An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling / M. Bonfanti, B. Jackson, K.H. Hughes, I. Burghardt, R. Martinazzo. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 143:12(2015 Sep 28), pp. 124703.1-124703.13. [10.1063/1.4931116]

Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

M. Bonfanti
;
R. Martinazzo
Ultimo
2015

Abstract

An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
graphite surface; cluster-model; adsorption; coronene
Settore CHIM/02 - Chimica Fisica
Article (author)
File in questo prodotto:
File Dimensione Formato  
1.4931116.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/324753
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact