, (P) C MNR. The particular cases follows from the fact that Rs has the
property: P € Rg implies P.(P) C Rs. O

REMARK 1.55. As a result of the previous proposition, whenever (37), (38), (39) hold true each
(equivalent) condition in (37), (38), (39) is also equivalent to: No Rs-Arbitrage in H (with S :=
{open sets} for (38)).

Given the measurable space (2, F) and the price process S defined on it, in this section we in-
vestigate the properties of the set of arbitrage free (for S) probabilities on (2, F). A minimal
reasonable requirement on the financial market is the existence of at least one probability P € P
that does not allow any P-Classical Arbitrage. Recall from the Introduction the definition of the
set

Po={P e P | M.(P)+#2}.
By Proposition 1.54 and the definition of Py it is clear that:

No P-Arbitrage & M # @ < Py # O,

and each one of these conditions is equivalent to No Model Independent Arbitrage with respect to
H (Theorem 1.3). When Py # @, it is possible that only very few models (i.e. a “small” set of
probability measures - the extreme case being |Py| = 1) are arbitrage free. On the other hand, the
financial market could be very “well posed”, so that for “most” models no arbitrage is assured -
the extreme case being Py = P.

To distinguish these two possible occurrences we analyze the conditions under which the set Py is
dense in P: in this case even if there could be some particular models allowing arbitrage opportu-

nities, the financial market is well posed for most models.
DEFINITION 1.56. The market is feasible if Py = P

Recall that we are here considering the o (P, Cy)- closure.
In Proposition 1.58 we characterize feasibility with the existence of a full support martingale

measure, a condition independent of any a priori fixed probability.
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LEMMA 1.57. For all P € P,
Pe(P) =P and Py is o(P,Ch)-dense in P.

PROOF. It is well know that under the assumption that (€, d) is separable, P. # &. Let us

first show that Va € Q we have that §, € P.(P) where P € P, and 0, is the point mass probability

measure in a. Let

Ay, = {weQ : d(a,w)<;}.

This set is open in the topology induced by d and, since P has full support, 0 < P(A4,) < 1.
Define the conditional probability measure P, := P(- | Ay). For all 0 < A < 1, the measure
Py :=AP(- | AS) + (1 — A)P(- | A,,) has full support, is equivalent to P and Py converges weakly
to P(- | A,) as A ] 0. Hence: P, € m In order to show that P, — §, we prove that ¥ G open
liminf P, (G) > 0,(G). If a € G then §,(G) = 1 and P(GN A,) = P(4,) eventually so we have
that liminf P, (G) = 1 = §,(G). Otherwise if a ¢ G then d,(G) = 0 and the inequality is obvious.
Since Va € Q we have that d, € P.(P) then co({d, : a € Q}) C P.(P) and from the density of
the probability measures with finite support in P (respect to the weak topology) it follows that
P.(P) = P. The last assertion is obvious since P.(P) C P, for each P € Py. O

ProproOSITION 1.58. The following assertions are equivalent:

(1) My #0;

(2) No P, -Arbitrage;
(3) PoNPy #0;

(4) Po Py ="7P;

(5) Po="P.

PROOF. Since M, # 0 < No P,-Arbitrage by Proposition 1.54 and No P, -Arbitrage <
Po NPy # O by definition, 1),2), 3) are clearly equivalent.
Let us show that 3) = 4): Assume that Py N P4 # () and observe that if P € Py N P4 then
P.(P) € Po NPy, which implies that P.(P) C Py NP C P. From Lemma 1.57 we conclude that
4) holds.
Observe now that the implication 4) = 5) holds trivially, so we just need to show that 5) = 3).
Let P € Py. If P satisfies NA(P) there is nothing to show, otherwise by 5) there exist a sequence
of probabilities P, € Py such that P, - P and the condition NA(P,) holds ¥n € N. Define
P = ZJFOO +- P, and note that for this probability the condition NA(P*) holds true, so we just

n=1 27

need to show that P* has full support. Assume by contradiction that supp(P*) C Q. Then there
exist an open set O such that P*(O) = 0 and P(O) > 0 since P has full support. From P,(0) =0
for all n, and P, % P we obtain 0 = liminf P,(O) > P(0) > 0, a contradiction. O

REMARK 1.59. From the previous proof we observe that if the market is feasible then L_JPQD0 supp(P)
Q and no “significantly large parts” of Q0 are neglected by no arbitrage models P € Py.

PrROOF OF THEOREM 1.4. Proposition 1.58 guarantees: 1. < 2. < 3. and Corollary 1.47
assures: 3. < 4. 0
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The case of a countable space . When Q = {w,, | n € N} is countable it is possible to provide
another characterization of feasibility using the norm topology instead of the weak topology on
P. More precisely, we consider the topology induced by the total variation norm. A sequence of
probabilities P,, converges in variation to P if || P, — P|| — 0, where the variation norm of a signed

measure R is defined by:
IR = sup [R(Ai)l, (43)
(A; n)GJ:Zz_;
and (A;,...,Ay) is a finite partition of 2.
LEMMA 1.60. Let Q2 be a countable space. Then VP € P
WH-H _ 777+H.” —P.

PROOF. Since () is countable we have that

P={P:={p. el | p.>0VneN, |P| =1},

Pr={P€P | p,>0V¥neN}

with || - || the ¢! norm. Observe that in the countable case P.(P) = P, for every P € P,. So we
only need to show that for any P € P and any & > 0 there exists P’ € Py s.t. |[P— P'||; <e.
Let P € P\ Py. Then P = {p,}° € ¢! and there exists at least one index n for which p, = 0.
Let a > 0 be the constant satisfying
> 5=t

neN s.t. pn=0
There also exists one index n, say ni, for which 1 > p,,, > 0. Let p := p,, > 0.
For any positive e < p, define P' = {p,} by: p;,, =p— 5, p,, = pn for all n # n; s.t. p, > 0,
P, = 55 forall ns.t. p, =0. Then p), >0 for all n and Y~ p,, =, stpn>0 Pn =1, so that
P e Py and |P— P =e O

REMARK 1.61. In the general case, when Q) is uncountable, while it is still true that ﬁ“"l =P,

I P for any P € Py.
Take Q = [0,1] and P.(\) the set of probability measures equivalent to Lebesgue. It is easy to see

that 5o ¢ oV since ||P — 80| > P((0,1]) = 1 .

is no longer true that P.(P)

PRrROPOSITION 1.62. If 2 is countable, the following conditions are equivalent:
(1) My #0;
(2) No P, -Arbitrage;
(3) Po ﬁP+ 7é @,'
(4) P =7,

where || - || is the total variation norm on P

PRrOOF. Using Lemma 1.60 the proof is straightforward using the same techniques as in Propo-
sition 1.58. O
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5. On Open Arbitrage

In the introduction we already illustrated the interpretation and robust features of the dual for-
mulation of Open Arbitrage. In order to prove the equivalence between Open Arbitrage and (4)
consider the following definition and recall that Vj; := {w € Q| Vy(H)(w) > 0}.

DEFINITION 1.63. Let T be a topology on P and $) be a class of trading strategies. Set

there exists a mon empty T — open set U C P such that
W(rH) =< HeHn| n
VPeU Vp(H)>0 P-as. and P(V}) >0

Clearly, W(t,$)) consists of the trading strategies satisfying condition (4) with respect to the
appropriate topology and the measurability requirement. The first item in the next proposition is
the announced equivalence. The second item shows that the analogue equivalence is true also with
respect to the class H. Therefore, in Theorem 1.4 we could add to the four equivalent conditions

also the dual formulation of Open Arbitrage with respect to H.

PROPOSITION 1.64. (1) Let o := o(P,Ch) and || - || the variation norm defined in (43). Then:
H € W(| |,H) < H€®Hisalp-Arbitrage

f
H € W(o,H) < H € H is an Open Arbitrage

In addition, if H € W(o,H) then Vp(H)(w) > 0 for all w € Q.
(2) Let F = B(Q) be the Borel o-algebra and let F be a o-algebra such that F CF. Define the set

P:={P:F —[0,1 | P is a probability},

and endow P with the topology o := 0(73, Ch). The class of admissible trading strategies H is given
by all F- predictable processes. Then

HeW (@, H) < H e is an Open Arbitrage in H
In addition, if H € W(&,H) then Vir(H)(w) > 0 for all w € Q.

PROOF. We prove (1) and we postpone the proof of (2) to the Appendix.
(a) H is a 1p-Arbitrage = H € W(|| - ||,H). Let H € H be a 1p-Arbitrage. Then Vy(H)(w) >
0 Vw € Q and there exists a probability P such that P(V}"I) > ¢ > 0. From the implication
[P —Q| <e=|P(C)—-Q(O)| < ¢ for every C € F, we obtain: P(V};) >0 VP € B.(P), where
B.(P) is the ball of radius ¢ centered in P. Hence H € W(|| - ||, H).
(b)y He W(|| - ||, H) = H is a 1p-Arbitrage. If H € W (|| - ||, H) then Vp(H) > 0 P-a.s. for all
P in the open set Y. We need only to show that B := {w € Q | Vp(H)(w) < 0} is empty. By
contradiction, let w € B, take any P € U and define the probability Py := Ad,, + (1 — A\)P. Since
Vr(H) > 0 P-a.s. we must have P(w) = 0, otherwise P(B) > 0. However, Py(B) > Py(w) =X >0
for all positive A and Py will eventually belongs to U, as A | 0, which contradicts Vo (H) > 0 P-a.s.
for any P € U.
(¢c) He W(o,H) = H € W(|| - ||,H). This claim is trivial because every weakly open set is also
open in the norm topology.
(d) If H € W(o,H) then Vp(H)(w) > 0 for all w € Q. This follows from (c¢) and (b).



44 1. ARBITRAGE AND MARTINGALES

(e) H e W(o,H) = H is an Open Arbitrage. Suppose H € W(o,H), so that Vp(H)(w) > 0 Vw €
Q. We claim that (V};)¢ = {w € Q| Vy(H) = 0} is not dense in Q. This will imply the thesis as
int(V;) will then be a non empty open set on which Vo(H) > 0. Suppose by contradiction that
(VE)C = . We know by Lemma 1.77 in the Appendix that the set Q of embedded probabilities
co({0,} | w € (V)¢) is weakly dense in P and hence it intersects, in particular, the weakly open
set U in the definition of W (o, H). However, for every P € Q we have Vp(H) = 0 P-a.s. and so H
is not in W (o, H).

(f) H is an Open Arbitrage = H € W(o,H). Note first that if F is a closed subset of €2, then
P(F):={P € P | supp(P) C F}isac(P,C) closed face of P from Th. 15.19 in [ABO06]. If H

is an Open Arbitrage then V;} contains an open set and in particular G := (V;})C is a closed set

strictly contained in €. Observe then that U := (P(G))¢ is a non empty open set of probabilities
that fulfills the properties in the definition of W (o, H). O

The following proposition is an improvement of (40), as the 1p-Arbitrage is defined with respect
to H.

PROPOSITION 1.65. For Q countable: No 1p-Arbitrage in H <= My # (.

PROOF. As a consequence of Propositions 1.17 and 1.64 we only need to prove M, # () =

W(|| - |l,H) = @. From Proposition 1.62 item 4) we have M, # § — ?ﬁow = P and so for
every (norm) open set U C P there exists P € Py NU for which NA(P) holds, which implies
Wl -1, H) = 2. O

5.1. On the continuity of S with respect to w. Consider first a one period market
I ={0,1} with Sy = 5o € R? and S; a random outcome continuous in w. Then every 1p-Arbitrage
generates an Open Arbitrage (this was shown by [Ril5] and is intuitively clear). From Proposition
1.17, No 1p-Arbitrage implies M, # @ and therefore No Open Arbitrage. We then conclude that,
in this particular case, the three conditions are all equivalent and Theorem 1.4 holds without the

enlargement of the natural filtration so that we recover in particular the result stated in [Ril5].

Differently from the one period case, in the multi-period setting it is no longer true that No Open
Arbitrage and No 1p-Arbitrage (with respect to admissible strategies H) are equivalent, as shown
by the following examples. Moreover, even with S continuous in w, No Open Arbitrage is not

equivalent to M # & as long as we do not enlarge the filtration as in Section 3.5.

EXAMPLE 1.66. Consider Q = [0,1] x [0,1], F = Bjp,1] ® Bjo,1) and the canonical process given
by S1(w) = w1 and S2(w) = we. Clearly for any w = (w1,ws) such that wy € (0,1) we have that
0 € ri(AS2(XY)). On the other hands for w = (1,ws) or @ = (0,ws) we have 1p-Arbitrages since
Sa(w) < S1(w) with < for any we # 1 and So(©) > S1(©) with > for any wy # 0. Denote by
Y= {S; =1} and X° = {S; = 0} then a(w) = —1s1 + 1xo is a 1p-Arbitrage which does not
admit any open arbitrage since neither X' nor X0 are open sets, and any strateqy which is not zero

on (X1 UX%)¢ gives both positive and negative payoffs.

EXAMPLE 1.67. We show an example of a market with S continuous in w, with no Open Arbitrage

in M and My = @. Let us first introduce the following continuous functions on Q = [0, +00)
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mw—a) we€la,a+1]

mw—a) wE [a, ‘agb] €la+1,b—1]
m w a -
(W) =< —m(w-—> € [452,0] dan(w) = 7
Pap(@) (W=b) wels52 8 o) —m(w—b) web—1,0
0 otherwise .
0 otherwise

with a,b,m € R. Define the continuous (in w) stochastic process (S¢)i=0.1.2.3

IR

So(w) = %
Si(w) = ¢[10,3] (w) + ¢[13,6] (w) + i <P[12k,2k+2] (w)
k=3
Sw) = 0h @)+ 0h @)+ D Fmesn )
k=3
S3(w) = W)+ wéﬁ] (W) + ¢l (@) + i @?gkk+1_%,2k+1+%](w)
k=4

It is easy to check that given z € Z such that 202 = [5,1,2], we have 33 = {2k + 1};>3 and

H := 1x: is the only 1p-Arbitrage opportunity in the market. One can also check that V}'} =33,

as a consequence, H is not an Open Arbitrage and

QU{2k + }xzs) = 0 for any Q € M (44)

Consider now 2 € Z with Zp.5 = [%, 1, %] and the corresponding level set 5. It is easy to check that
Y =[1,2]U[4,5] and AS; <0 on X (45)

Observe now that zo.1 = Zp.1 and that 37 = [1,2] U [4,5] U {2k + 1}i>3. We therefore have

SQ(W) = {

From S1(w) =1 on ¥%, (44) and (45), any martingale measure must satisfy Q([1,2] U [4,5]) = 0.

In other words there exist polar sets with non-empty interior which implies M = &.

w E {Qk + 1}k23

for w e X7
€ [1,2]U[4,5]

Nl DN

6. Appendix

6.1. proof of Theorem 1.39.

LeEMMA 1.68 (Lebesgue decomposition of P). Let v := supgepq Q. For any P € P there erists a
set F' € F such that F C Q¢, and the measures P.(-) := P(-\ F) and Ps(-) := P(- N F) satisfy

P.<v, P, Lv and P=P. + P, (46)

ProOF. We wish to apply Theorem 4.1 in [LYLO7] to u = P € P and v = supgep Q- It is
easy to check that: 1) u and v are monotone [0, 1]-valued set functions on F satisfying pu(2) =0
and v(@) = 0; 2) P is exhaustive, i.e. if {A,}nen is a disjoint sequence then P(A,,) — 0 (indeed,
1 > P(UyA,) = >, P(An) > 0 = P(A4,) — 0; 3) v is weakly null additive: if A,B € F
with v(A) = v(B) = 0 then v(AU B) = 0 (indeed, if v(A) = v(B) = 0 then for any Q € M,
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Q(A) = Q(B) = 0 which implies Q(AU B) =0 and v(AU B) = 0); 4) v is continuous from below.
Indeed if A,, /A then Q(A4,) T Q(A4), Q(A) = sup,, Q(A,) and

lim v(A,) =supv(4,) =sup sup Q(A,) = sup supQ(A4,) =v(A).

n—roo n n QeM QEM n
Hence p and v satisfy all the assumptions of Theorem 4.1 in [LYLO07] and hence we obtain the
existence of F' € F such that v(F) = 0 and the decomposition in (46) holds true. From Proposition
1.34, VA € F such that A C Q, we have v(A) > 0. Therefore, FF C Q¢ and this concludes the
proof. O

REMARK 1.69. Observe that if QS # @ the set of probability measures with non trivial singular

part Ps is non-empty. Simply take, for instance, any convex combination of {6, | w € Q5}.

Preliminary considerations. We want to consider now the probabilistic model (2, {F }1e1, S, P)

and we need therefore to pass from w-wise considerations to P-a.s considerations. For this reason
we first need to construct an auxiliary process S{ with the property S = S; P-a.s for any t € I
in the same spirit of Lemma 1.33.
Let Pas,. () : © x B(R?) + [0,1] be the conditional distribution of ASy and denote Y ag, its
random support. Define as in Rokhlin [Ro08] the set Aas, = {0 ¢ ri(conv¥ag,)}. It may
happen that P(Aags,) = 0. In this case B and Dp_; as in Lemma 1.33 are subset of P-null sets
(respectively in Fr and Fr_1). Construct iteratively X and S/ as in (23) and (25). Denote
AXF = XFP — 5,1 and let

= min{temP(AAX;) >0}. (47)

Observe that 7 is well defined since, from Lemma 1.33, if P(Apxr) = 0 for any ¢t > 1 we have
that U,cp, B, = QF is a subset of a P-null set (cfr (24)). This is a contradiction since P is not
absolutely continuous with respect to v, henceforth the set F' from Lemma 46 satisfies F' C ¢
and P(F) > 0. From now on we still denote by {S;}+cr the P-a.s. version of the process given by
{Selecr + X 1inr bier

REMARK 1.70. For any t € I denote P,_1(-,-) : (8, F) > [0, 1] the conditional probability of P on
Fi—1. Recall from Theorem 1.28 c] that there exists Ny € Fr—1 with P(Ny) = 0 such that for any
w € Q\ Ny we have Py_1 (w, Etzﬁwl)) = 1 where z(w) = Sp.r(w).

Construction of a P-arbitrage from H. Recall that 7 is defined in 47 and denote A, := Aas. .
For any w € 2 the level set ¥2_; can be decomposed as ¥2_; = Uf;‘f B, UB;j . Define for any
z€Z

jo=inf{je{l,....8..} | Plw,B.,) >0Vw e XZ_;}

and recall that P(-, BJ ) is constant on X2 ; (Theorem 1.28 b]). Define Ny :=J Ul 'BL,
where Z; := {z € Z | j, < oo}. Ny is a P-null set since for any w € N{ we have P(w, Np) =
P(w, ng:IlBi,Z) =0 hence P(Ny) = P(N; N No) + P(Nf N Ny) =0 (see also Lemma 1.73 below).
Recall that P(-) and P(w,-) denote the completion of P(-) and P(w,-) respectively.

2€EZy
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Denote N := Ny U N,. We are now able to define the following multifunction ¥ : Q — 2R* with
values in the power set of R¢.
AS, (zz(“f n NC) we N°

F (48)
%) otherwise

U(w) =

In Lemma 1.71 we show that ¥ is ¥ ;-measurable. We apply now an argument similar to [Ro08].
Denote S¢ the unitary closed ball in R?, lin(x) the linear space generated by x and x° the polar

cone of x. By preservation of measurability (see Proposition 1.75) the (closed-valued) multifunction
w — Go(w) = lin(¥(w)) N (—cone ¥(w))° NSY

is also FF j-measurable and Go(w) # @ iff w € A N N¢, hence A, = {0 ¢ ri(convYagr)} is
FFP |-measurable. Note that we already have that Go(w) C H, (w) for P-a.e. w € Q. Indeed fix
w ¢ N and consider the level set Ei(fl) and its decomposition as in Lemma 1.20. By construction
of Gy we have that any g € Go(w) # @ satisfies g - AS,(w) > 0 for any w € UZ-B;’J-ZZBi7Z U B; , and
thus g € H(w).

Nevertheless, the random set G(w) contains those g € S¢ such that g- AS,(w) = 0. Thus, we will
not extract a measurable selection from Gy but we will rather consider for any n € N the following

closed-valued multifunction

w Gp(w) == 1lin(¥(w)) N {v eR?| (v,s) > Vs € U(w) \ {0}} NS¢, n>1

S|

and seek for a measurable selection of G := U2 ,G,,. From Lemma 1.74 all the random sets G,, are

FP | -measurable and therefore the same is true for G. Now, for any n > 0, let H,, a measurable
selection of G,, on {G,, # @} which always exists for a (measurable) closed-valued multifunction
with H,(w) = 0 if G,,(w) = @. Define therefore

k
Hy, = Z H, and By:=Vj, (49)
n=0

By construction By is an increasing sequence of sets converging to U,BJ= which is therefore

T,2

measurable and it satisfies
PUBE) = [ P BL)aPW) > [ PBL)PW) >0
Q\N AN\N

which follows from the definition of conditional probability, P(A;) > 0 and P(w,Biz,) > 0 for
every w € A; \ N. We can therefore conclude that there exists m > 0 such that P(B,,) > 0 and
since obviously H,,AS, > 0 we have that H,, is a P-arbitrage. The normalized random variable
HY := H,,(w)/||Hm(w)|| is a measurable selector of the multifunction Gy since it satisfies HY (w) €
U™, Gp(w) € G(w) C H,(w) P-a.s. and thus the desired strategy is given by HY = HP1,(s).

LEMMA 1.71. The multifunction ¥ defined in (48) is FL_,-measurable.

PROOF. Recall that by definition the multifunction ¥ is measurable iff for any open set V C R?
we have {w | ¥(w) NV # @} is a measurable set. Observe that

V) = {w | V() NV # 2} =871 [S,—1 (ASSH (V)N N®)| N N°
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P

Let us show that the complement of this set is F;_;-measurable from which the thesis will follow.

p

Observe that for any function f and for any set A we have (f~1(A))¢ = f~1(A°) so that

(@) = 5

T—1

(S (AST V) NN U N
= S [Sro1 ((ASSH(V)UN)UN
= S [Sro1 (ASSH(VE)UN)JUN

Note now that A; := AS=1(V¢)U N is an analytic set since it is union of a Borel set and a P-null
set. The set By := S;_1(A4;) is an analytic subset of R? since S is a Borel function and image
of an analytic set through a Borel measurable function is analytic. Finally Ay := S=' (By) is
an analytic subset of € since pre-image of an analytic set through a Borel measurable function is
analytic. Since P-completion of F contains any analytic set, As U N is also analytic and belongs
to FL ;.

REMARK 1.72. For sure Ay UN is analytic and belongs to F©'. The heuristic for Ao UN belonging
to FE | should be that this set is union of atoms of FX ;. More formally, since By is analytic in
R? for any measure pi there exists F, G such that By = F UG with F a Borel set and G a subset of
w-null measure (because analytic sets are in the completion of B respect to any measure ). Taking
w as the distribution of S,y under P we have Ay = S~ (F)U S (G). Since S=*,(F) € Fr_4
and S7,(G) is a subset of a Fy_i-measurable P-null set, we have Ay € FE | and hence also
Ay UN.

g

LEMMA 1.73. Let (2, F,P) a probability space and G a sub o-algebra of F. Let Pg(w,-) the
conditional probability of P on G. Then

P(A) = / Py(w, A)dP(w) A FF (50)
Q\N(A)
where Pg(w,-) is the completion of Pg(w,-) and N(A) € G is a P-null set which depends on A.

PROOF. It is easy to see that every set in F¥ is union of a set F € F and a subset of a
P-null set. For any F € F, P(F) = P(F) and Pg(w,F) = Pg(w, F) so equality (50) is obvious
from the definition of conditional probability (with N(F') = &). Let A be a subset of a P-null set
Ay. 0= P(Ay) = [, Pg(w, A;)dP(w) which means that Pg(w, A1) = 0 P-a.s. Thus, we also have
Pg(w, A) = 0 P-a.s. and by taking N(A4) = {w € Q : Pg(w, A1) > 0} € G equality (50) follows. [

Measurable selection results.

LEMMA 1.74. Let (2, A) a measurable space and ¥ : Q — 2% an A-measurable multifunction. Let
e >0 then
U iwe {veRY | (v,s) > Vse T(w))\{0}}

is an A-measurable multifunction.

PROOF. Observe first that for v € RY
(v,8) >e VseW(w)\{0} & (v,s)>e VseU(w)){0} 651)
& (v,8) >e Vse Dw)\ {0}
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where D(w) is a dense subset of U(w). This is obvious by continuity of the scalar product. With
no loss of generality we can then consider ¥ closed valued and we denote by 1, its Castaing
representation (see Theorem 14.5 in [RW98] for details). For any n € N consider the following

closed-valued multifunction:

{veR| (v,¢,(w)) >} ifwedom ¥, ¢, (w)#0
Ap(w) =< R4 if w e dom ¥, ¥, (w) =0
1%} otherwise

We claim that A,, is measurable Vn € N from which the map w + (1, .y An(w) is also measurable
(cfr Proposition 1.75). From (51) we thus conclude that ¢ is measurable.

We are only left to show the claim. To this end observe that A, (w) has non-empty interior on
{A,, # @}. Therefore for any open set V C R% we have

{weQ| A (w)NV £} ={weQ|int(A,(w))NV # T},
Note now that
{weQ nt(An(w) NV # 2} =, (T, (I (V) N ()7 (e, 00))) Uy, (0)

which is measurable (when 1, is measurable) from the continuity of (-,-) and from the open

mapping property of the projections II,IL, : R? x R% — R<. U

PROPOSITION 1.75. [Proposition 14.2-11-12 [RW98|] Consider a certain family of A-measurable
set-valued functions. The following operations preserve A-measurability: countable unions, count-
able intersections (if the functions are closed-valued), finite linear combination, convex/linear/affine

hull, generated cone, polar set, closure.
6.2. Complementary results. Recall that we are assuming that €2 is a Polish space.
LEMMA 1.76. Let Q; € M for any i € N. Then
1
Q=) 5QieM
i€N
PrOOF. We first observe that Q € P hence we just need to show that is a martingale measure.

Consider the measures Qy := Zle %Qi, which are not probabilities, and note that for each k we

have: [, 13AS;dQr = 0 if B € F;_;. We observe that [|Qx — Q|| — 0 for k — oo, where || - || is

the total variation norm. We have indeed that

1 o~ 1
sup |Qr(A4) — Q(A)| = sup Z S Qi(A) = Z ~ —~0ask — oo
Aer aer 5302 2 2

In particular we have Qr(A4) T Q(A) for any A € F. Representing any simple function f as

Zyifl) a;(f)1a,, we obtain for a non negative random variable X

n(f) n(f)
lim /Xd = lim su a; A;) =supsu a; A
Jm Qk k_mfegz i (f)Quk(A;) kpfeg; i (f)Qr(4y)

j=1

n(f) W
— sup sup ; a;(f)Qr(4;) = sup ; a;(f)Q(A;) = /QXdQ

fec k
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where & are the simple function less or equal than X. For any B € F;_1 we then have:

Eg [15AS,] = /Q(lgASt)*dQ—/Q(IBASt)_dQ

= lim /(1BASt)+kof lim /(IBASt)iko: hm/lBAStko:O
k—oo Jo k—oo Jq k—oo Jq
(|

LEMMA 1.77. For any dense set D C ), the set of probabilities co({dw }wep) is (P, Cy) dense in
P.

PROOF. Takew* ¢ D and let w,, — w*. Note that for every open set G we have liminf §,,, (G) >
8.+ (G) and this is equivalent to the weak convergence &, — d,-. Observe that for every set X
we have
co(X) =co(X) := ﬂ {C'| C convex closed containing X} = @(X).
Hence, by taking X = {d, }wep and by o(P, Cp) density of the set of measures with finite support
in P, we obtain the thesis. O

LEMMA 1.78. Let F = B(Q) be the Borel o-algebra and let F be a o-algebra such that F CF. The
set P:={P:F —[0,1] | P is a probability} is endowed with the topology o(P,Cy). Then
(1) If A C Qs dense in Q, then co({0y }wen) is o(P,Cy) dense in P. Notice that any element
Q € co({6,}wen) can be extended to F.
(2) If D C Q is closed then

ﬁ(D) = {ﬁ eP | supp(ﬁ) c D}
is cr(757 Cy) closed, where the support is well-defined by
supp(P) := ﬂ{C eC|P(C) =1}

and C are the closed sets in (2, d).

PROOF. By construction for any P € P we have Ik fdpP = J fdP for any f € Cj where P € P
is the restriction of P to F.
To show the first claim we choose any P € P. Consider P € P the restriction of P to F. Then
from Lemma 1.77 there exists a sequence Q,, € co({d, }wea) such that [ fdQ, — [ fdP for every
f € Cy. As a consequence [ fd@, — ffdﬁ, for every f € Cy.
To show the second claim consider any net {P,}o C P(D) such that P, -5 P. We want to show
that P € 75(D) Consider P,, P the restriction to F of ]Sa, P respectively. Then P, = P. Notice

that by definition supp(P,) = supp(P,) C D and supp(P) = supp(P). Moreover P(D) = {P € P |

supp(P) C D} is o(P, Cp) closed (Theorem 15.19 in [ABO6]) so that D D supp(P) = supp(P). O

PROOF OF PROPOSITION 1.64, ITEM (2). Recall that an Open Arbitrage in A is a F-predictable
processes H = [H',..., H such that Vr(H) > 0 and V}; = {Vz(H) > 0} contains an open set.
First we show that H € W (&, ) implies Vi (H)(w) > 0 for all w € Q. We need only to show that
the set B := {w € Q | Vp(H)(w) < 0} is empty. By contradiction, let w € B, take any P € U
and define the probability Py := Ad,, + (1 — A\)P. Since Vr(H) > 0 P-a.s. we must have P(w) = 0,
otherwise P(B) > 0. However, Py(B) > Py(w) = A > 0 for all positive A and Py will belongs to
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U, as \ | 0, which contradicts Vp(H) > 0 P-a.s. for any P € U. To prove the equivalence, assume
first that H € W(5,). We claim that (ViH)e ={w € Q| Vp(H) = 0} is not dense in Q. This will
imply the thesis as the open set int(V};) will then be a not empty on which V(H) > 0. Suppose by
contradiction that (V;})C = (). We know by Lemma 1.78 that the corresponding set Q of embedded

probabilities co({dw },, vt )c) is weakly dense in P and hence it intersects, in particular, the weakly
open set U. However, for every P € Q we have Vp(H) = 0 P-a.s. and so this contradicts the
assumption. Suppose now that H € H is an Open Arbitrage. Note that from Lemma 1.78 if F'
is a closed subset of Q, then P(F) := {P € P | supp(P) C F} is o(P,C,) closed. Since H is an

Open Arbitrage then V}; contains an open set and in particular G := (V)¢ is a closed set strictly

contained in Q. Observe then that (P(G)) is a non empty o(P,C,) open set of probabilities such
that for all P € U we have Vp(H) > 0, P-a.s. and P(V};) > 0. O






CHAPTER 2

Model-free Superhedging duality’

We adopt the following setting and notations: let 2 be a Polish space and F = B(Q) be the
Borel sigma-algebra; T € N, I := {0,...,T}, S = (S¢)ter be an Re-valued stochastic process on
(Q, F) representing the price process of d € N assets; P be the set of all probability measures
on (Q,F); F¥ := {F},er be the natural filtration and F := {F;};cr be the Universal Filtration,
namely
Foi= () FZ VNP, where Ni” = {N C Ae F | P(A) =0}
PeP

H be the class of F-predictable stochastic processes, with values in R?, representing the family of
admissible trading strategies; (H - S)r := Zle Z‘;Zl HI(SI-87 )= Z;‘ll H; - AS; be the gain
up to time T from investing in S adopting the strategy H. We denote

M= {@Q € P | S is an F-martingale under Q},
Py = {Q € P | supp(Q) is finite},
My = MNPy,

where the support of P € P is defined by supp(P) = ({C € F | C closed, P(C) = 1}. The family
of M-polar sets is given by N := {NC AeF | Q(A) =0VQ € M} and a property is said to
hold quasi surely (q.s.) if it holds outside a polar set. We adopt the convention oo — oo = —oo for
those random variables g whose positive and negative part is not integrable. We are also assuming

the existence of a numeraire asset SY =1 for all t € I.

The aim of this Chapter is the proof of the following discrete time, model independent version of

the superhedging theorem.
THEOREM 2.1 (Superhedging). Let g : Q — R be an F-measurable random variable. Then

inf{x € R | 3H € H such that x + (H - S)pr > g M-g.s.}
= inf{x € R|3H € H such that  + (H - S)r(w) > g(w) Yw € Q. }

= sup Eglg] = sup Eglg],
QEM; QeEM

where

Qoi={weQ|3IQ e M s.t. Q(w) > 0}. (52)

1Chapter 2 is based on the preprint: Model-free Superhedging duality, joint work with M. Frittelli and M.
Maggis, arXiv 1506.06608.

53
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Probability free set up. In the statement of the superhedging theorem there is no reference
to any a priori assigned probability measure and the notions of M, H and €2, only depend on the
measurable space (£, F) and the price process S. In general the class M is not dominated. In
case M = @ then ), = @ and the theorem is trivial, as each term in the equalities of Theorem 2.1
is equal to —oo, provided we convene that any M-q.s. inequalities hold true when M = @. For
this reason we will assume without loss of generality M # @, and recall that this condition can be
reformulated in terms of absence of Model Independent ﬁ—ArbitrageS (see Chapter 1).

We are not imposing any restriction on S so that it may describe generic financial securities (for
examples, stocks and/or options). However, in the framework of Theorem 2.1 the class H of
admissible trading strategies requires dynamic trading in all assets. In Theorem 2.2 below we
easily extend this setup to the case of semi-static trading on a finite number of options.

As illustrated in Section 3, we explicitly show that the initial cost of the cheapest portfolio that

dominates a contingent claim g on every possible path

inf {x € R| 3H € H such that x + (H - S)r(w) > g(w) Yw € Q} (53)

can be strictly greater than supgepq Eq [g], unless some artificial assumptions are imposed on g or
on the market. In order to avoid these restrictions on the class of derivatives, it is crucial to select

the correct set of paths (i.e. §2,) where the superhedging strategy can be efficiently employed.

On the set Q.. In Theorem 2.1, the pathwise model independent inequality in (53), is replaced
with an inequality involving only those w € € which are weighted by at least one martingale
measure @ € M. In Chapter 1 (see also Proposition 2.9) it is shown the existence of the maximal

M-polar set N,, namely a set N, € N containing any other set N € N. Moreover

The inequality + (H - S)r > g M-q.s. holds by definition outside any M-polar set and therefore
it is equivalent, thanks to (54), to the inequality « + (H - S)r(w) > g(w) Yw € Q. which justifies
the first equality in Theorem 2.1. The set {2, can be equivalently determined (see Proposition 2.9)
via the set M of martingale measures with finite support, a property that turns out to be crucial
in several proofs.

We stress that we do not make any ad hoc assumptions on the discrete time financial model
and notice that 2, is determined only by S: indeed the set M can be written also as M =
{Q € P | S is an F¥-martingale under Q}. One of the main technical results of this Chapter is
the proof that the set Q. is an analytic set (Proposition 2.17) and so our findings show that the
natural setup for studying this problem is (2, S,F,7{). We also point out that we could replace
any sigma-algebra JF; with the sub sigma-algebra generated by the analytic sets of F7.

Superhedging with semi-static strategies on options and stocks. We now allow for
the possibility of static trading in a finite number of options. Let us add to the previous market
k options ® = (¢!,...,¢*) which expires at time T and assume without loss of generality that
they have zero initial cost. We assume that each ¢/ is an F-measurable random variable. Define
hd =" Wi, h€RF, and

Mg :={Q e My | Eqgl¢'] =0V =1,...k} = {Q € My | Eg[h®] = 0Vh € R¥},  (55)
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which are the options-adjusted martingale measures, and
Ny :={weN]|3IQ € Mg s.t. Qw) >0} CQ,. (56)

We have by definition that for every @ € Mg the support satisfies supp(Q) C Q¢. We define the

superhedging price when semi-static strategies are allowed by

To(g) :==inf {x € R|3(H,h) € H x R* such that = + (H - S)p(w) + h®(w) > g(w) Yw € Qo } .
(57)
With the same methodology used in the proof of Theorem 2.1 we will obtain in Section 4.3 the

superhedging duality with semi-static strategies:

THEOREM 2.2 (Super-hedging with options). Let g : Q@ — R and ¢ : Q — R, j = 1,...,k, be
F-measurable random variables. Then
Ta(g9) = sup Eglg].
QeEMoy
Comparison with the related literature. In the classical case when a reference probability
is fixed, this subject was originally studied by El Karoui and Quenez [KQ95]; see also [Ka97] and
[DS94] and the references cited therein.

In [BN15] a superhedging theorem is proven in the case of a non-dominated class of priors P’ C P.
The result strongly relies on two technical hypothesis: (i) The state space 2 has a product structure,
0 = QF where Q is a certain fixed Polish space and } is the ¢-fold product space; (ii) The set of
priors P’ is also obtained as a collection of product measures P := Py ®...® Pr where every P, is
a measurable selector of a certain random class P; C P(). P;(w) represents the set of possible
models for the t-th period, given state w at time ¢. An essential requirement on P is that the
graph(P;) must be an analytic subset of Q! x P(€y). These assumptions are crucial in order to
apply the measurable selection and stochastic control arguments which lead to the proof of the
superhedging theorem. In our setting we do not impose restrictions on the state space §2 so the
result cannot be deduced from [BN15] for P/ = M. Moreover, even in the case of Q = Qf the
class of martingale probability measures M is endogenously determined by the market and we do
not require that it satisfies any additional restrictions. Furthermore, the techniques employed to
deduce our version of the superhedging duality theorem are completely different, as they rely on
the results of [BFM14].

Different approaches are taken in [AB13, Ril5]. In [Ril5] the continuity assumptions on the
assets allow to embed the problem in the linear programming framework and to obtain the desired
equality in a one period market. In [AB13] from a model independent version of the Fundamental
Theorem of Asset Pricing they deduce the following superhedging duality (Theorem 1.4)

inf {z € R| 3(H,h) € H x R* s.t. 2+ (H - S)7(w) + hd(w) > g(w) Yw € Q} = sup Eqlgl.
®

Q
(58)

They assume a discrete time market, with one dimensional canonical process S on the path space
Q) = [0,00)” and an arbitrary (but non empty) set of options on S available for static trading.
Theorem 1.4 in [AB13] relies on two additional technical assumptions: (i) The existence of an

option with super-linearly growing and convex payoff; (ii) The upper semi-continuity of the claim

g.
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The example in Section 3 shows that without the upper semi-continuity of the claim g the duality
in (58) fails and it also points out that the reason for this is the insistence of superhedging over the
whole space €, instead of over the relevant set of paths £2,. Our result holds for a d-dimensional
(not necessarily canonical) process S and does not necessitate of any specific technical assumptions,

nor of the existence of any options.

1. Aggregation results

In this section we investigate when certain conditions (like superhedging or hedging) which hold
Q-a.s. for all @ € M, ensure the validity of the correspondent pathwise conditions on €,.

For G-measurable random variables X and Y, we write X > Y if X(w) > Y(w) for all w € Q.
When we specify X > Y on a measurable set A C £ it means that X(w) > Y (w) holds for all
w € A. Similarly for X > Y and X =Y. We recall that absence of classical arbitrage opportunities,
with respect to a probability P € P, is denoted by NA(P). For an arbitrary sigma-algebra G we

set
L£(,6):= {f: Q— R|G-measurable },
LE,G) = {fe L&,G)|[f=0}
The linear space of attainable random payoffs with zero initial cost is given by
K:={H-S)rel(QF)|HeH}.

Recall that the set of events supporting martingale measures ), is defined in (52) and observe that

the convex cones

aQ
I

{fe LEO,F)|f<konQ, for some k € K}, (59)
CQ):= {fe LOF)|f<kQ-as. for some k € K}. (60)

are related by C C C(Q), if Q € M.
The main Theorem 2.1 relies on the following cornerstone proposition that will be proven in Section

4, as its proof requires several technical arguments.

PROPOSITION 2.3. Let g € L(Q, F) and define

m(9) : =inf{xeR| IHeH s.t. x+(H-S)r >g onQ} (61)
molg) @ =inf{zeR| 3HeH st. 2+ (H-S)r>g Q-as. }. (62)
Then
m(g) = sup mo(g) (63)
QeM;
c - N c@. (64)
QEMf

In particular, if 7.(g) < 400 the infimum is a minimum.

COROLLARY 2.4. Let g € L(Q,F) and x € R. If for every Q € My there exists H? € H such that
v+ (H? - S)r > g Q-a.s. then there exists H € H such that x + (H - S)r(w) > g(w) for every
w € €.



1. AGGREGATION RESULTS 57

PRrROOF. By assumption, g — = € C(Q) for every Q € M. From C = ﬂQer C(Q) we obtain
g—xeC. O

COROLLARY 2.5 (Perfect hedge). Let g € L(Q,F). If for every Q@ € My there exists H? €
H, 29 € R such that 9 4+ (H? - S)r = g Q-a.s. then there exists H € H,x € R such that
z+ (H-S)r(w) = g(w) for every w € Qu, and 29 = x for every Q € M.

PRroor. Note first that, from the hypothesis, for every @ € M/ there exists H? ¢ H, 29 € R
such that 9 +(H? - 9)p(w) = g(w) for every w € supp(Q). We first show that 22 does not depend
on Q. Assume there exist Q1,Q2 € M such that 9 < z%92. For every A € (0,1) set @ := AQ1+
(1 —A)Q2 € M;. Then there exist H9* € H and 2%* € R such that 2@ + (H9* - )7 (w) = g(w)
for every w € supp(Qy) = supp(Q1) U supp(Q2). Therefore 2@ + (H - S)p(w) = g(w) for every
w € supp(Q;), for any i = 1,2, and from NA(Q;) we necessarily have that 2@ = x.

Since z+ (H? - S)r(w) = g(w) for every w € supp(Q) we can apply Corollary 2.4 which implies the
existence of H € H such that z+ (H-S)7(w) > g(w) on Q.. Moreover z —z+ ((H—H®)-S)r(w) >
g(w) — g(w) for every w € supp(Q) implies ((H — H?) - S)7(w) > 0 for every w € supp(Q). Since
NA(Q) holds, we conclude ((H—H®)-S)r(w) = 0 for every w € supp(Q). Thus for every Q € My
we have = + (H - S)r(w) = g(w) on supp(Q) and hence the thesis follows from Proposition 4.18
[BFM14] (or Proposition 2.9). O

COROLLARY 2.6 (Bipolar representation). Let C be defined in (59). Then
C={gc L F)| Eqlg] <0VQ € My} (65)

PRrROOF. Clearly C C {g € L, F) | Erlg] <OVR € My} =: C. FixQ e My and observe
that L°(Q, F,Q) = LY (Q, F,Q) = L=(Q, F, Q). For g € L(Q, F) we denote with the capital letter
G the corresponding equivalence class G € LY(2, F, Q). The quotient of K and C(Q) with respect
to the @-a.s. identification ~¢ are denoted respectively by

Ko : ={KeL’(QF,Q) |K=(H -S)rQ—as., HcH},
Co : ={GeL’(F,Q)|3K € Kg such that G < K Q —as.} =Ko — LY(Q,F, Q).
Now we may follow the classical arguments: the convex cone Cg is closed in probability with

respect to Q (see e.g. [KSOla] Theorem 1). As Q € My, Cq is also closed in L' (2, F, Q) and

therefore:
(Cq)°" ={Z e L¥(Q,F,Q) | E[ZG] <0 VG € Co} C LT (O, F, Q).
Notice that R < Q and R € M if and only if R < @ and % € (Cg)°. Hence:
Ce)"” = {GeLY(DF,Q)|EZG)<0VZ e (Co)°}
= {G € LY(Q,F,Q) | Er[G] <0 VR < Q s.t. % € (CQ)O}
= {GeLQF.Q) | ErlGI<O0VR< Qs.t. Re My} (66)

Let g € C. By the characterization in (66) the corresponding G belongs to (CQ)OO. By the bipolar
theorem Cg = (C)*® and therefore G € C and g € C(Q) (as defined in (60)). Since this holds for
any Q) € My, from C = ﬂQer C(Q) (Proposition 2.3) we conclude that g € C. O
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REMARK 2.7. One may ask whether the bipolar duality (65) implies that C is closed with respect
to some topology. To answer this question let us introduce on L(, F) the following equivalence

relation: for any X,Y € L(Q,F)
X ~Y if and only if X(w) — Y (w) = k(w) for some k € K and for every w € Q..

Consider the quotient space L(Q, F) = L(Q,F)/ ~ and the vector space Vy generated by Mj.
We first claim that the couple (L(Q,F),Vy) is a separated dual pair under the bilinear form
() : L(Q,F) x Vi — R defined by: ([X],pn) — E,[X], for any X € [X]. Notice that the
form ([ X],p) — E,[X] is well posed as E,[k] = 0 for all k € K and the pairing is obviously
bilinear. Clearly if p # 0 then there exists w € Q. such that p({w}) # 0 and E,[1,] # 0. Thus we
have showed that ([X], n) = 0, for every [X|, implies p1 = 0.
We now prove that {[X], u) = 0 for every u implies [X] = [0]. By contradiction assume [X] # [0].
By assumption, X can not be replicable at a non zero cost. Observe that if X € [X] is replicable
at zero cost in any market (Q, F,F,S;Q) for any possible choice Q € My then by Corollary 2.5
X is pathwise replicable for every w € Q.. or in other words: [X] = [0].
Hence our assumption [X| # [0] implies that there exists a Q € My such that the market
(Q, F,F,S;Q) is not complete, so that M.(Q) :={Q* ~ Q| Q* € M}} # {Q}, and X € [X] is
not replicable in such market. Then

Q*ei/I\l/tfe(Q)EQ*[X} < Q*GS}\IAI:(Q) Eg-[X].
As Q € My has finite support, Mo(Q) C My and there exists a p € M.(Q) C Vi such that
E,[X] # 0, which is a contradiction.
Now we conclude that the cone C/~ is closed with respect to the weak topology o(L(Q, F), V).
Indeed, from (65) we obtain that

C/w={lg) €L F) | Eqlg) <0VQ e Mg} = () {lg] € L(Q,F) | Eqlg] < 0}
QeM;

is the intersection of o(L(, F), Vy)-closed sets.

2. Proof of Theorem 2.1

As shown by the following result from [BF04], the abstract version of the superhedging theorem

is a simple consequence that the cone C and its bipolar cone coincide.

THEOREM 2.8 (Theorem 10, [BF04]). Let L, L’ be two vector spaces and let < -,- >: L x L’ = R
be a bilinear form. Let G C L be a convex cone satisfying G°° = G, where GV:={z € L' |< g,z ><
0Vg € G}, G%={g € L|<g,z2><0Vze G, and assume the existence of an element 1 €L
such that —1 €G. If the set Ny 2 {z € G° |< 1,z >= 1} is not empty then for all h € L we have:

inf{reR|h—21le€G}=sup{< h,z>|z¢€ Ni}. (67)

We also recall from [BFM14] the relevant properties of the set €, that will be needed several

times in the proofs.
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PROPOSITION 2.9 ( Proposition 4.18, [BFM14] ). In the setting described in the Introduction of
this Chapter we have
M # <= Q0= M;#0
Q. = {weN]3Q e My s.t. Q(w) > 0}. (68)
The complement of Q. is the maximal M-polar set.
Proof of Theorem 2.1. As already stated in the introduction, we may assume w.l.o.g. that
M # @, or equivalently My # @&. The first equality of the theorem holds because of the definition

of M-q.s. inequality and the fact that 2, is the maximal M-polar set.
Step 1: Here we show that

inf{x € R| 3H € H such that 2 + (H - S)r(w) > g(w) Vw € Q. } = sup Eglg].
QEMf

Consider V the vector space generated by M. The couple (L(Q2, F), V) form a (not separated)

dual pair under the bilinear form
() LOUF)x Ve =R (X, ) — E,[X].

Set G := C. Adopting for G°, G and N; the notations of Theorem 2.8, we observe that G° =
(Vi)rs N ={pe (Vi)y [ Bullo] =1} = My # 2.
In addition, by Corollary 2.6 we obtain G = G% and from (67) we then conclude:

inflr e R|g—xeC}=sup{Eglg] | Q € Mys}.

Step 2: We end the proof by showing that for any g € L(Q, F)

sup Eglg] = sup Eglg], (69)
QeEM QEMf
where we adopt the convention oo — oo = —oo for those random variables g whose positive and

negative part is not integrable. Set:
m:= sup Eglg], {:= sup Eglg].
QEM QEMf
We obviously have that | < m so that we only have to prove the converse inequality. If [ = oo

there is nothing to prove. Suppose then [ < co. We first show that
if Q € M satisfy Eglg] > | = Eglg] = (70)

Suppose indeed by contradiction that there exists @ € M\ M such that I < Eg[g] < co. Consider
now an arbitrary version of the process g; := Eglg | F;] and extend the original market with the
asset Sth = g; for t € I. We obviously have that @) is a martingale measure for the extended
market and from Proposition 2.9 this implies the existence of a finite support martingale measure
Qs which, by construction, belongs to M. Since Fg, [9] = go > I, which is the supremum of the
expectations of g over My, we have a contradiction.

From (70) we readily infer that if m < co then [ = m. We are only left to study the case of m = oo
and we show that this is not possible under the hypothesis I < oo. Consider first the class of
martingale measures Q(g) C M such that Eg[g~| = co. We obviously have that Q(g) "My = &,

moreover, since | < m = oo from (70) and from oo — 0o = —oo, there exists Q € M\ Q(g) such



60 2. MODEL-FREE SUPERHEDGING DUALITY

that E [g] = 0o and Eg [¢7] < oo. Consider now the sequence of claims g, := gAn for any n € N.
From E5[g~] < co and Monotone Convergence Theorem we have Eglg An] T Eglg] = oo, hence,
there exists € N such that n > Ez[g A7n] > [. Note now that
sup Eqlg Am] < sup Eglg] =1< EglgAn] (71)
QeMy QEM;y
Applying (70) to g ATt we get Eg [g AT] = 400, which is a contradiction since the contingent claim
g AT is bounded.

3. Example: forget about superhedging everywhere!

Let (©,F) = (RT,B(R")). Consider a one period market (T" = 1) defined by a non-risky asset
SY =1 for t = 0,1 (interest rate is zero) and a single risky asset Sh(w) = w with initial price
S§ = sp > 0. In this market we also have two options ® = (¢°, ¢'), where ¢° := f9(S7) is a
butterfly spread option and ¢! := f(S7) is a power option, i.e.

fow) = (& = Ko)* = 2(x — (Ko + 1)) + (¢ — (Ko +2))*

fHa) = (2 — K1)*.
Assume Ky > sg, K1 > (Ko + 2)? and that these options are traded at prices co = 0 and ¢; > 0

respectively. Set ¢ = (¢, ¢1). The payoffs of these financial instruments are shown in Figure 1 for
K() = 2, K1 = 25:

Y
7 payoff of S*
6 payoff of ¢°
....... payoff of ¢!
5

FIGURE 1. Payoffs.

DEFINITION 2.10. (1) There exists a model independent arbitrage (in the sense of Acciaio et al.
[AB13]) if 3(H, h) € H x R¥ such that (H - S)7(w) + h(®(w) —¢) > 0 Yw € Q.

(2) There exists a one point arbitrage (in the sense of [BFM14]) if 3(H,h) € H x R* such that
(H-S)r(w)+ h(P(w) —c) >0 Vw € Q and (H - S)r(w) + h(P(w) —¢) > 0 for some w € Q.

It is clear that any long position in the option ¢° is a one point arbitrage but it is not a model

independent arbitrage. We have indeed that there are No Model Independent Arbitrage as:

M@#@.
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More precisely, any @ € Mg must satisfy @ ((Ko, Ko +2)) = 0, so that (Ko, Ko + 2) is an Mg-
polar set, nevertheless,

Qo =R\ (Ko, Ko +2).

One possible way to see this is to observe that on I' := R\ (Ky, K¢+2) the option ¢° has zero payoff
and zero initial cost so that any probability P, with supp(P) C I, that is a martingale measure
for S, ¢!, is also a martingale measure for S9, S*, ¢°, ¢1. Take now w; = 0, wo € (Ko + 2, VK1),
w3 > /K7 + ¢1 and observe that the corresponding points x1 := (—sg, —c1), T2 := (wa — S0, —¢1)
and z3 := (w3 — s0, ¢*(w3) — ¢1)) clearly belong to conv(AX (w) | w € I') where AX is the random
vector [S] — so; ¢ — ¢1]. Consider now & := § min{c1, so, |wz — 50|} so that for w; sufficiently large
we have

B.(0) C conv(AX (w) | w € {wr,w2,w3}) C conv(AX (w) |w eT).

We have therefore that 0 is in the interior of conv(AX (w) | w € T') and from Corollary 4.11 item
1) in [BFM14], Q¢ =T = RT \ (Ko, Ko + 2). Note, moreover, that this is true for any value of
the price ¢; > 0.

Consider now the digital options g; = F;(St), i = 1,2, with

Fl(z) = 1(K0,K0+2)(I)’
Fa(z) = 1k, Kk.+2)(®)

which differ only at the extreme points of the interval (K, Ky + 2) and observe that F5 is upper
semi-continuous while F} is not. From the previous remark g; has price zero under any martingale

measure € Mg, so that

sup Eglq] = 0. (72)
QeMs

Define:

To(g) := inf {z € R | 3(H,h) € H x R¥ such that = + (H - S)r(w) + h@(w) > g(w) Yw € Q}
and recall that

To(g) = inf {z € R | 3(H,h) € H x R* such that 2 + (H - S)7(w) + h®(w) > g(w) Yw € Qo }

CrAM 2.11. In this market:

(1) mo(91) = supPgem, E@lor] =0 and 7e(g2) = supgem, Eqlo2l;
(2) mq(g1) = min {%7 1} > SUPQe My Eglg1] = 0;
(3) ma(g2) = supgem, Eqlgz]-

REMARK 2.12. (i) Item (1) is in agreement with the conclusion of Theorem 2.2.

(ii) Item (2) shows instead that the superhedging duality with respect to the whole 2 does not hold
for the claim gi (which is even bounded). Note that in this example all the hypothesis of Theorem
1.4 in [AB13] are satisfied except for the upper semi-continuity of gi.

As the comparison between g; and go in items (2) and (3) shows, the assumption of upper semi-
continuity of the claim seems artificial from the financial point of view, even though necessary for
the validity of Theorem 1.4 in [AB13].
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Our results demonstrates that it is possible to obtain a superhedging duality on the relevant
set Qg (or Q. when there are no options) for any measurable claim, regardless of the continuity

assumptions (as well as without the existence of an option with super-linear payoff).

PROOF OF THE CLAIM 2.11. Item (1) holds thanks to Theorem 2.2. Notice also that the
equalities T (g1) = 0 = supge a, Flg1] are consequences of (72) and the fact that (H, h) = (0,0)
is a superhedging strategy for g, on Q¢. As go is upper semi-continuous, the superhedging duality
in item (3) holds thanks to Theorem 1.4 in [AB13], see (58). In the remaining of this section
we conclude the proof by showing 7 (g1) = min {;{—%, 1} = 7= (by the assumption Ko > s9) and
hence item (2).

Let us consider the model independent superhedging strategies i.e. the set of (H,h) € R? x R?
such that z + (H - S)r(w) + h®(w) > ¢1(w) for any w € Q. Any admissible trading strategy is given
by (H,h) := [H°, H',h° h'] € R* which correspond to positions in the securities [S?, St, #°, ']
so that
price:  Vo(H,h):= H°+ H'sy+ hle (73)
payoff: Vr(H,h):= H°+ H'w + h%%w) + hl¢!(w)
Trivial super-hedges There are two immediate strategies whose terminal payoff is a super-hedge
for ¢;.
(1) SY (ie. H®=1in (73) and H' = h° = h' = 0) with initial cost 1.
(2) #5" (ie. H' = 2= in (73) and H® = h° = h' = 0) with initial cost 2.
Consider now a generic superhedging strategy (H,h) for the option ¢g; and suppose first that
H'>0.
Observe that for every w € [0, Ko] we have: Vp(H,h)(w) = H° + H'w and gy (w) = 0. If H® <0
there exists @ € [0, K] such that H® + H'@ < 0 = ¢;(®) so that the strategy does not dominate
the payoff of g;. Necessarily H? > 0.

h' # 0 is not optimal for super-hedging g;: If h' # 0 we necessarily have h' > 0, oth-
erwise Vp(H,h)(w) < 0 for w large enough (because of the super-linearity of f!) and
(H, h) is not a super-hedge for g;. Since f!(z) =0 on (Ko, Ko+ 2) and ¢; > 0, the most
convenient super-hedge is with h* = 0 (cfr Figure 2).

: From now on with no loss of generality h! = 0.

h? #£ 0 is not optimal for super-hedging g;: Since ¢° has a positive payoff, if h® # 0 we
might take h° > 0 otherwise we have a better super-hedge (at the same cost) by replacing
h%¢° with the zero portfolio. Suppose now h° > 0. By recalling that H° H' > 0 we note
that Vp(H, h) as in (73) satisfies

inf  H°+ H'o+h°w) = H+ H'K,
wG(KU,KngQ)

so that the same super-hedge is achieved by trading only in S° and S*. In other words
with no loss of generality h® = 0 (cfr Figure 3)
We finally discuss the case H' < 0.
This is, in general, a more expensive choice for the strategy (H,h). Indeed we have, for instance,
that for @ = Ko + 1, H'SY (@) = H' (Ko + 1) < 0 while ¢;(@) = 1. Since for any strategy
(H,h) € R*, Vp(H,h)(@) = H° + H'G we need H° > 1 — H'(Ky + 1), hence, the initial price
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—— payoff of g1

FIGURE 2. ¢! has no positive wealth on (Kg, Ko + 2).

- - - - payoff of h0¢°
payoff of g1

FIGURE 3. h%¢° does not dominate g; on (Ko, Ko + ¢€) for any h° with ¢ = ¢(h°)

Vo(H,h) > 1 — H' (Ko + 1 — s0). By choosing the parameters s, Ko such that Ko+ 1 — s9 < 0
any superhedging strategy with H' < 0 is more expensive than the trivial super-hedge given by
HO =1,H' = h® = h% = 0. Note moreover that in order to cover the losses in H'S! for large
value of w we would need to take a long position in the option ¢! (whose payoff dominates S!) for
an additional cost of hlc; > 0 with At > —H! > 0.

We can conclude that the cheapest super-replicating strategies are, in general, given by H°S? 4
H'S' with H°, H! > 0 and it is easy to see that

50

ma(g1) = min{;((z)ﬂ} - K, > 0.
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4. Technical results and proofs

Recall that {F;}ier is the universal filtration which satisfies in particular that F; contains the
family of analytic sets of (€, ;%) for any t € I.

We indicate by Mat(d x (T + 1);R) the space of d x (T + 1) matrices with real entries repre-
senting the set of all the possible trajectories of the price process: for every w € {2 we have
(So(w), S1(w), ..., ST(w)) € Mat(d x (T +1);R). Fix t <T: we indicate Sp.; = (Sp, 51, ..., St) and
recall that S5} (A) = {w € Q| So(w) € A} for A C Mat(d x (t+1);R). We set AS; :=S; — S;_1,
t=1,..,T.

4.1. Q, and Q4 are analytic sets.

LEMMA 2.13. The set Py = {P € P | P has finite support} is an analytic subset of P endowed
with the sigma-algebra generated by the o(P,Cy) topology.

PROOF. Set E = {0, | w € Q} which is o(P,C}) closed (Th. 15.8 [ABO06]) and observe that
P is the convex hull of E. Consider for any n € N the simplex A,, C R"® and the map

Yot E" X A, — Py

defined by Yy, (Gwrs - -+ 0w s Ay v s An) = Dory A, which is a continuous function in the product
topology. Since E™ x A,, is closed in the product topology of the Borel Space P™ x R"™, then
the image v, (E™ x A,,) is analytic (Proposition 7.40 [BS78]). Finally we notice that Py =
U,, Yo (E™ x Ay,) which is therefore analytic, being countable union of analytic sets. O

DEFINITION 2.14. Let L>®(Q,F) = {f € LIQ,F) | f is bounded}. A subset U C Py is countably
determined if there exists a countable set L C L>(, F) such that

U:={pePs|Eufl <0,Vf e L}
LEMMA 2.15. IfU C Py is countably determined then it is analytic.
PRrROOF. For each f,, € L define
F, : P — R such that F,( / fndp.
From Theorem 15.13 in [ABO6], F,, is Borel measurable so that

U:={uePs|E,fn] <O0foralneN}= ﬂ (Fn)il(*OO,O] NPy
neN

is analytic, being countable intersection of analytic sets. U

LEMMA 2.16. Let Z(w) := max;—1,. gmaxy—o, 1|5, (w)], Z2(w) :=maxj_1, |¢/ (w)| and Z =
max(Z1, Z2) then

dQ C(u) }
Pz = ePrl3IQeM h that —
7 {,u ¢y 13Q 7 such tha R
dQ _ c(p
= El R
Pza {u € Ps|3Q € Mo such that 1t Z}

are analytic subsets of P where c(u) = E,, [(1+ Z)7}] -
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PROOF. Assume Py # @ (resp. Pzao # @) otherwise there is nothing to prove. Fix any
t € {1,..,T}. Let Mat(d x t;Q) be the countable set of d x ¢ matrices with rational entries
and denote its elements by ¢,, n € N. For ¢, € Mat(d x t;Q), consider the set {4,} with

={w e Q| Spt-1 < gn} € Fi—1. With a slight abuse of notation Sp.;—1 < ¢, stands for
Sl <gn)iu for every i =1,...,d and u =0,1,...,t — 1. Define

ffl = (SM> 1A € L™ (Q,f),

147
I il L2(Q 74
r= (12) @, (1)
The following sets
U= {pePs|Efl]=0Vin}
Up = {nePs|ELfi] =0and E,[¢] =0Vi,n,j}

are analytic since they are countably determined. We now show that ¢/ = Pz and Us = Pz.e and
this will complete the proof.

For any fixed p € U we have by construction:

S Si_4
14 du= 14 d fi A,.
/QHZ Andp /QHZ aydu for every (75)

Consider the finite set of matrices {s;}7L; := {So.—1(w) € Mat(d x ;R) | w € supp(u)} where

m = m(u) depends on u. Since p has finite support, for any j = 1,...,m we may find A,, with
1=0,...,d x t such that

u(By) = 1 (A \ ULV AL, )

where B; := {Sp.+—1 = s;}. We conclude

Si Si_y .
1 dp = 15 dy  f =1,...
/(11+Z B; A /91+Z B;dp forevery y=1,...,m

and E, (1+Z | Fie 1) =E, (1+Z |]-}_1). Define Q by % 1= {5 where ¢ := c(p) > 0 is the

normalization constant. Then , @ ~ p, @ € Py and:

SZ Si . . i %
E, <1+Z | Fie 1) =K, <1+Z | Fie 1) if and only if Eq (S; | Fi—1) = S;_;. (76)

Thus we can conclude Q € My and U C Pz. Take now p € Pz then there exists @) such that

Eq (Si| Fi-1) = Si_; and % = 1¥z- (76) we have that condition (75) holds and
hence p € U.

Recall that Mg is defined in (55) and consider now p € Up C U. Then there exists @ € M such
that dQ = 15rz) Moreover E,[g’] = 0 for every j = 1,...,k so that, by (74), Eg[¢’] = 0. In this

way U<1> C Pz.s. Take now i € Pz o then pu € Pz from the previous part of the proof. Moreover
there exists Q € Mg such that Eg (®7) = 0 and % = 11z Again by (74) we have E L7 =0
for every j =1,...,k and hence yu € Usp. O

PROPOSITION 2.17. Q, and Q¢ are analytic subsets of (1, F).
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PrOOF. Consider the Baire space NN of all sequences of natural numbers. In this proof we
denote by B.(w) the closed ball of radius €, centered in w in (€2, d).
Consider a dense subset {w;}52; of Q. For any n = (n1, ..., ng, ...) € N we denote by n(1), ..., n(k)
the first k terms (i.e. nq,...,ng). Define

An(l) = B1(wn(1)).
Let now {wn(1),i}52; a dense subset of A1) we define
An)n(2) 7= By (@n(1).n(2)) 0 An()-

At the k" step we shall have {Wn@),...n(k-1),:}§21 a dense subset of A1), . nk—1) and we define
the closed set

An(1),..n(k) = B1(wn(1),..nk)) N An1),....n(k—1)-

Notice that for any w € Q there will exists an n € NV such that

keN

We consider the nucleus of the Souslin scheme given by

U N 4a.n) < {Q € Pz | Q(Anqr)....n(r) > 0} (78)

neNV keN
Observe that Ap(1),.. n(k) closed in Q implies {Q € P | Q(Anq),..nk)) = =} is o(P, Cy)-closed
from Corollary 15.6 in [ABO6]. Therefore

}

1

{Q € P Q(Anq),..n(y) > 0} = U{QeP\Q( ,,,,, n) > —
is Borel measurable in (P, o (P, Cy)). By Lemma 2.16 we have that {Q € Pz | Q(An(),...nx)) > 0}
is analytic. We can conclude that Ayn(1),. k) X {Q € Pz | Q(An(1),...n(k)) > 0} is an analytic
subset of  x P (which is a Polish space).
From Lemma 2.16 we observe that any u € Pz admits an equivalent martingale measure with
finite support. From Q. = {w € Q| 3Q € My st. Q(w) >0}, if w ¢ Q, then w ¢ supp(u) for
any p € Pz. Taking (77) into account, if w ¢ . we can find a large enough k such that
An),...n(k) N supp(p) = @. We then have

{w}xP, ifwe,
& if wé¢ Q,

)

() An)...n) X {Q € Pz | Q(Anr)....n(r) > 0} = {

keN
where P, = {Q € Pz | Q({w}) > 0}.
From Proposition 7.35 and Proposition 7.41 in [BS78] any kernel of a Souslin scheme of analytic

sets is again an analytic set. Then
U ﬂ An(l),...,n(k) X {Q € Pz | Q(An(l),...,n(k)) > O} = x U P.
neNN keN wel
is analytic in Q x P. Since the projection IT : Q x P — € is continuous we finally deduce that €,
is analytic.

For Qg repeat the same proof replacing Pz with Pz ¢. O
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REMARK 2.18. In one-period markets (T = 1), Q. is a Borel measurable set. To see this observe
that if there are no one point arbitrages then Q. = Q € B(Q) by Proposition 4.11 in [BFM14].
When this condition is violated, there exists a strategy H* € R? such that H' - (S — Sp) > 0
and B! := {w € Q| H* - (S1(w) — Sp) > 0} is non-empty and Borel measurable. Indeed B* =
(foS1)71(0,00) with f(x) := H'-(x—Sy) continuous and S; Borel measurable. Observe now that,
restricted to the set Q\ B!, one asset is redundant (say S?) so that the market can be described
by (S°,...,8971). If there is no one point arbitrage we have Q. = Q\ B € B(Q). Otherwise we
can iteratively repeat the same argument to construct B' := {w € Q\ U;;llBj | H' - (S1(w) — Sp) >
0} € B(R) and dropping iteratively one additional asset. Since the number of assets is finite

the procedure takes B < d steps. On the resulting set there are no one point arbitrages so that

Q. = (U2, BH)C e B().
4.2. On the key Proposition 2.3.

REMARK 2.19. We point out at this stage that Q. is not only analytic but also it belongs to Fr
where Fr is the universal completion of o(S; | t < T). Indeed Q. € Sy 1-(So.r(S%)). Moreover for
any wy € S&%(S&T(Q*)) there exists wa € Q. such that Sp.r(wi) = So.r(we). Therefore for any
Q € M; such that Q({wa}) > 0 and Q({w1}) = 0, the measure Q such that Q({w1}) := Q({w2}),

Q({wg}) =0 and Q = Q elsewhere is a martingale measure. Necessarily wy € §),.

In the proof of Proposition 2.3 we will make use of the following simple fact: set QI := Q, € Fr
then by backward recursion we have
Qt

*

T
= S (Son(QUY)) e Fyy QU CQl forany t=0,..., T —1, and €, = ﬂ QL.

t=1

Notice that Q% can be interpreted as the F;-measurable projection of Q. since QL = Sy} (So.¢(%)).

We also recall that the condition No one point arbitrage holds true on €2,. If indeed there exists
H € H such that (H - S)r > 0 with (H - S)r(w) > 0 for some w € Q,, then any measure P such
that P(w) > 0 cannot be a martingale measure, which contradicts (52).

4.2.1. Proof of Proposition 2.3. We show, in several steps, that m,(g) = SUPQeMm; TQ (g) where
7, and g are defined in (61) and (62) and g € L(2, F).
Step 1: The first step is to construct, for any 1 < ¢ < T, an F;_i-measurable random set
R x.p C R¥! whose interpretation is the following: if w occurs, any H',... H, H4*! € R, x p(w)
represents a strategy at time t — 1 that allows to super-hedge the random variable X at time ¢, for
any trajectory in D C Q. Here H*t! represents the investment in the non-risky asset. Note that
we need to incorporate the additional feature given by the choice of the set D since we want to

super-hedge the random variable g only on Q. C €.

Recall AS; = Sy — S;_1. Consider, for an arbitrary 1 < ¢t < T, D € F; and X € L(Q,F) the
multifunction

Yex,p i w e {[ASH@); 1, X(@)]1p |@ € B¢} C R
where [ASy;1; X 1p = [AStllD, o, ASMp 1p, XlD} and X¥ ; is the level set of the trajectory
wup to time ¢t — 1 ie. X¥, = {w € Q| So.u—1(@) = So:—1(w)}. We show that ¢y x p is an
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Fi_1-measurable multifunction. For any open set O C R? x R2
{we Q| Y xplw)NO # 2} =Sy, 1 (Sot—1 (B)) where B = ([AS;;1; X]1p) 1(O).

First [AS;, 1, X]1p is an F-measurable random vector then B € F. Second S, is a Borel measur-
able function for any 0 < u < t—1 so that we have, as a consequence of Theorem I11.18 in [DM82],
that Sp.;—1(B) belongs to the sigma-algebra generated by the analytic sets in Mat(d x ¢;R) en-
dowed with its Borel sigma-algebra. Applying now Theorem II1.11 in [DM82] we deduce that
S(;tlfl(Soit,l(B)) € Fi—1 and hence the desired measurability for 1 x p.

By preservation of measurability (see [RW98] for instance) the multifunction
Vi xp(w):={H e R*2 | H-y<0 Vy€xpw)}

is also F;_1-measurable and thus, the same holds true for —¢7 AR x {—1}. The projection
on the first d+ 1 components, Ry x p := s, . 20, (—wth’D AR+ x {—1}), provides the building

blocks for the super-replicating strategy for g. By the previous construction we have indeed that

d

Ry x.p(w) = {H eRU | H™1p + > H'AS|(@)1p > X(@)1p V& € Efl} (79)
i=1

Notice that if DN XY ; = @ then Ry x,p(w) = R4t1. Note also that R x.p is, by construction, a

closed set.

Denote by IL,,,, (R¢,x,p) the projection on the (d + 1)-th component, which is a random interval

in R with possible values {@}, {R}. Observe now that the projection is continuous and that the

infimum of a real-valued random set A preserve the measurability since
{weQ|inf{la|ace Alw)} <y} ={we Q| Alw)N(—o0,y) # o}

Conclude, therefore, that X;_; := infIL,,, (R x p) is an Fy_i-measurable function with values
in RU{£o0}.

Step 2. We prove that for every w € {|X;_1| < oo} the infimum in X;_; is actually a minimum.
To this aim fix w € {|X; 1| < oo} and notice that there might exist L € R?\ {0} such that
L-AS; =0o0n X¢_;NQY, meaning that some assets are redundant on this level set. We can reduce
the number of assets by selecting i1, ...,ix € (1,...,d) such that llASZ1 +...+ lkASf’“ = 0 implies
l; =0 for every j = 1,...,k. Consider the closed set

R(w) = {H € Ry xp(w) | H" =0 for every j =1,...,k}

and observe that

Xi1(w) = infll,,,, (R x,p(w)) =infIl,,  (R(w))
= infll,,,, (R’(w) A {RY x [Xy1 (w), Xoor (W) + 1]}) .

The set Ko(w) := R(w)N {R? x [X;_1(w), X;—1(w) + 1]} is closed being the intersection of closed
sets. We claim that Ko(w) is bounded. By contradiction, suppose it is unbounded. Let fIn =
(H,, HIt') € Ko(w) C R? x R, such that ||H,| — +oco. By definition H) = 0 for every
j=1,...,k and H¥*! is bounded by X; 1(w) + 1. For any & € DN XY ; and any n we have

Xt_l(w) + 1 Hn ~ Xt(OT))
+ S ASHw) > .
[ || N . [ Hanll
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H'n,
1 H ol

||H*|| = 1. Therefore passing to the limit over this subsequence we have H* - AS;(@) > 0 for every

Since lies on the unit sphere of R?, we can extract a subsequence converging to H* with
w € DNXY ;. From No one point arbitrage condition we deduce H* - AS; =0 on DN ;. Since
H,, € Ko(w) then (H*)% = 0 on the redundant assets and thus H* = 0 which is a contradiction.

The set Ko(w) is closed and bounded in R4*!, hence compact. From the continuity of the projection

IT,,,, (Ko(w)) is compact, so that the infimum is attained.

Td+1

Step 3: We now provide a backward procedure which yields the super-replication price and
the corresponding optimal strategy. By classical arguments, when we fix a reference probability
@ € M this procedure yields two processes X;(Q) and H,(Q) such that

T T
g< Y Hu(Q)-AS,+X:(Q) =) Hi(Q)-AS, +Xo(Q) Q—as. (80)
u=t+1 t=1

where X;(Q) represents the minimum amount of cash that we need at time ¢ in order to super-hedge
g in the Q-a.s. sense. Recall that from NA(Q) we necessarily have X;(Q) > —oc on supp(Q).
With no loss of generality set X;(Q)(w) = —oo for any w ¢ supp(Q). Now we prove the pathwise
counterpart of (80):

Set X := g and Dy := 2, which belongs to Fr by Remark 2.19 and consider first the random set
Rt x, Dy The random variable X7_; := inf Hacd+1(RT,XT,DT) represents the minimum amount
of cash that we need at time 7' — 1 in order to super-hedge g on ,. Xp_; is therefore the Fp_;-
measurable random variable that needs to be super-replicated at time T' — 2.

Fort =T —1,...,0 we indeed iterate the procedure by taking X; := infIL,,  (Rit1 X, 1,D:41)s
D; = S(;tl(SO:t(Dt-i-l)) € F; and the random set Ryy1 x,,,.p,,, as defined before. We again have

that X is an Fi-measurable function with values in R U {£o0}.

This backward procedure yields the super-hedging price Xy on €2, but also provide the correspond-
ing cheapest portfolio as follows: note first that for every w € Q,, X;(w) > —oo. If this is not the
case there exists a sequence (H,,, ,,)nen € RYxR such that x,, | —o00, 2, +H,AS;11(@) > X411 (D)
for every w € Dy11NXY and hence Q-a.s. for every Q € My such that Q(£¢) > 0. This would lead
to a contradiction with X;(Q) > —oo. From now on we therefore assume that X;(w) > —oo. In the
case X(w) < oo for every t =0,...,T—1, Step 2 provides that X; is actually a minimum. The F;-
measurable multifunction given by Il . o, (Re+1,x,,1,0,4, N {R? X X;}) is therefore non-empty
for every t = 0,...,7 — 1 and thus admits a measurable selector Hy; 1. The strategy Hy,...,Hrp

satisfy the inequalities

g < Hp -ASt+ Xr_; on Dy
Xr1<Hp_1-ASr_1+ X712 on Dr_y

)(1 f; }]i -Z&f;l %—;Yb on 1)1
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and it represents a super-hedge on €, = ﬂthl D; as

T T
g<Hp-ASp+Xr 1< > H-AS+Xr o <...<Y H-ASi+ X (81)
t=T-1 t=1

holds true for any w € Q.. When instead X;(w) = oo for some w € €, and for some ¢ > 0 then by
simply taking X,, = co and H, arbitrary for every u < ¢, the inequality (81) is trivially satisfied.

Step 4: In order to prove (63) we recursively show that X;(w) = supgen, X¢(Q)(w) for any
w € Q, which, in particular, implies Xy = SUPQe M, X0(Q). Obviously X;(w) > X(Q)(w) for any
w € ), so that X; > SUPQeMm; X:(Q). Thus, we need only to prove the reverse inequality.

For t = T the claim is obvious: X7 = ¢g. By backward recursion suppose now it holds true for any
uwitht+1<u<Tie Xy(w)=supgen, Xu(Q)(w) for any w € Q.

From the recursive hypothesis in order to find a super-replication strategy with the same price
for any @ € My we need to super-replicate X;y;. We fix a level set ¥¢ and recall that X; is

Fi-measurable, hence it is constant on X¢. We first treat two trivial cases:

o If X;,1(w) = oo for some w € Q, then the claim is not super-replicable at a finite cost
hence the thesis follows with Xo = supgeq, Xo(Q) = oco.

o If 2¥NQIT! = & we have two consequences: ¥¢ is an M f-polar set, hence by assumption,
X¢(Q) = —o0 on X¢, for any Q € My. Moreover, as explained after equation (79),

ey (Ri41,x,41,001) = R so that X;(w) = —oo and the desired equality follows.

Td+1

From now on we therefore assume X;,; < co and X% N QL £ &, Define, for any y € R, the set
Ty := co (conv {[ASi1(@);y — Xp1(@)] | @ € Y N QLT

We claim that
0eint(ly) = X: >y (82)

Indeed from 0 € int(T,) there is no non zero (H,h) € R? x R , such that either h(y — X;11) + H -

ASi 1 >0o0r h(y — X¢p1) + H-AS;y 1 <0 on ¢ NQHL In particular there is no H € R? such

that y + H - AS;y1 > Xi41. Since, as in Step 3, X; is actually a minimum with a corresponding

optimal super-hedging strategy, (82) follows.

Premise: As in Step 1, we may suppose, without loss of generality, that if for some H € RY,
H-AS; 1 =0o0n X¢NQY! then H = 0. In fact if this is not the case we can reduce,
with an analogous procedure, the number of assets needed for super-replication on the
level set .

We now distinguish two cases.

Case 1: Suppose there exist (H,h,a) € R*?2 with (H,h,a) # 0 such that h(y — X¢y1) + H -
ASiy 1 = aon X¢ NQLHL. We claim that h # 0. Indeed, if h = 0 then o # 0, since
H-AS;11 = 0implies (H, h,a) = 0. However, a # 0 implies H - AS;;1 = « on X3¢ N Q4L
which would yield a trivial one point arbitrage on (2, , hence a contradiction.

Since h # 0 we have y — ¢ + % “ASiy1 = X1 on B¢ N QEFL this means that X,y
is replicable implementing the strategy H := % in the risky assets and Xy = y — &
in the non-risky asset. If now for some @) € My such that Q(X¢) > 0, we have the
existence of # < X; and H, € R? such that = + H, - AS;y; > X,11 Q-a.s. then



Case 2:

Step 5:

4. TECHNICAL RESULTS AND PROOFS 71

x— Xy + (H, — H)AS;;1 > 0 Q-a.s. hence, since NA(Q) holds true, z > X;. Therefore
Xt = Xt(Q) on E‘tu_l.
If a triplet (H,h,a) € R%2 such as in Case 1 does not exist then we define

g=sup{y €ER|[IH €R?: y+ H-ASp1 < Xypr on 57 N QL

Obviously § < X; otherwise we are back to Case 1. For every 0 < ¢ < X; — ¢ and for
every H € R? neither X; —e + HAS, 11 > X;11 nor Xy —e+ HAS; 11 < Xy41 holds true
on ¥¥ N QLT Moreover if there exists h € R such that h(X; —e — Xy 1) + HAS; 41 >0
(or h(X; — e — Xy11) + HAS; 11 <0) on 3¢ N QLT necessarily h would be 0 (otherwise
simply divide by h). In such a case HAS;11 > 0 (or HAS;11 < 0) on ¢ N QLT and
by absence of one point arbitrage we get HAS; 11 = 0 and hence H = 0. For this reason
neither h(X; — e — X¢41) + HAS; 11 > 0 nor h(Xy —e — X341) + HAS; 1 < 0 for any
(H,h) € R\ {0} so that 0 € intT'x, ..

Take {w;}¥_, € ¢ N Q, (with k < d) such that {[AS;11(wi); Xt — e — X1 (wi)] | i =
1,...,k} are linearly independent and generates the same linear space in R4t as I'yx, ..
By Proposition 2.9, and the convexity of the set of martingale measures, there exists
Q € M such that Q({w;}) > 0 for any i =1,..., k. For such a Q we get

I'x,—c = co(conv{[ASi+1(@); Xt — e — X41(@0)] | @ € supp(Q) N E¢'})

so that, from 0 € intT"x, ., there exists no H(Q) € R? such that X; —e+ H(Q)-ASyy1 >
Xi11 Q-a.s. We can conclude that X; > supgeay, X1(Q) > X; — e. Letting ¢ | 0 we get
SUPQeM, X:(Q) = X; as desired.

finally we prove (64). Notice that C € Ngepy, C(Q). Moreover if g € Ngepy, C(Q)

then (80) holds with X¢(Q) < 0 for every @ € Mj. Therefore also in Equation (81) we have
Xo = Supge pm; Xo(Q) <0and g < Zthl H;- AS; on Q, ie. geC.

4.3.

Proof of Theorem 2.2. Recall that 7g is defined in (57) and Mg in (55). Set

To(g) :=1inf {x € R | 3H € H such that z + (H - S)7(w) > g(w) Yw € Qg }.

LEMMA 2.20. Let g : Q = R and ¢/ : Q — R, j = 1,...,k, be F-measurable random variables.

Then

e (g) = hiél]]{k To(g — h®).

PROOF. For every h € R¥ we have mg(g) < Tao(g — h®) so that e (g) < infjcpr Ta(g — h®).

By contradiction assume 7g(g) < infj,cps 75 (g — h®), then there exist (z,h, H) € (R,R* H) such

that

z < hlélngk To(g —h®) and

T+ (H-S)r(w)+ hd(w) > g(w) for all w € Qg

Clearly we have a contradiction since

T<Te(g—h®)=inf{zeR|IH e Hs. t. 2+ (H-9)r(w) > g(w) — h®(w) Yw € Qg } < Z.

O
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PROOF OF THEOREM 2.2. Since also g is analytic (Proposition 2.17), by comparing the
definition of Qg in (56) with (68), we may repeat step by step the same arguments used in the
proof of Theorem 2.1 and Proposition 2.3 replacing Q. with 2¢. We then conclude that 7¢(g) =
SUPoe m, Eolg] for any F-measurable random variable g. Since Eg[h®] = 0 for all Q € Mg and
h € R*, for the F-measurable random variable g — h® we have

To(g—h®) = sup Eglg—h®] = sup Eglg], Vh € RF.
QeEMs QeMs

The Lemma 2.20 then implies: 74 (g) = infj,cpr Ta(9 — h®) = supgear, Eolgl- d



CHAPTER 3

Models with proportional transaction costs'

Arbitrage and Consistent Price Systems. We consider here a model independent version
of the Robust No Arbitrage condition introduced in [S04]. Whenever this condition holds true
the broker still have room for proposing a discount on the bid-ask spread without creating with
this operation arbitrage opportunities. In this sense the terminology “robustness” of the No Arbi-
trage condition should be interpreted rather than the probability-free setup. Differently from the
approach of [S04] we are not defining arbitrage in terms of physical units of assets, while we are
choosing a numeraire and we are evaluating a sure gain in terms of the value process of a certain

strategy. Nevertheless we show the same equivalence under the name of FTAP:
There are No Robust Model Independent Arbitrage iff there exists a CPS (83)

A related paper in this direction is the recent work of Bayraktar and Zhang (see [BZ13]). In
this paper the authors replaced the single reference probability with a (possibly non-dominated)
set of priors P and considered the case of a multi-period market with a single risky asset. By
using a strong continuity assumption and the tools of Quasi-Sure Analysis they were able to show
the analogous equivalence (83). We point out that even by choosing the extreme class of priors
P as the set of all possible probabilities 8 the Model Independent case is not covered and hence
the desired equivalence is not automatically achieved. In particular, in this Chapter we study a
multi-period, multi-asset model and we show that when no reference probabilities are fixed, we
do not need any continuity assumption in order to show (83). To this aim we will make use of
the general theory of random sets and measurable selection which have already been considered
by Rokhlin in [Ro08] for the probabilistic case. Nevertheless in [Ro08] the author provided an
equivalent condition to the existence of CPSs based on random sets. This condition turns out to
be also equivalent to No Robust Arbitrage due to the equivalence (83) which was already known
from [S04]. Since in this Chapter we do not have (83) while, on the contrary, it is exactly what
we want to show, the extension to the model-free setup of some results of [R0o08] is only partially

useful.

Super-hedging Theorem. The second part of the Chapter is devoted to the proof of the
Super-hedging Theorem in the presence of proportional transaction costs. Denote Q the class of
probability measure @ € B such that there exists a price process S with values in the bid-ask
spread for which the couple (@, S) is a consistent price systems. Recall that from (83) this class
is non-empty if No Model Independent Arbitrage holds true. Denote also by S, the family of

processes S for which Qs # . For a given claim g, in Section 3, we formally prove the following

1Chapter 3 is based on the working paper: Arbitrage and Hedging in Model Independent Markets with frictions.
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equality

sup Eglg] =inf{fx e R|IH e Hst. c +Vp(H) > g Yw € Q} =D(g) (84)
QeQ

where Q is the set of probability measures ) for which there exist a process S € 8. Theset Q, C Q

for which we require the superhedging inequality is given by
Q :={w e Q| 3IQ € Q such that Q({w}) > 0}

and we denominate it the support of the consistent price system CPS (See Definition (3.14)). As a
consequence of (83) this equality is meaningful when the condition No Robust Model Independent
Arbitrage holds true but nevertheless, by assuming the convention that the superhedging inequality
is always satisfied when 2, = &, then (84) is true in general.
The idea of the proof is very simple. By simply writing explicitly the value process Vp(H) of a
certain strategy H we obtain that
T d 4
Vir(H) = (17 = Hi ) (ST pcnny + S0, <)

t+1
t=0 j=1

where §{ and gz are, respectively the cost of selling and buying a share of asset j at time t. We
observe that for any H, the value process Vi (H) is simply the (discrete time) stochastic integral
of a certain process S laying at the boundaries of the bid-ask spread. Since any process Ses
defines a frictionless market it is possible to compute the superhedging price for g that we denote

Pg- From Chapter 2 the equality

sup Eq[g] = ps(9)
QeQgz

holds true and when pz(g) is finite it is actually a minimum with a corresponding set of cheapest
strategies H° . If there exist now a strategy H° € H° such that the stochastic integral (H* o §)T

and the value process Vp(H s ) require the same initial capital to superreplicate g we then have
Psl9) + (H o S)r>g  and  pgl9)+Vr(H®) > ¢

From which supgeg Eqlg] > P(g) holds true which is the difficult part in showing (84).

In order to show the existence of such a process we construct an auxiliary set-valued superhedging
problem (see Definition 3.16) by considering at a certain time ¢ the whole set of random vectors
which are convex combinations of random vectors at time ¢ + 1. Note that for such processes an
obvious conditional martingale with finite support exists and it is given by the convex combination.
We will show in Section 3 that by solving the set-valued superhedging problem we will obtain the
desired S € S.

1. Setting and notations

Fix (Q,B(€)) a measurable space, where € is Polish, and F := B(?) is the Borel sigma-algebra.
Let B = B(Q) be the set of probability measures on (2, F). We consider a discrete time interval
I =10,...,T} on a finite time horizon T' € N and we introduce a (d + 1)-dimensional stochastic
process (S¢)ter which is Borel-measurable and which represents the discrete time evolution of
the price process of d + 1 assets where the first one serves as a numeraire. With no loss of

generality we may therefore assume S = 1 for any ¢t € I. The setup of Kabanov et al. (for
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example [KS01la, KRS02]) can be defined also when a reference probability is absent. For any
t € I a Borel-measurable stochastic matrix A; = [/\ij li.j=0,....a is given, where any )\ij models the
transaction cost for exchanging one unit of the asset i for the corresponding value in units of the
asset j, at time ¢. Following the notation of Kabanov and Stricker [KS01la] and Schachermayer
[S04], one can also define the matrix IT; = [x}’]; j—o....4 given by

gi g
= §(1 + A7)

where any 77? represents the physical unit of asset 7 that an agent need to exchange, at time ¢, for
having one unit of asset j. Clearly i = 0 and consequently 7i* = 1 for any ¢t € I. A standard
assumption is that agents are smart enough to take advantage of favourable exchange between

assets so that, for any ¢t € I, for any w € (), one may assume

ij iky _kiko Enj
IS P A (4

for any combination of asset ki,...,k,.

Differently from the frictionless case when an agent wants to implement a trading strategy she
needs to consider the cost of rebalancing the portfolio after each trade date. The definition of

self-financing strategies, goes as follows:
DEFINITION 3.1. Denote by e; with i = 0,...d the vector of the canonical base of R4 and define
K :=co (conv {ei,ﬂijei —e;|4,7=0,... ,d})

the so-called solvency cone. Any portfolio in K; can be indeed reduced to the 0 portfolio up to
suitable exchanges of assets and up to “throwing away” some money if necessary. The cone of
portfolio available at cost 0 at time t, is simply given by —K; and Fy := K; N —K; is the set
of portfolio which are exchangeable with the zero portfolio.

A self-financing trading strategy H := (Hy)1<i<7 15 a predictable process with
H —H 1€ —-Ky 1 foranyt=1,...,T
meaning that rebalancing the portfolio is obtained at zero cost.

In this paper the asset S° serves as a numeraire and the value of any portfolio is evaluated in
terms of S°. This amounts to the choice of 7/ = 707% in the above setting for any t € I.

We have therefore that the stochastic interval [ﬁ, 7%7] represents the bid-ask spread of the asset
je{1,...,d}.

NOTATION 3.2. In the following, the bid-ask spread [ﬁ,wfﬂ will be shortly denoted as [§{,§§]
fort=0,.... T and j=1,...,d.

For any t € I, for any w € (Q, define
Cilw) i= [81@), 51 )] %, [8F(w), 5} (w)] C R? (85)
ASSUMPTION 3.3. We assume that int(Cy) # &, known as the efficient friction hypothesis, mod-

elling non-trivial transaction costs, and we assume that, for every w fized, Cy(w) is bounded.
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We finally set F° := {F7}icr, where FP := 0{S,, S, | 0 < u <t} denotes the natural filtration of

the processes S and S, and we consider the Universal Filtration F := {F;};cs, namely,

Foi= () FP VNP, where N = {N C Ae F | P(A) =0};
Pey
For any 0 < t < T, we denote by L°(F;; V) the set of F;-measurable functions with values in

V C R%. For technical purposes we will also adopt the following notation:

NOTATION 3.4. For a random set ¥ in R? we denote by U* the (positive) dual of ¥ and for e > 0

we introduce the e-dual of U as

T*(w) = {weR|v-2>0 VoeU(w)}
U(w) = {veR|v-a>e VzeT(w)\{0}}

which they both preserve the same measurability as U as discussed in the Appendiz (see Lemma
3.25 and Proposition 3.27).

2. Arbitrage and Consistent Price Systems

In this Section we consider the class of strategies on {0,...,7 + 1} of the form (Hy,..., Hri1)
where Hy = Hpy1 = 0 and Hy, ..., Hy is a self-financing strategy as in Definition 3.1. Denote by
‘H the class of admissible strategies. Since Hpy1 = Hy + Zf:o & with & € —K; any admissible
strategy has no initial endowment (Hy = 0), it is implemented by subsequently rebalancing the
portfolio at zero cost and at time T" any open position must be closed (Hry1 = 0).

We consider the value process V;(H) of a certain admissible strategy H € H as the position in the

numeraire S° at time ¢ after rebalancing. The terminal value is given by

T d . .
VT(H) = Z Z (Ht] - Htj""l) (Sil{HfSHfH} +§i1{Htj+1SHg}) (86)
t=0 j=1

One can easily verify the above formula. If, for instance, at time ¢ the agent switch from a long
position to a short one in asset j then she needs to liquidate Hg obtaining Hg ﬁ{ and then selling
Htj_s_1 shares of the asset at the same price, yielding (H? — H,{+1)§{ which coincides with the second
term in (86) since obviously Hy,, < Hj. If instead she wants only to diminish the amount of
shares in the long position, then Hth < H} and she needs to liquidate the amount HY — Hgﬂ

obtaining in return (Ht] — Hf 1) §{ . The remaining cases follow similarly.

Using a similar argument as in Schachermayer [S04] we may introduce, and motivate, the following

definition of Arbitrage,

DEFINITION 3.5. We say that a bid-ask process IT has smaller transaction costs than I1 if and only
if for any w € Q, for anyt € I

1 1 ; .
|:~j0,7'('?]:| G |:j0,7T?j:| foranyj=1,...,d
T T

Observe that clearly Vi (H) depends also on II and, in particular, Vy(H)(II) > Vi (H)(II) if II has

smaller transaction costs than II. We will omit this dependence when it is clear from the context.
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DEFINITION 3.6. Consider a market with bid-ask spread I1. We say that a trading strategy H € H is
an Enhanceable Model Independent Arbitrage if for any arbitrary small reduction of the transaction

costs T1 we have Vo (H)(IT) > 0 for any w € Q.

This definition is the model-free version of the Robust Arbitrage condition introduced (in negation
form NA™) in [S04] but in order to avoid misleading terminology in the context of model uncertainty
we decide to stick to the introduced definition. If the condition No Enhanceable Arbitrage holds
true the broker still have room for proposing a discount on the transaction costs without creating
arbitrage opportunity. On the contrary if this condition is not satisfied it is sufficient to have an
infinitely small discount to get an arbitrage opportunity on a certain set of events. Since transaction
costs are often subject of negotiation it looks quite natural to consider markets that exclude these

possibilities.

Before stating our version of the Fundamental Theorem of Asset pricing we lastly need to formulate

the definition of the so-called consistent price systems, in this model-free context.

DEFINITION 3.7. We say that a couple (Q,S) is a consistent price system on [0,T) if S := (S} )eer
is a (d 4+ 1)-dimensional, F-adapted stochastic process with 5’? =1, for any t € I and which is a
martingale under the measure Q € PB(Q). In addition S'g takes values in the interior of the bid
ask-spread defined by II i.e.

for any w € Q and for any j=1,...,d.

Denote My the class of price systems consistent with I1.

2.1. Model free FTAP. We are now ready to introduce one of our main results. The
arguments used in [KS01a] and [S04] to show the probabilistic versions of this Theorem are based
on properties of the dual cones K. The formulation of the problem illustrated in Section 2,
allows for making use of a geometric approach similar in spirit as the one used in [BFM14] for
showing the Fundamental Theorem in the frictionless case, which is essentially based on separating
hyperplane theorems in finite dimensional spaces and measurable selection arguments. We will also
use an iterative modification of the bid-ask spread in order to capture the arbitrage opportunities.
This idea is similar in spirit as in [BZ13] but different in its implementation. In particular no
additional hypothesis on S such as continuity is required. Differently from previous approaches we
also stress that we do not solve first the problem for the one period case and then expanding to the
multi-period case but we directly tackle the dynamic case. This appear to be very natural in the
context of transaction cost since, arbitrage strategies might involve different times of execution.
The simple example in the Introduction of [BZ13] clarify this intuition: consider a single asset
with deterministic bid-ask spread [1,3] at time 0 and [2,4] [3.5,5] at time 1 and 2 respectively.
There is an arbitrage opportunity given by the strategy: buy at time 0 and selling at time 2.

THEOREM 3.8. Let My the set of consistent price systems as in Definition 3.7. We have My = &
iff there exists an Enhanceable Model Independent Arbitrage
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Before giving the proof we need some preliminary results.

For any ¢ € I, for any w € (2, define iteratively, the following random sets
@T+1(w) = Rd

(87)
O;-1(w) := Cp_q1(w) Ncono (O4(Xy_)) fort=T+1...,1

where ¢ ;| denotes the level set of w ie. 3¢ | ={@ € Q| Sp.4—1(@) = So.t—1(w)}. Here Sp.p—1(w)
is a shorthand for the trajectory of the process S up to time t — 1. Since F¥ C F we have
XY € Fiog forevery 1 <t <T.

