Background: Ribosomopathies constitute a class of inherited disorders characterized by defects in ribosome biogenesis and function. Classically, bone marrow (BM) failure is a clinical symptom shared between these syndromes, including Shwachman-Bodian-Diamond syndrome (SBDS). Eukaryotic translation initiation factor 6 (eIF6) is a critical translation factor that rescues the quasilethal effect of the loss of the SBDS protein. Objectives: To determine whether eIF6 activity is necessary for BM development. Methods: We used eIF6+/- mice and primary BM megakaryocytes to investigate the involvement of eIF6 in the regulation of hematopoiesis. Results: We provide evidence that reduced eIF6 expression negatively impacts on megakaryopoiesis. We show that inhibition of eIF6 leads to a reduction in cell size and mean ploidy level of megakaryocytes and a delay in megakaryocyte maturation by blocking the G1/S transition. Consistent with this phenotype, only few megakaryocyte-forming proplatelets were found in eIF6+/- cells. We also discovered that, in eIF6+/- cells, the steady-state abundance of mitochondrial respiratory chain complex I-encoding mRNAs is decreased, resulting in decreased reactive oxygen species (ROS) production. Intriguingly, connectivity map analysis showed that eIF6-mediated changes overlap with specific translational inhibitors. eIF6 is a translation factor acting downstream of insulin/phorbol 12-myristate 13-acetate (PMA) stimulation. PMA treatment significantly restored eIF6+/- megakaryocyte maturation, indicating that activation of eIF6 is essential for the rescue of the phenotype. Conclusions: Taken together, our results show a role for eIF6-driven translation in megakaryocyte development, and unveil the novel connection between translational control and ROS production in this cell subset.

Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation / S. Ricciardi, A. Miluzio, D. Brina, K. Clarke, M. Bonomo, R. Aiolfi, L.G. Guidotti, F. Falciani, S. Biffo. - In: JOURNAL OF THROMBOSIS AND HAEMOSTASIS. - ISSN 1538-7933. - 13:11(2015 Nov), pp. 2108-2118. [10.1111/jth.13150]

Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation

S. Ricciardi;A. Miluzio
Secondo
;
S. Biffo
Ultimo
2015

Abstract

Background: Ribosomopathies constitute a class of inherited disorders characterized by defects in ribosome biogenesis and function. Classically, bone marrow (BM) failure is a clinical symptom shared between these syndromes, including Shwachman-Bodian-Diamond syndrome (SBDS). Eukaryotic translation initiation factor 6 (eIF6) is a critical translation factor that rescues the quasilethal effect of the loss of the SBDS protein. Objectives: To determine whether eIF6 activity is necessary for BM development. Methods: We used eIF6+/- mice and primary BM megakaryocytes to investigate the involvement of eIF6 in the regulation of hematopoiesis. Results: We provide evidence that reduced eIF6 expression negatively impacts on megakaryopoiesis. We show that inhibition of eIF6 leads to a reduction in cell size and mean ploidy level of megakaryocytes and a delay in megakaryocyte maturation by blocking the G1/S transition. Consistent with this phenotype, only few megakaryocyte-forming proplatelets were found in eIF6+/- cells. We also discovered that, in eIF6+/- cells, the steady-state abundance of mitochondrial respiratory chain complex I-encoding mRNAs is decreased, resulting in decreased reactive oxygen species (ROS) production. Intriguingly, connectivity map analysis showed that eIF6-mediated changes overlap with specific translational inhibitors. eIF6 is a translation factor acting downstream of insulin/phorbol 12-myristate 13-acetate (PMA) stimulation. PMA treatment significantly restored eIF6+/- megakaryocyte maturation, indicating that activation of eIF6 is essential for the rescue of the phenotype. Conclusions: Taken together, our results show a role for eIF6-driven translation in megakaryocyte development, and unveil the novel connection between translational control and ROS production in this cell subset.
Initiation factors; Megakaryocytes; Platelets; Reactive oxygen species; Thrombocytopenia; Hematology
Settore BIO/06 - Anatomia Comparata e Citologia
nov-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
RicciardiBiffo_JournalThrombosisHaemostasis_EukaryoticTranslation_2015.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/337001
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact