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An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed
on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene
that forms the covalent bond, and it is described by a previously developed 4D potential energy
surface based on density functional theory ab initio data. The bath describes the rest of the carbon
lattice and is obtained from an empirical force field through inversion of a classical equilibrium
correlation function describing the hydrogen motion. By construction, model building easily accom-
modates improvements coming from the use of higher level electronic structure theory for the system.
Further, it is well suited to a determination of the system-environment coupling by means of ab initio
molecular dynamics. This paper details the system-bath modeling and shows its application to the
quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investi-
gated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper 11
deals with the sticking dynamics. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931116]

® CrossMark
¢

I. INTRODUCTION

In the last decade, hydrogen sticking on graphitic/
graphenic surfaces has been one of the most studied gas-
surface scattering problems. Apart from being a challenging
model system for which a variety of experimental results is
available, the interest in the hydrogen sticking on graphene has
been mainly triggered by focus issues in two different research
fields. First, since the 2010 Nobel Prize for graphene discovery,
chemical modification of graphene has been considered a
possible route for the development of carbon based materials
which might couple the extraordinary electronic, mechanical,
and thermal properties of graphene with the presence of a band
gap."? Second, it has been long established that molecular
hydrogen formation in the interstellar medium (ISM) pro-
ceeds via surface chemistry at the carbonaceous, graphitic-
like surfaces of dust particles. Thus, hydrogen adsorption
on graphite is considered a key step for the ISM chemistry
and its quantification is fundamental for the development of
astrophysical models of star evolution.>=

The energetics of hydrogen adsorption has been exten-
sively studied, mostly at the Density Functional Theory (DFT)
level with the periodic supercell approach®!? and more lately
with some accurate wavefunction calculations on cluster
models.'"'* Many different aspects of hydrogen adsorption
have been addressed, including adsorption and diffusion in the
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shallow physisorption well,!! single and multiple adsorption
in the chemisorption well,>'>~!7 carbon vacancy hydrogena-
tion,'® and binding to edges.'>!? All these possibilities deter-
mine a vast variety of cases which can be well interpreted and
rationalized in terms of electronic and structural effects.
While the energetics of hydrogen adsorption has been
well understood and the dynamics of sticking and diffusing
hydrogen in the ~40 meV physisorption state have been accu-
rately described,'!?*-?2 there are still unsettled issues con-
cerning chemisorption that need further investigations. First,
the accurate value of the barrier height is still not clear. On
one hand, most DFT periodic calculations in the Generalized
Gradient Approximation (GGA) give a barrier of ~0.2 eV-
a value which is considerably reduced when van der Waals
corrected functionals are employed.>* On the other hand, accu-
rate wavefunctions calculations on cluster models by Wang
et al.'* suggest that GGA functionals overestimate the bind-
ing energy, hence underestimate the barrier (by more than
0.2 eV, see Ref. 14). Second, at any coverage but the lowest
(say, above 1%), hydrogen has shown a tendency for clus-
tering,'>>*? as a consequence of the extended aromatic na-
ture of graphene/graphite and accounting for this requires a
number of different adsorption situations with very different
reaction barriers.>?¢ Finally, despite the apparent simplicity
of the system, building a dynamical model which is suited
to study the process in the low collision energy regime re-
mains a challenging problem. Many models have been pro-
posed in the past, highlighting that many different effects need
to be simultaneously accounted for to reach a quantitative

©2015 AIP Publishing LLC
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description of the process:>*»?-32 (i) due to the fast substrate
relaxation induced by the sp’~sp’ conversion, forces on the
binding carbon atom are large and the motion of the latter
is strongly coupled to the hydrogen coordinate;>’ (ii) a large
fraction of the reaction takes place at the non-collinear geom-
etries, since steering of the projectile is operative;® (iii) energy
relaxation to graphene phonons is a relatively fast process
and large amounts of energy need to be transferred such that
saturation effects are likely when truncating the phonon ba-
sis;?®%2 and (iv) quantum effects have large consequences on
the sticking probability, particularly at the low incident ener-
gies of interest for the chemistry of the ISM where tunneling
dominates.?3-28-303!1

In the present work, we devise a model for hydrogen
chemisorption that takes into account all the requirements
listed above and use it in a fully quantum study of the sticking
dynamics. The model consists of an accurate description of
the hydrogen atom and its bonding carbon atom, which are
coupled to the graphene substrate described by a phonon bath.
Both system and phonon bath are treated with numerically
exact, high dimensional quantum dynamical methods.

The model presented below is based on the potential en-
ergy surface (PES) of the -CH moiety developed a while ago
by one of the present authors and his collaborators.”?® This
“system potential” is given as an analytical functional form
fitted to the results of periodic, plane-wave DFT calculations,?®
which used a simple, semi-local approximation to the exact
exchange-correlation functional (the PW91 GGA functional).
As for the coupling of the CH bond to the rest of the graphene
surface, the model relies on dynamical information which is
here retrieved from equilibrium molecular dynamics (MD)
simulations of the CH system connected to an accurate force
field of the lattice®® via a Surface Oscillator (SO) model-type
coupling.?’ The overall modeling though has been designed
to be “modular,” and work is already in progress to improve
both the CH description and the system-environment coupling,
exploiting the progress in density functional theory and the
increase of computational resources that have occurred since
the work of Refs. 20 and 28. Among these developments,
noteworthy is the formulation of accurate vdW-DFT func-
tionals which overcome some of the limitations of the semi-
local functionals,3*3? namely, the inability to describe non-
local dispersion forces which have been shown recently to
affect both the physisorption well and the sticking barrier in
the present problem.?® Furthermore, the increasing feasibility
of direct, ab initio molecular dynamics approaches allows
one to bypass the need of developing lattice potentials and
modeling the system-environment coupling when describing
energy transfer to the surface.

In the present paper, henceforth denoted Paper I, we derive
the model, check its consistency, and use it to study the relax-
ation of a vibrationally excited adsorbed hydrogen. In the
following paper,’’ henceforth denoted Paper II, we extend
the approach to the quantum dynamical, dissipative scattering
setting needed to investigate sticking of a hydrogen atom to the
graphene surface.

This paper is organized as follows. In Section II, we
present the methodology we developed for the construction
of our model Hamiltonian. In Section III, we give a brief
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account of the properties of the H-graphene potential energy
surface. In Section IV, we briefly describe the methodology
employed for performing the classical and quantum dynamical
simulations, and in Section V, we present our main results.
Finally, Section VI summarizes and concludes.

Il. THEORY

Fully atomistic potential models, irrespective of their
origin and of their quality, are not suited for high dimensional
quantum dynamical simulations. Strong coupling within
sparse sets of degrees of freedom (DOFs, most often irrelevant
for the problem of interest) prevents the use of any gen-
eral truncation scheme that is crucial for applying numerical
methods. In order to make progress in investigating the stick-
ing dynamics of interest, we rely on the following assump-
tions: (i) the energy exchange that occurs between the system
and the lattice for near equilibrium configurations is represen-
tative of energy dissipation; (ii) relaxation proceeds through
sequential energy transfer from the hydrogen atom to the
carbon atom, which is in turn the only one directly coupled
to the rest of the lattice through its height coordinate z¢ above
the surface; and (iii) a mapping holds, at least approximately,
which relates the classical Hamiltonian dynamics of the inter-
esting C and H atoms to a generalized Langevin equation
(GLE) description. In (iii), it is inferred that if the system
is a single degree of freedom s, generally referred to as the
“Brownian particle,” its dynamics can be described by the GLE

mi(t) + m [W vt —1)s(r)dr + V'(s(t)) = &), (1)

where y(7) is a memory kernel obeying causality (y(z) =0
for t < 0) and &(r) a Gaussian stochastic process related to
v(t) by a fluctuation-dissipation theorem of the second kind,
(&(2)€(0)) = y(|t])kpT /m. Here, and in the following, (..) de-
notes an average over the canonical equilibrium, T is the
temperature, and kg the Boltzmann constant. The advantage
of using (iii) is the equivalence of the above GLE with the
dynamics generated by the Independent Oscillator (I0) (also
known as Caldeira-Leggett) Hamiltonian®®

For a finite number of oscillators F, a strict equivalence be-
tween Egs. (1) and (2) only holds for times less than the
Poincaré recurrence time f,,., and provided the bath oscil-
lator frequencies wy and coupling coefficients ¢, sample the
so-called spectral density (SD) of the environmental coupl-
ing.%® The latter is defined as J(w) = mwRy(w), where ¥(w)
= f_::o y(t)ei“!dt is the frequency-dependent memory kernel.
The SD fully determines ¥(w), hence the GLE, by virtue of
the celebrated Kramers-Kronig relation, and thus contains all
the necessary information about the coupling of the system
to the environment. For an evenly spaced set of frequencies
wy = kAw, the couplings read as ¢; = /2wrAwJ(wy)/m and
trec = 27/ Aw. The advantage of an IO Hamiltonian description
is of course that it provides a much simpler (but equivalent)
model of the original atomistic Hamiltonian, whose quantized
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version can be tackled with numerically exact wavepacket
techniques up to several tens of DOFs.

Clearly, in studying the sticking of H atoms in the chem-
isorption regime, both the H and the binding C atom need to
be included in the “Brownian” particle. Hence, assumption (ii)
described above, relating to a sequential energy transfer from
hydrogen to carbon, and from carbon to the lattice, implies that
the GLE remains effectively one-dimensional (as opposed to
a more general multidimensional GLE) and that the relevant
(scalar) spectral density describes the coupling of the binding
C atom with the rest of the surface. In other words, the final,
working 10 model takes the form?’

2 2
H=20 Py xy 0
ZmH ch
F [ 2 2 2
Py Wy Ck eq
+ —+ — gk — —(zc - , 3
; >t (qk o (zc = z¢ )) ] 3)

where xp is the position of the H atom, z¢ the height of
the binding C atom above the surface, py and p¢ the corre-
sponding momenta, and Vi(Xy, zc) an appropriate 4D system
potential (see Fig. 1 for the definition of the system coordi-
nates). The frequencies wy and couplings ¢, of the IO bath
sample a spectral density Jc(w) that describes the coupling
of the C atom to the rest of the lattice. Constructing the latter
represents one of the main goals of our system-bath modeling
that, according to assumption (i), can be accomplished with
the help of classical (canonical) molecular dynamics simula-
tions of the equilibrium state of the H-graphene system. In
Section IT A, it is shown how assumption (i) above (along
with (ii)) can be exploited to obtain Jc(w) from the equilib-
rium dynamics of the hydrogen atom above the surface (zg);
Sec. I B gives some details about the choice of the system
potential.

FIG. 1. Schematic illustration of the coordinates adopted for the description
of the CH system.
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A. Spectral density

For small oscillations around the equilibrium position z},
the height of the hydrogen atom undergoes Harmonic Brown-
ian motion

Eul) + / Yt = DDt + Dzn(t) = En(t)/m

(where wy is its frequency and yg,& g characterize its environ-
ment), and the equilibrium correlation function of its displace-
ment Cp(t) = (6zu(1)6zu(0)) = ((zu(?) — 25/ Nzu(0) - zi7))
is related to the memory kernel through®

SCa(w) = k"lﬁ( S ) 4
my  \wj—w?—ivyg(w)

Here, Cy(w) = [ €"!Cy(t)dt is the frequency dependent cor-

relation function.’® As shown in Ref. 40, this equation can be

“inverted” to give the spectral density Jy(w) = mpwRyy(w)

in terms of Cy(w),

kBT wC‘H(w)
J = —— 5
n(w) 2 Mo)? )
where I'(z) is the “Cauchy transform” of the function
Cr(w)w/2,
1/+°°wC‘H(w)/2
———dw

I'(z) =—
T)ew w-2

and I'(w) = lime_+I'(w + i€) is its limit on the real axis
from the upper half plane. (As was shown in Ref. 40, one
can equivalently define I'(z) = izCx(z) + Cr(0), where Cy(z)
= fom e’ Cy(t)dt (37 > 0)is the Fourier-Laplace transform of
the retarded correlation function.)

The spectral density Jy(w) describes the coupling of the
hydrogen atom to its environment which, according to our
assumption (ii), reduces to the height z¢ of the binding C
atom that in furn couples to the rest of the surface. Hence,
the coordinate zc is, to within a mass factor, the first effective
mode in the general effective-mode transformation that brings
the environment felt by the hydrogen atom into a linear chain
form.*'** Using the results of Ref. 43, the required spectral
density follows from

D2 Jy(w)
J =_<c - 6
c(w) W@ (6)
where
2 2mc
D= — Ju(w)wdw
T Jo

is the relevant effective mode coupling and Wy(z) is the
Cauchy transform of Jy(w),

Wi(z) = © / I

o W—Z

Egs. (5) and (6) are the working equations, giving explicitly
the SD felt by the C atom in terms of Cp(¢). Together with the
system potential to be specified below, Egs. (5) and (6) allow us
to completely define the Hamiltonian model of Eq. (3). They
require as input some information about the equilibrium dy-
namics of the adsorbed H atom above the surface, which might
come from spectroscopic data or, more commonly, from sim-
ple, unconstrained canonical molecular dynamics. To this end,
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a “source” for such equilibrium dynamics has to be defined.
In this work, we used classical dynamics simulations based
on the successful atomistic model developed some years ago
by Kerwin and Jackson?® (see Section III), since this choice
allows us to compare our results with the available literature
data. We stress though that Eqgs. (5) and (6) make use of only
dynamical information and are well suited to an ab initio
molecular dynamics approach, thereby bypassing the need of
the time-consuming steps that are required for building an
atomistic model.