The random sets ©; represents a backward modification of the bid-ask spread. The intuition
behind this operation is the following. Consider first ¢ = T and observe that ©r is simply Cr.
The random set ©7_; is given by the intersection of the bid-ask spread at time T'— 1 and the set
of all convex combination of elements with values in the bid ask-spread at time 7. Consider now
a probability measure P € P with finite support and suppose P(£%._,) > 0. We note that if P is
a martingale measure for some (Xr_1, X1) € Cr_1 x Cr then the conditional expectation Xp_;
needs to be a convex combination of Xr. We are therefore excluding from Cp_; those values that
cannot represents a conditional expectation of an Fr-measurable random vector with values in Cp
for any probability measure with finite support. This will lead us to the proof of the Fundamental

Theorem of Asset Pricing. We begin with the following
LEMMA 3.9. For anyt=0,...,T + 1 the random set ©; as in (87) is Fi-measurable.

PROOF. For t = T + 1 the claim is obvious. Suppose now that the claim holds for any
se€{t,..., T+ 1}, we show that ©;_ is F;_1-measurable. Observe first that C;_; (w) is the closed
convex hull of the multifunction w — p1(w) x - - - X pg(w) where p; = ﬁ Und forj=1...d. All
the p; are F;_;-measurable random sets being union of two F;_;-measurable random sets (whose
values are singletons), by preservation of measurability through the operations of finite cartesian

product, convexity and closure we have that C;_; (w) is also F;_;-measurable (see Proposition 3.27).

We turn now to the set ©4(X4%_ ;). Denote by dom O := {w | ©(w) # @} Since, by hypothesis,
©; is Fi-measurable it admits a Castaing representation, i.e. there exists a collection {¢, } of F;-
measurable function ¢, : dom ©; — R% such that {¢, (w) [ n € N} = O;(w) for any w € Q. Define
therefore for n € N the multifunctions G,, : w — {¢n (@) | @ € ¢} which are F;_;-measurable
since
YO CRYopen {weQ|G,(w)NO #a} =S5, (So:—1 (cp;l(O)))

belong to Fi—1. Recall indeed that image and counterimage of Borel sets through Borel mea-
surable functions are analytic and that the Universal Filtration contains the class of analytic
sets of F;_1(See for example Theorem III.18 and Theorem III.11 in [DM82]). Observe now
that ©4(3%_ ;) = UnenG,. The inclusion D is obvious, while taking 7 € (3¢ ;) and a se-
quence x, — T we note that x, € U,enG, for every k, since this set contains the collection
{on(w) | n € Nyw, € X¢ ;} induced by the Castaing representation of O; on the level set ¢ ;. It
therefore follows that T € U,enGyr. We conclude that

011(w) = Cy_1(w) NEomD (04(5%)) = Cy_1(w) N Eom (UnenGh) (88)
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is F;_1-measurable since the random sets C;_; and {G,, } nen share the same measurability property

and the transformations involved in (88) preserve measurability (see Proposition 3.27). O

COROLLARY 3.10. The random sets C(w), ©r41(XY) and conv (O:41(X¢)) are Fi-measurable for
anyt=0,...,T.

PROOF. Measurability of C; follows from the first part of the proof of Lemma 3.9, measurability
of ©:41(2Y), and therefore of conv (0;4+1(X%)), follows from (88) and the discussion right before.
O

REMARK 3.11. Note that with no loss of generality we may assume that if O4(w) # & then
int(Oi(w)) # @. Fort = T this is true since, by construction, O = Cr and int(Cr) # &
by Assumption 3.3. If this is true up to time t + 1 then it is true for time t by considering, if
needed, a bid-ask spread with smaller transaction costs IL,. Indeed, since Cy and conv (@t(E‘t"_l))
have non empty interior by hypothesis, if the intersection has empty interior it is sufficient to
consider an arbitrary small reduction of the bid-ask spread process to obtain ©, = &. Take for
example 7 = 77 — e(w) and 1/71° := 1/71° + e(w) where e(w) := ¢ (ﬂ'?j(w) - l/wgo(w)) >0

for an arbitrary small € > 0.
LEMMA 3.12. Let O; fort =0...T as defined in (87) then
{we|6i(w)#0 Vt=0..T}#0 = Mp#0

PROOF. Our aim is to build up a consistent price system iteratively. By definition of ©; and
from the hypothesis, for any § € ©;(w) # @ there exist Ai,..., Ay, > 0 with 2", A\; = 1 and
Y- Ym C Opp1(XY) C Cry1(XY) such that 7= 37" Ay
Start therefore with an arbitrary xg € int(©p(w)) which is non-empty from the hypothesis and
from Remark 3.11. Associate to zy the real number p(zg) = 1. Suppose a set of trajectories
Zy = {x0.+ € Mat(d x (t+ 1))} has been chosen up to time ¢ with associated p(zg.+) > 0 summing
up to one. Here Zy = {x¢}. By applying the above procedure to x; where z; is the value at time

t of a trajectory xg.; € Z;, we can construct a new set

Zir1 = {04, y1(xo:)]s - - - [0t Ym (@0:t)] | ot € Zi}

with associated p([xo.t, ¥i(20.4)]) = Aip(x0.t)-
Observe that given the set Zr for any xg.r € Zr there exists w € Q such that xxg.r € Co(w) %
-+ x Cp(w). Moreover, defining S (w) := x; and the probability measure Q(w) := p(zo.7) we have

that §t is Fy-measurable for any ¢t = 0,...7 and
EolSi | Fi)=S,_1, fort=1,..T (89)

Thus, @ is a martingale measure for S which by construction lays in the bid-ask spread. O

We are now able to prove the Fundamental Theorem of Asset Pricing.
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PROOF OF THEOREM 3.8. The “if” part is easy and we prove it by contraposition. Suppose
M # &, hence there exist S = (§t)tej and @ € B such that §t € int(Cy) and §t is a Q-martingale.
Let H € H such that Vp(H) > 0. By adding and subtracting §§ in (86) we note that the term

T d . ~. i g
S (1 = ) (51 = S0z + (51~ DL )

t+1
t=0 j=1

is always non positive and hence we get

T T
0<Vr(H) < Z(Ht —Hip)- Sp = ZHt : (gt - gtfl)

t=0 t=1
by also recalling that Hy = Hp41 = 0. By taking now expectation on both sides we get Vr(H) =0
for some w € Q from which No (Enhanceable) Model Independent Arbitrage is possible.

We prove now the “only if” through several steps.

Step 1: Define first the random time
T(w) :=inf{0 <t < T | ©; = @ and conv (0:41(XY)) # &}

Observe that 7 is a stopping time: for any ¢ € I the set {7 < ¢} coincides with the set U’_, ({w :
O;s(w) = @} N{w : conv (Os41(2Y)) # @}) which belongs to F; from Lemma 3.9 and Corollary
3.10. Observe now that under the assumption My = @, as a consequence of Lemma 3.12, for any
w there exists s = s(w) such that O,(w) = @.

Moreover 7 is a finite stopping time since straightforwardly from definition (87) it follows ©p(w) =
Cr(w) # @ and hence conv (O1(2%._,)) # @. We can therefore deduce that 7(w) < T — 1 for any
w e .

Step 2: For any t € {0,...T} let H = {H, | s <t} with Hy = 0 and H, € L°(F,_1;R?) be given.
For ¢ := sgnHy, we introduce the following process S'f which take values at the boundary of the
bid-ask spread.?

i —1 —d
Sp = (ﬁtll{ngo} + 9 1 mcop - ST gy + Stl{H;l<o}) (90)

We introduce also the sets A; and B; as follows:

A= {r=1n ﬁ{Hs =0}, By={H,#0}n{S ¢ ©,}

s=0

For an interpretation of these sets see Remark 3.13.

We now show that A; and B; are F;-measurable. The measurability of A; is obvious from 7 being a
stopping time and the measurability of Hy for s < t. Now, observe that sgn(H;) is F;_1-measurable
since for any z € Z:= {x € R | ' € {~1,0,1}}, sgn(H;) " (z) = H; ' (21(0,00) ... x 24(0,00))
where with a slight abuse of notation x;(0, 00) is either (0, c0), (—00,0) or {0} according to x being

respectively 1, —1 or 0.

2The choice for the event {Htl = 0} can be actually arbitrary without affecting the value of the strategy, for

the sake of simplicity it is included here in the positive case.
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S’f is instead F;-measurable since for any Borel set of the form O := O; x ... x Oy C R? with O;

open for ¢ = 1,...d, we have

($H)7H0)= NL, (8)7H0)N(©)70,00) U

The set {S° € ©,} is Fi-measurable since it is the projection on €2 of the intersection of Graph(5¢)
and Graph(©;). We easily conclude that B, is F;-measurable.

Step 3: Consider the sets A; as in step 2. We show that for any ¢t = 1,...7T and for any £ > 0,

there exists an F;_j-random variable HtA such that Vw € A;_4
HMw)-(y—x) > ¢ Yy € 0427 ,), Vo € Ci_1(w) (91)

For any w € A;—y since ©,_1 = &, by (87) the random sets Cy_1(w) and conv (©,(X_,)) are
closed, convex and disjoint. In particular Hahn-Banach Theorem applies and for every w € A;_;
there exists ¢ € R? such that -2 > & > ¢ -y for any x € ©,(2% ), y € C;_1(w). We have
therefore that the random set (04(X¢ ;) — Ci—1(w))¢ (see Notation 3.4) is non-empty on A;_; and
Fi_1-measurable by Corollary 3.10 and Lemma 3.25. Take therefore H* a measurable selector of
this set.

Let us stress that the value € can be arbitrary.

Step 4: We are now ready to construct iteratively the strategy that will realize an arbitrage
opportunity and, in particular, with an arbitrary ¢ > 0, it will satisfy the following
6

Vici(H)+ Hy -y > 51 for any y € ©(Xy ;) and for any w € A;_1 U By_. (92)
with H; = 0 otherwise. For ¢t = 1 Equation (92) is trivially satisfied by H{* as in (91) with ¢ = §
arbitrary: we have indeed that By = @ and from (86), Vo(H{) + H{* -y = H{* - (y — 2) for
T = ?ﬁl{OSH{} +§{1{H1j§0} € Cy(w) Define therefore H; := Hi{' and suppose we are given a
strategy H = (H,)!,_, satisfying (92).

Recall ¢ := sgnH,. For any 1 € Z denote the partial order relation on R? given by
hi =y he iff hy —hy €71[0,00) x -+ x [0, 00)
and consider now

1)
f1i=wr {h €R? | Hy(w) = hand V*(H) +h -y > 5 W€ @t+1(zf)}
where V/*(H) := V;_1(H) + (H; — h) - S/ (w) is the value of the strategy H = Hy, ..., H; extended
with Hepq(w) = h (cfr Equation (86)). We first show that for any n € Z, f" is F;-measurable.
Then we show that for any w € A; U By, for at least one n € =, the set f” is non-empty so that
by choosing a measurable selector of U= f" (which exists by Proposition 3.27 and Theorem 3.28)

we get the desired inequality (92) for time ¢.



82 3. MODELS WITH PROPORTIONAL TRANSACTION COSTS

For the sake of measurability we consider the (6/2')-dual of the F;-measurable set [O;11(X%) —
S (w); Vie1(H) + Hy - 8] (see Corollary 3.10 and recall Notation 3.4) i.e.

N N )
{<h7hd+l> ER X R | h-(y— SP(w)) + han (Vier (H) + Hy - 871) > > Wy e @m(E?)}

ot
and take the intersection with the F;-measurable random set
m(—o0, H (w)]x, ... x nd(—oo,H;i(w)] x {1}

fo coincides with the projection on the first d components of the resulting set and it is thus F;-

measurable (see again Proposition 3.27).

We now show that for any w € A; U B, fixed, the set U= f"(w) is always non-empty. On A; we
consider again H, as in (91) with & = §/2' and the conclusion follows as above.

We now turn to w € B;. Observe first that if $%(w) € ©4(w) then the position can be closed with
a strictly positive gain. Indeed with h = 0 we get from (86) and the iterative hypothesis (92)

d
' . —; 4 ) )
VI(H) = Vi1 (H) + E (Htj _0> (Szl{Hggo} +§g1{O§H{}) 251> o
i=1

If 55(w) ¢ ©4(w). The position cannot be closed without a loss at time t. We show that never-
theless it is possible to rebalance the portfolio in order to maintain a positive wealth, namely we
show that (92) holds also at time ¢.

Consider set of vertices of Cy(w)

Vi {18720 50) + 511 cop ] |7 € {-1,0,1}4}
and the set
L:={yeR"|V,_1(H)+H -y<0}nV
From the inductive hypothesis we have: i) By C A;_1 U By_1 since H;(w) # 0 only on A;_1 U B;_1

and ii) ©,(w) N L(w) = @. Moreover, since 55(w) as in (90) is a vertex and S%(w) ¢ O,(w), we
thus have $%(w) € L(w). Consider now the set

Fi={heR'|h - (y—1)>0 VyeO,1(%%), Ve Lw)}

which is non-empty for w € B;: by definition O;(w) := C¢(w) Nconv(O:41(XY)) (see (87) above)
from which the sets conv(L(w)) and conv(©:41(ZY)) are disjoint and applying Hyperplane sepa-
rating Theorem we obtain the assertion. Note, moreover, that since the separation is strict for any
h # 0 there exists € > 0 such that h- (y —1) > ¢ Vy € ©,41(2%), VI € L(w).

For any h € R define now

/\h . . 7‘] .

(S = Stl{Hgghj}‘Fﬁgl{hngf} (93)
where [-]7 denotes the j** component of a vector. We can distinguish two cases:

(1) there exists h € F such that S" € L.
(2) forallhe F, Sh e V' \ L.
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In case (1) there exists h € F and & > 0 such that - (y — SP') > ¢ for all y € ©,41(2%). Define

Nnow

1 A 1) 1 1) _
(651 ::max{s <_W_1(H)_HtS?+2t1>’1+2t1}21+2t17 hzathF (94)
and observe that
N - A )
Vt—l(H)JFHt‘SthﬂLh‘(y*Sf)ZF Yy € 0441(37) (95)

In order to retrieve the value VJ/*(H) in (95) we need to replace S!* with S. By showing that
(Hy —h) - S > (H, — h) - 8P, it will follow from (95) that

VIH) + 1y =Viey(H) + (H, —h)-Sh+hey >

Vir(H) + (Hi=R)- St +hey > o5

and hence the desired inequality. To show the claim let j € {1,...,d}. If W/ H] < 0 or |h?| > |H]|
then from (93) and a; > 1 we get [S")7 = [S!')7. Suppose now HJ < hi < 0 then again from (93)
and oy > 1 we obtain [$]7 < [$")/ from which

Vy € 0441(37)

(H] = W)[S} = §1 > 0
One can easily check that the same is true for 0 < h/ < Hj.
Suppose now we are in case (2). Recall that S° € L(w). For any h € F there exists e > 0 such
that for any y € O:11(3¢),
hely =S +h-(S) = 8) 2e=h-(y—5) 2e—h- (5 - &)
There exists ay > 0 such that az(e — h - (SP — 8%)) > —§/2¢. Denote

vy = min 0 = e
2te|l — h- (S} — Sp)

Similarly as above k- (S — §7) > 0 and hence

1} hi=aheF (96)

holy =S8 =h(y=S)+h (S =87) > h-(y = 57) = ~6/2
Observe now that in case (2), Vi1 (H) + H; - S} > §/2!=1 and hence
Vie1(H) + Hy - 8P+ 1 (y — 51 > 6/2"

as desired.
Step 5: Let (H,)T_, the iterative strategy constructed in step 4. For every w € ) we have
T(w) < T —1and Hy41 # 0. Moreover, since ©7 = Cr we obviously have By = & and hence
there exists #(w) < T such that S7"""7(w) € ©,(w). From step 4, Vi (H)(w) > §/2. Since w € Q
is arbitrary we have the conclusion.

t

REMARK 3.13. The sets Ay and By represents two different actions that must be undertaken in
order to realize a Model Independent Arbitrage opportunity. Note indeed that Ay N By = &. Fix
we€Qandt. If we Ay, a new position is taken. No strategy has been open before t since we are
working on ﬂZ:O{HS = 0} and this is the first time where we can make a model independent gain

by trading in S since T(w) = t. At this stage we are not concerned about liquidating the position.
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Suppose that at time t we already have an open position (so w € As for some s < t). If w ¢ By
then it can be liquidated at this time producing a strictly positive wealth with zero initial cost. If
w € By then it is not possible to liquidate the position at this time and we need to keep (or modify)
the position and close it at subsequent times. By moting that Br is always the empty set, either
because the position is closed before T or because by (92) {S39"" ¢ ©r} = @ on {Hyp # 0} we

see that it is always possible to close the position opened on As,.

3. On Superhedging

Recall the definition of the class My of price systems consistent with the bid-ask spread II (see
Definition 3.7) and the definition of C; in (85). Consider the following

Q:={Q € P | 39 a Q-martingale with S; € L*(F;;Cy) for t =0,...,T} (97)
or, in other words, the projection of My on the set of probability measures and
S = {S (St)ter | St € EO(]:t, Cy) and 3Q € P s.t. Sisa Q- martmgale} (98)

i.e. the projection of My on the set of F-adapted process. For any S € S define also the section
of My as

Qs :={Q € Q| S is a Q-martingale} (99)
The maximal Qg-polar set has been characterized in [BFM14] and denoted as (€.)¢. We here

adapt the definition of €2, in this market with frictions. In particular let

DEFINITION 3.14. Let Q as in (97). We define the support of the consistent price system I as
Q, ={weQ|3Q € Q such that Q({w}) > 0}

The aim of this section is to prove the following version of the superhedging Theorem:

THEOREM 3.15. Let g : Q — R F-measurable

sup Eqglg| =inf{z e R|3IH € H s.t. 2+ Vp(H) > g VYw e Q. } =:D(g) (100)
Qe

where Q is defined in (97) and Q. in Definition 3.14.

PROOF OF (<). Let S = (St)tcs be a process in S. Take z € R, H € H such that x+Vp(H) >
g. Consider now equation (86) from which we add and substract Sg for any t € I and for any

j=1,...d as follows:

H} — H]

M-

Vr(H) = ) (S0 + ST, <y = 51+ 51)

<
Il
—

H) — H]

M- 1-

i} = H] ) (50 =S e, + (81— DLy, <)

M= 1M~ LM 1M
<
Il
i

(
(
(
(

J=1
d . d T
< > (H] - H],, sg:Z<ZHJSJ ZHJS ) (HoS)r
t=0 j=1 j=1 \t=1
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where (H o S)r is the usual (discrete time) stochastic integral. Note that the previous inequality
follows from the fact that Stj € (ﬁ{ , ?ﬂ) for any j and for any ¢, while all the equalities are simply
rearrangement of the terms. Recall also Hy = Hpy1 = 0. We have therefore obtained that for any
strategy H and for any S € S

Vi (H) < (H o S)r (101)

Observe now that by taking expectation with respect to a martingale measure @ for the process
S in both sides we get Eg[Vr(H)] < 0. Since (101) holds true for an arbitrary couple (S, Q) and
by recalling that Q. is the support of the consistent price system (see Definition 3.14) we have

gw)<z+Vp(H)(w) VweN, = Eglgj<z VQeQ
Take now the supremum over ) € Q in both sides and then the infimum over x € R to obtain

sup Eqlg] < p(g)
QeQ

as desired. O

As usual one implication is easy. In order to prove the opposite we need some preliminary results.

We first rewrite the explicit expression of the wealth process (86) in the following way

Vi(H) = Y Vi(H) (102)

Jj=1

where

[M]=

| L |
vit) = 3 (B = #hn) (S ey + S )

~
Il
o

H (Stl{H{gH{+1} +§g1{H{+1<Hf}>

M= 1~

~+
Il
o

By recalling the convention Hy = Hry; = 0 and by changing the index in the second sum we get
Vr(H) = ZtT:o H; - ASH where

[AStH]j = (?{ - gg—l) 1{H571§H§§H5+1} + (E{ - §{71> 1{H§<Hffl}m{ngH9‘

t t+1}
i o
+ (51 - g,l) Yy, <mi<nmi ) T (g{ - St—l) Ynzni_ yoimi>mi,)

We will construct now an auxiliary superhedging problem which involves a family of processes in
S where S is defined in (98).

Introduce first,
Fr(w,z) =g(w) and Sr(w):=Cr(w) (103)

Define iteratively for t =T —1,...,1 the random sets

St((JJ) = W{St+1 (&;) ‘ RS E‘{)} N Cy (104)
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Note that for every ¢, S; is F;-measurable. Indeed, for t = T it is obvious; suppose this is true for
t+1< s <T. Consider S;11(X¥) which is obviously an F;-measurable map since for any open
set O C R? we have

{weQ|S1(ZY) N0 #a} = 557 (Sot({w € Q| Spr1(w) NO # 2}) € F
the measurability of S; follows therefore from Proposition 3.27 in the Appendix.

DEFINITION 3.16. We call the set-valued superhedging problem the following backward procedure.
Foranyt="1T,...,1, for any y € R define

H(w,z)={HeR |y+H-(s—2) > F(w,s) VseSw), Voexy,}

and

Fi1(w,z):=inf{y e R | H(w,x) # &}
We simply denote by Hi(w, ) := Hft_l(w’x)(w,x) the set of optimal strategies at time t € I.
Fo(zo) will be called the set-valued superhedging price for the initial value zo € R,

The next Proposition is crucial for the well-posedness of the prescribe procedure. It provides
fundamental measurability properties for the whole scheme. Its proof, as well as the proof of the

subsequent results, is technical and hence they are all postponed at Section 3.1.

PROPOSITION 3.17. Let Fy(-,+) : @ xR? s RU{+o0} fort =0,...T as in Definition 3.16. Denote
by D, (w) = {z € R? | Fy(w,z) > —00} the effective domain.
We have that
(1) For every x € R? fized, the map Fy(-,x) is F;-measurable.
Moreover, when finite, Fy(-,x) is a minimum.
(2) For every w € Q the map Fy(w,-) restricted to D, (w) is continuous.

(8) For every w € Q, Dp,(w) is conve.

Items 1 and 2 imply that Fy(-,-) is a so-called Charatéodory map in its effective domain.

PROOF. We postpone the proof at Section 3.1. O

For any initial value ¢y € R the set-valued superhedging price Fy(zg), from Definition 3.16, rep-
resents (when finite) the minimum amount of cash needed for superhedging F;(w, s), for any time
t € I, for any w € ), and for any intermediate value s € S;(w). This value looks too conservative
since it consider many possible intermediate values for S;. We nevertheless now show the exis-
tence of Typ € Cp such that: i) there exists a process (S¢)ier with Sp = g and with values in the
bid-ask spread such that the superhedging price of g with no frictions is Fy(xzg). ii) the collection
of strategies provided by the solution of the set-valued problem compose a self-financing trading
strategy such that
Fo(Zo)+Vr(H) > g Yw € Q,
We prove this in a constructing way. More precisely we need the following step-forward iteration:
suppose that at time ¢ > 1 the random variables S;_; € £L°(F;_1) and H; € LO(F;_1; H;) are given
and define
Xi—1(w) == Fio1(w, Si-1(w)),
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LEMMA 3.18. Suppose X;_1(w) < oo for any w € Q. There exists a random vector Sy € LO(Fy; Cy)
such that, for all w € €,

X, 1(w) =inf{y € R|IH € R s.t. y+ H - AS(@) > F;(@,5:(@)) Vo ex¥ |}
where AS := Sy — S;_1. Moreover, if X;_1(w) > —o0, Hy(w) is an optimal strategy.
PrROOF. We postpone the proof at Section 3.1. O

PROPOSITION 3.19. For every xg € Cy there exists a price process S = (St)icr such that:
o So =z, Sy € LO(F;;Cy) for every 0 <t < T.
o Let 2,.(S) :={weN|3Q € 9s s.t. Q({w}) > 0}. Then,
inf{zx e R|IH € H s.t. x4+ (H o S)r(w) > g(w) Yw € Q,(S)} = Fo(xo)
where Qg is defined in (99).

PROOF. We postpone the proof at Section 3.1. O

We now construct, for a given initial value z¢ € Cy, a strategy H := (Hy,... Hy) whose terminal
payoff dominates g. We first need the following step-forward iteration. Recall from Definition
3.16 that H:41(+,-) is the set of optimal strategies for the (conditional) set-valued superhedging

problem.

PROPOSITION 3.20. There exist a random vector §t € Li(F:; Cy) and a trading strategy Hyiq €
LO(F;) such that, for every w € {X;_1 < 0o}, we have Hyi1(w) € Higr(w, Sy (w)),

X1 (W) + Hy - (Si(@) — Si-1(@)) > Fi(@, 8,(@)) Vo e x¥ ,, (105)

and the following properties:
o if Hi(w) < Hi, (w) then Si(w) =5 (w)
o if Hi(w) > Hi, (W) then Si(w) = S"(w)

In particular if St € (ﬁi(w),gi(w)) we necessarily have H} (w) = H} ;(w).
PROOF. We postpone the proof at Section 3.1. O

REMARK 3.21. With a slight abuse of notation, when X;_1(w) = —oo we intend that there exists
a sequence {(yn, Hy)} C R x LO(F;) with y, — —o00, such that for every n € N the conditions of
Proposition 3.20 are satisfied. The same apply to Corollary 3.22 when Fy(xg) = —oo.

COROLLARY 3.22. For every xg € Cy with Fy(xg) < oo there exists a predictable process H :=
(Hi,...Hr) such that

d

Fowo) + (0= Hy o) + 3037 (8] = Hloa ) (S, + 81 1y <aaiy) 2 9 0n 0
t=1 j=1
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PROOF. Note first that if Fy(zg) < oo then X; < oo Vi = 0,...T. Applying iteratively

Proposition 3.20, there exists a process S with Sy = zo which satisfy the following inequalities
F0($0)+H1-AS1 > X3
Fo(l‘o)-i-Hl ~AS1 + Hy ‘ASQ > X5

T
Fo(l'o) + ZHt . Agt

t=1
on A:={we Q| Xt(w) > —o00Vt=0,...T}. Note that, by construction, X;(w) = —oo for some
t=0,...7T if and only if Q({w}) = 0 for every Q € Q, so that A = . Rearranging the terms in

Y

Xr=g

the summation as
T

T
ZHt . Agt = Z<Ht — Ht+1) . S’t — Hl X
t=1

t=1

the properties of S yield the desired inequality. O

For any starting point xy we can therefore find the desired process by iterative application of

Lemma 3.18. This lead us to the proof of Theorem 3.15 as follows:

PROOF OF (>) IN (100) oF THEOREM 3.15. Let Fy(x) the solution of the superhedging prob-
lem in Definition 3.16. Take

m = sup Fy(z)
zeCo

Suppose first that m = oco. There exists a sequence z,, € Cy such that Fy(x,) — oco. From
Proposition 3.19 there exists a sequence of processes S™ := (S7')ier € S whose superhedging price
explode to co and hence the inequality is trivial. If m = —oo then by Corollary 3.22 and (<) in (100)
the equality follows again trivially as a degenerate case. If m is finite then m = SUD, 5 Fy(x).
By Proposition 3.17 Fp is non-random, continuous and Dp, is a closed subset of a compact set
Cp. Thus m is a maximum and we denote by Ty a maximizer. By Proposition 3.19 there exists a
process (gt)tel with §0 = Ty whose superhedging price is m, namely,

m = inf {x ER|IH e H st. 2+ (HoS)r(w) > gw) Vwe Q*(g)} = qugp Eglgl  (106)

€Cs

where the last equality derives from Theorem 1.1 in [BFM15].
On the other hand by adding a fictitious node ¢ = —1 to the set-valued problem in Definition 3.16,

with S_; = %y, we have that the minimization
inf {y €R | HeRYst. y+ H-(s—Tg) > Fy(s) Vs € Sp, }

has the obvious solution X_; = m, with corresponding optimal strategy Hy = 0. By applying
Proposition 3.20 we obtain H; such that

d
o |
Hywo =3 iy (S oem, ) + S im,, <o)

j=1
Apply now Corollary 3.22, with z¢p = ¢, to get the existence of a trading strategy (H¢)ies such
that (cfr equation (102))
m+ Vr(H)(w) > glw) Yw € Q, (107)
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The desired inequality follows from (106) and (107):

sup Eg[g] = sup sup Eg[g] > sup Eqlg] = m > Dp(9)
QeQ SES QEQs QeQs

3.1. Proofs.

PROOF OF PROPOSITION 3.17. For ¢t = T the claim is trivial. Suppose it is true for all t4+1 <
s<T-—1.

1. We first show that S;;1 takes value in the effective domain of Fyq(w,s). From (104), any
5 € S¢t+1(w) is limit of convex combinations of elements in S;12(2¢). Let s, — 5. Therefore, for
any n € N, there exist:

® Wi, .., W(n) With w; € 3¢ for every i;

® 21,..., Zp(n) With z; € Syyo(w;) for every i;

® Ai, . Ag(n), with 0 < Ay <1 for every
such that s, := ng{) Aiz;. Consider a frictionless, one-period model, on {z1, ..., z, } with Sy = T,
S1(zi) = z for every i. Q({z}) := \; define a martingale measure for the process .
Denote by M(S) the set of martingale measures for S and 75(g) the superhedging price for
g(2i) := Fiyo(wy, 2;) in the one-period model. From the classical theory

—00 <z, < sup  Eglg] =m5(9) < Fryi(w, zn)
QeM(s)

where the last inequality follows from Fi,; being the solution of the set-valued problem. We thus

have that s, € Dp,,, (w) for every n and hence 5 € Dp, ,, (w).

Observe now that, from the inductive hypothesis, s — (s — x, Fi11(w, s)) is a Charatéodory map
in the domain of Fy; . Since S;1; takes value in D, ,, Lemma 3.29 in the Appendix, implies that

the multifunction

Y(w) rw = (Spr1(w) — o, Fipr (W, Sey1(w))
is Fy-measurable. Applying now Lemma 3.31 with AS, = Y, X =0C =R x {~1}. This
particular choice yields

Ac(w)={(H,y) e R™ |y + H- (s —2) > Fyp1(w,s) Vs €Spy1(@), Yo € ¢},

so that the resulting X;, H;11 from Lemma 3.31 represents, for any w € € the minimum amount
of cash needed for superhedging Fy;1(w, s) for any intermediate value s € S;11 (@), and the corre-

sponding optimal strategies as desired.

3. We first show item 3.
Fix w € Q. If Dp = @ there is nothing to show. Denote by

Alx):={HecR|H-(s—x) >0 Vs€S1(X¥) with > 0 for some 5}
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We show that the set C := {x € Dp,(w) | A(z) = @} is convex and D, (w) = C from which the
thesis follows. Denote by
I := conv{Si+1 (%)}

Take now z1,22 € C and recall that, from Hyperplane separation Theorem, A(z;) = @ if and
only if x; € ri(T"). As T is a convex set for any 0 < A < 1, Azy + (1 — N)ay € ri(T") and hence
Az 4+ (1 = Nze)) = 2.

We now show that if # € Dp(w) then there exists a sequence z € C such that z — z. Take
x ¢ C otherwise is trivial. Note first that # € T otherwise by Hyperplane separation Theorem
there would exists v € R? and e > 0 such that v - (S¢41(X%) — ) > & which would give z ¢ Dp(w).
Take now z € ri(I"), for every k € N

) _
oy = <1—k>x+Z6m‘(r)

clearly x, — x as k — oo and again from Hyperplane separation Theorem x € C.

2. First observe that if there exists Z such that Fi(w,Z) = 400 then Fi(w, ) = 400 and hence:
Dp,(w) = R? and Fy(w,-) is trivially continuous. Indeed, since F}(w,Z) = +o0, for any H € R¢
there exists a sequence {(wy, $n)} such that H - (s,, — ) — Fiy1(wn, s,) — —oo. Therefore the

same holds true for the sequence H - (s, —x) — Fy+1(wp, $p) with z arbitrary. Thus, Fy(w, z) = +o0.

We may now suppose that Fy(w, ) < 400. We first show that F(w,-) is upper semi-continuous at
x € DF,, (w)

For x € Dp,(w), Lemma 3.31 implies that there exists an optimal strategy H such that

Fiw,z)+ H-(s—z) > Fiy1(w,s) Vs € Siy1(@), Vo € XY (108)

Let now {x }72 , such that x, — « for k — co. Observing that H-(s—z) = H-(s—xx)+H - (zx—2)
we get, from (108), Fi(w,zr) < Fi(w,z) + H - (zx, — x). By taking limits in both sides we can

conclude that Fy(w,-) is upper semi-continuous:

limsup Fi(w, zp) < Fi(w, x) (109)
k— o0
The case of © ¢ Dp,(w) is similar. Since Fj(w,z) = —oo there exists a sequence {H,} such

that (108) is satisfied with (—n, H,,) replacing (Fi(w,z), H). We analogously obtain Fy(w,x)) <
—n + H, - (z — x). By taking the limit in & in both sides we get limsup,_, . Fi(w,zx) < —n for

any n € N, from which the upper semi-continuity follows.

We now turn to the lower semi-continuity. Let z € D, (w). If x ¢ Dp, (w), i.e. Fi(w,z) = —o0,
from the previous step we already have continuity. Suppose therefore z € Dp,(w). Lemma 3.31

implies that there exists an optimal strategy H such that (108) is satisfied.

case a) If the inequality in (108) is actually an equality we have perfect replication and hence

for any ¥ € Dp,(w) we have Fy(w,Z) = Fi(w,x) + H - (Z — x): if indeed there exists (z, H,) a
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superhedging strategy with | := z — Fy(w,x) + H - (x — x) < 0 then it is easy to see that
(H, — H) - (S0 (S9) = 3) = 1> 0

from which T ¢ Dp, (w).

By considering {x}%2, such that z; — = we obtain
lim Fi(w,zy) = lim (Fy(w,z) + H - (2 — x)) = F(w, z)
k—o0 k—o0

as desired.

case b) Define
Giw,z) :=sup{y e R |3IH € RY: y+ H-(s—1z) < Fr1(@,5), Vs € Siy1(@), Vo € sy}
and, for all y € R, the set
Ty (x) :=co(conv{[s —x; y — Fi11(@,8)] | s € St (@), @ € Z¥}) CRY x R
Note that Fy(w,z) > Gi(w,z) and int(I'y(z)) # @ otherwise there is perfect replication and we

are back to case a). Take therefore y € (G¢(w, ), Fi(w, x)).

If 0 € int(T'y(x)) there exists & > 0 such that for every ¢ < &, By.(0) C int(I'y(x)). For any
(0,%) € B.(0) with 7 € R%, we have 0 € int(I'y(Z)), hence, there is no non-zero (H,h) € R? x R ,
such that either

hy — Fry1(@0,8)+ H-(s—=2) >0 or h(y— Fip1(@,8)+H-(s—2) <0 (110)

for every s € S;11(@) and @ € X¢. In particular there is no H € R? such that y + H - (s — 7) >
Fiy1(0,s) for every s € Si41(w) and @ € 3¢, Thus, Fi(w,T) > y. Since the same holds true for

every T such that || — z|| < e, we get

liminf Fy(w, x) > Fi(w,z) — e (111)
Since ¢ is arbitrary small we obtain the thesis.
If 0 ¢ int(I'y(x)) there exists a separator (H,h) € R? x R such that (110) holds true but since
y € (Gy(w,z), Fi(w,z)) we necessarily have h = 0. Consider now a separator H := (H,0) with

H € R?% and denote by H+*, HT the positive and non-negative half-spaces associated to H.
Analogously H~—, H~. Define

A={zeR™ |H . 2=0}nT,(x)
CrLamM 3.23. 0 € ri(A).

Observe that since T'y(z) € HT and 0 € ri(A), there exists &£ > 0 such that for every ¢ < &,
we have By.(0) N HTT C int(Ty(x)). As in case a) for every (0,7) € B.(0) N Ht* we have
0 € int(T'y(x)). This implies F;(w,Z) > y. In order to conclude observe that if (0,z) € B.(0)NH~
then = ¢ ri(Dp, (w)). If indeed 7 is such that H - (z — z) < 0 then

H - (8 — 5) >0 Vs € St+1(a)7 w e Ef (112)
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It is easy to see that in every neighbourhood of Z there exists an element Z for which, replacing =

with Z in (112) the inequality is satisfied with a lower bound. Thus Z is not in Dp, (w).

We have therefore obtained that if z; — x with 5 € ri(Dp, (w)) then (111) holds true and hence,

also in case b), the thesis.

We are only left to show Claim 3.23. Suppose by contradiction that there exists r € R?*! such that
H-r =0and ar ¢ Afor every a > 0. Note that from 7 ¢ A we have dist(r, T, (z)) > 0 so that there

exists 6 > 0 such that Bs(r) NT'y(xz) = @. Since I'y(z) is a cone we can conclude that the segment

[0,7] with 7 € Bs(r) has empty intersection with I';(x). Since obviously 0 € Up<qa<1Bs(r) we can
infer that there exists (H,h) with h # 0 such that

hy—Fo1(@,8)+H-(s—2)>0  Vse€Su(@), wexy
which is a contradiction since y € (G¢(w, ), Fi(w, x)).

O

REMARK 3.24. Observe that from the proof of Proposition 3.17 we actually obtained that Fy(w,-)
is upper semi-continuous in the whole space R* and note only on m Note, moreover, that for
showing the lower semi-continuity one could argue that Fy(w,x) < Fy(w,z) + Hy - (x — x), where
Hj, is an optimal strategy associated to Fy(w,xy), and then take the limit. Nevertheless in order
to conclude that Fy(w,-) is lower semi-continuous we would need, for instance, that the sequence

{Hy} is bounded, which in general cannot be guaranteed.
PROOF OF LEMMA 3.18. For any m € N let
(rmadiz = {r e @ 1ol = 2 (-oc,0) xR (113
denoting 7y, , = (T}n,n’ Frmm) € Q x Q% we define for any m,n € N,
Ko (W) 1= Xyo1(w) + 1, s Hpon(w) == Hy(w) + Frm

Note that for any m,n € N these functions are obviously F;_i-measurable and we can extend
the definiton with Xoo := X;—1, Ho,o := H;. Observe now that for any m,n € N*> U {(0,0)} the
function G, p, 1 2 X R? — R defined by

Gmn(W,2) = [Xpmn(W) + Hyn(w) - (2 = Si—1(w)) — F(w, 2)]1{1x,_, (w)|<oo} (114)

is a Charathéodory map. Since S; is a closed valued Fi-measurable set, from Theorem 3.30 in the

Appendix, the set
Eppi={w e Q] Iz € Si(w) with Gy pn(w,x) € (—00,0]} (115)
is Fi-measurable and there exists a measurable function Sy, : Epp p — R< such that
Sin(w) € Si(w), G (W, Spyn(w)) <0

Note that E,, ,, is non-empty since X;_1, when finite, is a minimum and when infinite G, »(w, ) =
0.

Define, for any m € N, S, := > 7, Sm’nlEm,n\U?;fEm,ﬁ by denoting E,, := UpenEp . and
FE = UnenFEr, we define
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S, = <Z SmlEm\UlelEJ 1+ Silpe
m=1

where §t € LO(F;) is an arbitrary measurable selector of S;.

As (X¢_1, Hy) solves the set-valued problem in Definition 3.16 in particular it satisfies, when finite,
X1 (w) + Hi(w) - (Se(w) — Si—1(w)) — F(w, S¢(w)) >0 Yw € Q (116)

We now show that this is also optimal.
If X;_1(w) = —o0 equation (116) holds by replacing (X;_1(w), H¢(w)) with (yn, Hy,) and y,, — —o0.
The desired inequality is therefore obvious.
Let w € Q such that |X;—1(w)| < co. Suppose by contradiction that for some w € ., there exists
and optimal value y < X;_1(w) with optimal strategy H, € R?. Consider the acceptance set given
by

A= () {@h)eR™|z+h-AS@) > F,(@,5(@))} (117)

wexnY

Clearly the optimal value satisfy a1 := (y, Hy) € A. Moreover, since ap = (Xy_1(w), Hy(w)) is
optimal for the set-valued problem we also have as € A. Observe now that A is a closed convex
cone in R4 and hence for any € > 0, the ball with radius e with center in a1, denoted by B, (a1),
intersects the relative interior of A. Take now € < d(ay,az2). Note that since y < X;_1(w), there
exist 7 := (r1,7) € Q'*¢ with r! < 0, and A > 0, such that a := az + M € B.(a;) N7ri(A). With
no loss of generality we can choose [|r|| <1 and A > 1 so that, by construction, r = r, , for some

m,n € N? as defined in (113). We claim that for some @ € X% |,

but since a € ri(A) we necessarily have a - [1; AS¢(@)] > Fi(@, S¢(@)) which is a contradiction.

We are only left to show the claim. Note first that Gy, (@0, S¢(@w)) < 0 for some W € ¥¢ ; which
can be rewritten as (ag + ) - [1; AS;(©)] < Fy(w, S¢(@)). Consider the half-line R := {as + A(a —
az) | A € R} and the hyperplane L = {(x,h) € R4 | (2,h) - [1;AS(@)] = Fi(@, S:(@))}.
Denote by LT, L~ the non-negative and non-positive half-spaces associated to L and observe
that as + 7 € L™. Since ay € LT we have that L N R # @ and there exists (z¢,ho) in the
intersection such that (z, ho) = as+ Ar for some X < 1. By a change of coordinate, we can rewrite
L = {(z,h) € R*| (x — 0, h — hg) - [1; AS;(@)] = 0}. Recall now that a = as + A\ with A > 1
and as + 7 € L™, hence,

1=Nr [LAS@)] <0 = A= [LAS@)] <0

which is the desired inequality in the new coordinate system. O

PROOF OF PROPOSITION 3.19. Start with Sy := z¢ and suppose first Fy(z9) < oco. From
Lemma 3.18 there exists Sy such that Fy(xzp) + H1AS1 > X;. Applying iteratively Lemma 3.18
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we get the inequalities

F(J(.'I,‘Q) —|— Hl . A51

Y

X1
FQ(J}())—FHl ASl +H2 ASQ Z X2

T
Fo(xo) + ZH:: -AS;

t=1

Y

Xr=gyg

and hence the cheapest super-hedge from the minimality of X; for ¢ = 0,...T. Obviously S belongs
to the bid-ask spread since S; € S; for every t.

Suppose now that Fy(zg) = oo. Note that if Fy(w, ) = oo for some s € I, v € R? then Fy(w,-) =
00. Let t :=min{s € I | F5(w,-) < 0o Yw € Q} > 1. For all y € R, consider the set

Ly(St) == co (conv{[s —x ; y— Fy(@,s)] | s € $4(@), @ € £¢ 1 }) CRI xR

Observe first that if for a finite set {w1,...wx} (or for the empty set) we have 0 ¢ int(I',(U)) with
U :=Si(X% ;)\ {St(w1),...S¢(wr)} then there exists (H, h) \ (0,0) € RY x R , such that

hy — Fy(@,8))+ H-(s—x) >0 (118)

If h > 0 then y+ H/h - (s — z) > Fi(w,s) for all such s. From the continuity of Fy(w,-) (see
Proposition 3.17) and from S; being closed and bounded we have that the quantities
lj:==min{y + H/h- (s —x) — Fi(w;,s) | s € S(w;)} <0, l:=—minl;
j
are well defined and finite. Observe now that (y + [, H/h) solves the set-valued superhedging
problem of Definition 3.16 which is a contradiction since Fy_;(w, z) = oo.
If h <0then y+ H/h- (s —x) < Fi(@,s) for every s € S;(w) and @ € ¢ ; \ {Z¢*,... 5%} In

particular for an arbitrary measurable random variable S; with values in C; satisfies

inf{lz e R |z + H-AS,(0) > Fi(@, S, (@) Ywe ¢} 2

) B _ _ _ - (119)
inf{x e R| x4+ H -AS(@) > F(@, Sy (w)) Yo eXZ¢  \{w,...wp}} > vy

If now the set of Y := {y € R such that (119) holds} is unbounded from above then an arbitrary
S; satisfies the desired equality.

For any y > supY we are left with two cases: i) 0 € int(I'y(S;)) or ii) 0 ¢ int(T'y(S;)) and (118) is
satisfied iff A~ = 0.

Start with y; > sup Y. Observe first that there exist a finite number of vectors Uy := {s1,..., 8k, } C
T, (S¢) such that in case i) 0 € int(conv(Uy)), in case i) 0 ¢ int(conv(U;)) but (118) is satisfied
for any s € Uy iff h = 0. If 0 € int(I'y, (S¢)) it is obvious. In case ii) it follows from Claim 3.23
which implies implies 0 € 7i{A} where A := {z € R*' | H . 2 =0} N T, (x).

For any j = 1,...,k1, s; = limy 0 s} for some s7 € I'y, (Sy). If s7 eventually belong to St(wy)
for some wj, the sequence s7 can be taken constantly equal to s; since S; (wj) is closed. Moreover,

with no loss of generality, if s;,s; € I'y, (S;) we may suppose that the corresponding w;, w; satisfy
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Si(w;) # Si(wj) for ¢ # j. Indeed, by the previous considerations, having s1,...,s; it is possible to
find s;4 1 in S¢(B¢_ )\ {Se(w1), ... Se(wr)}. I s; € Ty, (Se)\T'y, (S¢) me may suppose that s € Sy (w?)
with wi # wi" for any m # n, j # i.
Let E; := U?;l UpZq {w] | s7 € S¢(w?)} and set
§1(w) = SA;L if wex,”

St(w)  otherwise

where S’t is an arbitrary measurable random variable with values in C;. St1 has the same measur-
ability of S, since they coincide up to an union of countably many measurable sets. Note that by

construction
inflz € R |z + H-(SHD) — S 1(Q)) > F(@,S:(@) YoeXv } >y (120)

Define now y,, := y1 +n. For any n € N we can apply the same procedure which yields a collection
{S]'}nen with the property that (120) is satisfied with S}* and y,. Moreover with no loss of
generality we can choose U, +1 2 U, and hence F,; O E, in order to have St”Jrl =S on E,.
We therefore have that S; := lim,,_, ., S} is well defined and

inf{x eR |z + H - (S¢(®) — Si—1(@)) > Fr(@, S¢(w)) Yo e XY 1} > supy, = oo
O

PROOF OF PROPOSITION 3.20. Similarly as in the proof of Proposition 3.18 the function G :
Q x R4 — R defined by

Glw, ) = Xi—1(w) + Hy(w) - (z — Si—1(w)) — Fy(w, z) (121)
is a Charathéodory map and since S; is a closed valued F;-measurable set, the set
Y,(w) := inf {Xt_l(w) FH(W) (s — i1 (@) — Fy(w,s) | s € St} (122)

is Fi-measurable. Note that since S;(w) is a bounded set for every w € €, the infimum is equal
to —oo if and only if Fi(w, s) = co for every s € S;(w). In such a case X;_1(w) = oo and Hy, Hi1
can be chosen arbitrarily. We may therefore suppose, without loss of generality, that Y;(w) is a
minimum for every w € Q,. From Theorem 3.30 in the Appendix, the set £ := {w € Q | Iz €
S¢(w) with G(w,z) = Y;(w)} is Fy-measurable and there exists a measurable function m : E ~ R¢
such that

m(w) € S¢(w), G(w,m(w)) = Yi(w), Ywe ECQ,. (123)
We now show that there exists Hy 1 € L°(F;) such that, for any w € Q., Hyy1(w) € Hip1(m(w))
and
o if Hj(w) < H},,(w) then m*(w) = S
o if Hj(w) > H},;(w) then m*(w) = S*(w)

and hence the desired random vector is S; := m.
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Fix a level set ¢ with w € Q.. For simplicity we set m := m(w), as no confusion arise here. We
also use the following shorthand: S;; is the set of 5 := (ws,s) € B¢ x Sy, 1(X¥) with s € Sp41(ws)

and, for 5 € Sy;1, we denote X;11(5) := Fy11(ws, s).

Step 1. Observe that for any H € Hyi1(m)
inf {Ft(w, m)+H-(5—m)—Xpy1(5) |5 € SM} =0 (124)

otherwise H would not be optimal. Since the inner product is continuous there exist a minimizing
sequence {y,}°2, C S;41 with y := lim, sy, and X(y) := lim, oo X¢41(yn) such that the

minimum is attained i.e.

Fi(w,m) + H - (y —m) = X(y) (125)
Let
Y = { lim y, | {yn}22; € Sit1 and (125) is satisfied } (126)
n—0o0

In a first step we show that, for any y € conv(Y), H is still optimal for the price process (Y, St41),
that is, H € Hyp1(y).

Take y := > 1 ; A\;y; € Y. The set-valued superhedging price F}(w,y) must satisfy, in particular,

the constraints
r4a-(yi —y) > X(ys) Vi=1,...,n

and hence Fy(w,y) > > 1 ; A\;X(y;). Note however that H satisfies

Ft(w,m) + ﬁ . (g — m) > Xt+1(§) Vs e §t+1 (127)
Z NXi)+H-(5—y) > Xpa(5)  V5€Sip (129)

i=1
where the last inequality follows from the fact that (125) holds for every y; with ¢ = 1,...,n and

hence

n n

Fi(w,m)+H-(y—m)= Z)\i (Ft(w,m) +H - (y; — m)) = Z)\ZX(yz)

We have therefore that H € Hyyq(y).

Step 2 We now prove that for any 39,4, € R?, for any 0 < X < 1

Hit1(y0) N Her1(y1) € Her1 (1 — Nyo + Ayr) (130)

Denote yy := (1—X)yo+Ay1. Let He Hir1(yo) N Heg1(y1). We need to show that His optimal for
any price process (yx,S;11). For A = 0,1 the claim is trivial. Note that in analogy with (128), for
any 0 < X < 1, the payoff of H- (S¢+1—vyx) dominates X;11(S;41) by adding Fy(w, yo) +I§(y;\ —Yo)-
Suppose that for some A € (0,1) this is not optimal and hence there exists a dominating strategy
H; with

Fy(w,y3) < Fi(w,y0) + H(ys — yo) (131)
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From
Fy(w,ys) + Hs(yo —ys) + Hi(5—y0) > Xe1(5)  Vs5eSip
Fy(w,yx) + Hx(yr —ys) + Hx(G—y1) > Xea(5) V€S
we get
Fi(w,90) < Fiw,yx) + Hx(yo — yx) (132)
Fi(w,y1) = F(w,y0) + Hiyr —yo) < Fi(w,y) + Hx(y1 — y3) (133)

From (131) and (132) we have (H — H3)(y5 — %0) > 0. As y5 — 4o = A(y1 — 5o) we thus obtain
(H — Hy)(y1 — o) > 0 (134)

Now, from (131) and (133) we get
H(yy —yo) < H(ys — yo) + Hx(yr — y5) from which H(y1 —y5) < Hx(y1 —y3). Since y1 —y5 =
(1 = X)(y1 — yo) we thus obtain

(H — Hy)(y1 — y0) <0 (135)
Equation (135) clearly contradicts (134).

Step 3 We now conclude the proof of the Proposition. As H € H;(w) is fixed, for simplicity, we

can translate H in the origin. Denote by

I, = {ie{l,...d}|mi=5(w)
I; = {ie{l,...d}|m'=S"w)}
& = 15,() —15,(d)

and define
R:=&0,00)X,... X &]0,00)
where with a slight abuse of notation &;[0, 00) is either [0, 00), (=00, 0] or {0} according to &; being
respectively 1,—1 or 0.
Suppose that there is no He Hi11(m) that meets the requirement that is

Ht+1(m) NR=o

As H;11(m) and R are both closed convex sets in R, by Hahn Banach Theorem, there exists
n € R4, ~ € R such that

n-H>~>supn-r vﬁth+1(m)
rER

Note that Vi € I, and Vo > 0 we have that ae; € R where e; is the i*" element of the canonical
basis of R?. Since sup,cz 7 -7 is bounded from above we infer that n; < 0 if 4 € I,. Similarly

n; > 0 if i € Iy. Any separator 1 must therefore satisfy
<0 if i€l (136)
>0 if diely (137)

Note moreover that as 0 € R
n-H>0 VHEH1(m) (138)
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Denote by [ := d(Hs41(m), R) the distance between the two sets and denote by H the minimizing
strategy which exists since Hyy1(m) is closed.

Let Y =Y(H) as in (126) in Step 1 and introduce the convex cone V := co (conv{y —m |y € Y}).
We show that that the dual cone

V* =co(H—H | H € Hipr(m))
satisfies w - (y —m) > 0 The inclusion D is obvious since, from (125), any y € Y satisfies
Fy(w,m) + H - (y = m) > X(y) = Fy(w,m) + H - (y —m)

from which (H — H) - (y —m) > 0. For the converse inclusion observe that any y € Y defines a
supporting hyperplane for the set H;y1(m) — H at 0. Since w € V* is in the positive half-space
generated by Y there exists a > 0 such that a(w — H) € Hyi1(m) — H from which the claim

follows.

Observe now that n € V** =V and hence n = y — m, for some y € Y. Equations (136) and (137)
imply that
yi <m' ifiissuch that m'= ch (w) (139)
yi >m' if i is such that m' = S'(w) (140)
Since H € Hyy1(m), from Step 1, we have H € Hyyq(y). Thus, from Step 2, H € Hyyy(Am + (1 —

A)y) is also true for every 0 < A < 1. From (139) and (140) there exists A sufficiently close to 1
such that yy := (1 — \)m + Ay € C; and

Fy(w,y2) = Fi(w,m) + H(yx — yo) (141)

Note moreover that, by construction, yy € Si(w). By recalling that n = A(yx — m) and by
translating back 0 in H, equation (138) implies H- (yx —m) > H - (y» —m). In combination with
(141) and the fact that Fy(w,m) = X¢_1(w) — Ye(w) + H - (m — Si—1(w)) from equations (122) and
(123), it yields

Fyw,yp) = Fi(w,m)+H-(yr—m)
> Fi(w,m)+ H-(yx —m)
= Xia(w) = Yi(w)+ H-(m=Sa(w)+H-(yx—m)
= Xia(w) = Yi(w) + H - (yx — Se-1(w))
which is a contradiction since ¥y € Si(w) and Y;(w) is a minimum in (122). O

4. Appendix
Let (€2,A) a measurable space.
LEMMA 3.25. Let U : Q — 28 ¢ A-measurable multifunction. Let € > 0 then
U rw {veR [v-s>e VseT(w)\{0}}

is a A-measurable multifunction.
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PROOF. see Appendix of [BFM14] O

THEOREM 3.26. [Theorem 14.5 [RW98]] The following are equivalent

o U:Q 2% 45 q closed valued, A-measurable multifunction
e U admits a Castaing representation: there is a countable family {¢y, }nen of A-measurable

function b, : domV — R? such that for any w € Q
P(w) = cl {¢n(w) | n € N}

PROPOSITION 3.27. [Proposition 14.2-11-12 [RW98|] Consider a class of A-measurable set-valued
functions. The following operations preserve A-measurability: countable unions, countable inter-
sections (if the functions are closed-valued), finite linear combination, convex/linear/affine hull,
generated cone, polar set, closure, cartesian product of a finite number of A-measurable multi-

functions.

THEOREM 3.28. [Corollary 14.6 [RW98]] A closed-valued measurable mapping always admits a

measurable selector.

LEMMA 3.29. [Ezample 14.15 in [RW98]] Let F : Q x R™ — R™ be a Charatéodory map and let

X(w) CR™ be closed-valued and A-measurable then the following map are A-measurable
o w— Flw, X(w))
e w (X(w), Flw, X(w)))

THEOREM 3.30. [Theorem 14.16 in [RW98]] Let F : Q x R" — R™ be a Charatéodory map and
let X(w) CR™ and D(w) CR™ be closed sets that depends measurably on w. Then the set

E:={we|Ire X(w) with F(w,z) € D(w)}
is Fy-measurable and there exists a measurable function x : E + R? such that
z(w) € X(w) and F(w,z(w)) € D(w)VweE

LEMMA 3.31. Let 1 <u <T and £%_, be the level sets specified by S. Let X : Q =3 [—o00, +00] and
AS, : Q = R be multi-functions measurable with respect to F, F,, respectively. Given a closed
valued, Fy_1-measurable random set of constraints C C R, the following multi-function is Fy_1

measurable

d
Ac(w) = {(H,y) €CxR|y+y HAS,(@)>X@) voe Egl}v

i=1
Moreover, denoting with 11, .. ., (-) and I, (-) the canonical projection on the first d components

and on the (d + 1)*" component, respectively, we have that
Xy—1 =minIlL,,,, (Ac), Hy=aywy (Ac N {RY x X1 })
are also Fy,_1-measurable multi-functions.
PrOOF. First consider the multifunction

biwes {A§u(w) x1x X(@) | @ e 2;1_1} C R+
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which is F,_;-measurable multifunction since for any open set O C R¢ x R?
{weQ|YW)NO # &} = S5y (Sou-1(B)) € Fur
where B = {w € Q| {AS,(w) x 1 x X(w)}NO # @} € F from Proposition 3.27. By preservation
of measurability (again Proposition 3.27) the multifunction
pHw)i={HeR™? |H-y<0 Vyeiw)}

is also F,_1-measurable and thus, the same holds true for —¢* N C x R x {—1}. Tt is easy to see
now that Ac =1I,, . (—¢* N C x R x {—1}) which is measurable from the continuity of the

projection maps.

HTd+1

Observe now that the measurability of Ac implies now those of X,_; and H,. A = II,,.,(Ac)
is again measurable by the continuity of projections. We have now that by taking the infimum of

the real random set A the measurability is preserved since, for any y € R, it easily follows that
{weQ|infla|ac Aw)} <y} ={weQ|Aw)N(—oc0,y) # T} € Fu1
As in the classical case, the infimum is actually a minimum by repeating the same arguments

as in Proposition 2.3 in Chapter 2. Finally H, is again F,_j-measurable by preservation of

measurability. O
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