B. System potential

Once the coupling of the C atom with its environment has
been defined with the aid of the corresponding spectral density
Jc(w), the working Hamiltonian model of Eq. (3) is completely
specified by defining the system potential Vi(xg,zc) that de-
scribes the interaction of the H atom with the binding car-
bon. From the form of Eq. (3), provided that condition (iii)
holds, the system potential should describe the interactions
within the system in the partial equilibrium state where the
bath coordinates minimize the total potential for each value
of the system coordinates (Xg, z¢). Accordingly, we define the
system potential as

‘/S(XH7 ZC) = 1\{%{1 Vat(xH7ZC7Q)7 (7)

where V,, is the atomistic model of the H-graphene sys-
tem mentioned above,?® which is based on an analytic fit to
first-principles data®® and on an empirical lattice model for
graphene.®® This potential is a function of a number of lattice
coordinates {Q1,07,...,0n} = Q and is described in some
detail below since it is also our source model for the spectral
density of the binding carbon atom. Here, we note that the
system potential V; as defined by the above equation differs
only marginally from the original CH potential of Ref. 26 but
its introduction is unavoidable if a strict comparison has to be
made between the system-bath dynamics and the one resulting
from the lattice model.

lll. THE “SOURCE” MODEL

As mentioned above, an atomistic interaction potential%
was used to generate the necessary dynamical information
on the system. This potential was obtained by connecting an
accurate C—H system potential Vg to an empirical graphene
force field, via a surface oscillator model-type coupling.*> The
analytic form of the C—H potential is described in detail in
Ref. 28. It is given as a function of three coordinates, Vgg
= Vég(z H»2C» P), two for the hydrogen atom and one for the
nearest carbon atom, namely, the height of the two above
the surface (zy and z¢, respectively) and the projection of
the C—H bond length onto the surface (p). In our simula-
tions, we preferred to re-express the potential as a function
of the in-plane Cartesian coordinates of the hydrogen atom,
namely, with x)”q = (xg, yg) and the C atom at the origin, we
set VCH(XL,ZH,Z(T) = V2P (zn,zc. ||x1”q||). We thus adopted a
redundant set of variables that does not exploit the cylindrical
invariance of the original PES that was well supported by
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the ab initio data.?® This choice results in a simpler repre-
sentation of the kinetic energy operator and easily accom-
modates any improvements of the system potential that may
result from relaxing the assumption of a rotationally invariant
interaction.?®

The graphene phonon potential is a force field for a clus-
ter of a total of 121 carbon atoms with in-plane coordinates
(X4,Y,) fixed and arranged in a honeycomb lattice. This part
of the PES is thus a function of 121 displacement of the
atoms normal to the surface z,, (including the C atom that the
hydrogen binds to, which in this context may be referred to
as Cy), and describes graphene transverse phonons only, i.e.,
the transverse acoustical (flexural) mode ZA and the trans-
verse optical mode (Z0).*® This approximation seems to be
reasonable for the sticking problem of interest, and although
not essential for the success of the model, motivation for the
approximation was the simpler coding of the lattice model that
it allows for, when compared to the original, accurate but rather
complicated force field developed by Aizawa et al.>

The C-H system and the graphene lattice are coupled to
each other through a SO model-type coupling, namely,

Varer,2¢,Q) = Veu(x)y 2 — Qo zc = Qo)

1
+Vi(ze, 215+ - -5 2ZN) — EkC(ZC - Qo)%,

where Q. = z; are the heights of the carbon atoms other than
Co, Qg is the average height of the three carbon atoms closest
to the adsorption site, Q¢ = (z1 + z2 + z3)/3, V; is the Aizawa
et al.> lattice potential for transverse motion, and the right-
most term avoids double counting (k¢ being the force constant
for the puckering of Cy alone, as obtained from the lattice
model).?®

In agreement with the well established picture of hydrogen
chemisorption on graphene, the adopted potential predicts that
in the minimum energy structure the surface “puckers” to
allow the sp?> — sp® re-hybridization necessary for the carbon
atom to bind the hydrogen atom. This surface reconstruction
brings the carbon atom 0.426 A out of the plane defined by
the three nearest neighbor carbon atoms and allows the H
atom to form a relatively strong (0.767 eV) o bond with
the puckered C atom which is 1.11 A long. To reach this
stable configuration from the gas-phase along the minimum
energy path, the hydrogen atom has to overcome an energy
barrier 0.235 eV high, which is found at zy = 1.97 A and
zc =0.110 A. The potential further features a shallow ph-
ysisorption well (~9 meV deep) when the hydrogen atom is
far (~3.0 A) from the surface, which is though far from the
accepted value of ~40 meV, as obtained from the analysis
of selective adsorption resonances in scattering experiments™’
and confirmed by accurate wavefunction-based calculations.'!

We computed the phonon density of states (DOS) of the
model cluster by performing a normal mode analysis, in which
the Hessian matrix was obtained with first order finite differ-
ences of the analytic first derivatives of the potential. Fig. 2
shows both the DOS computed when the hydrogen atom is far
from the surface (where the potential reduces to the force field
of the lattice) and the DOS in the stable adsorption geometry.
When the hydrogen atom is far from the surface, we see that
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5 T
L L —— graphene+H ]
- r —— graphene 1
n 4 * ]
O I L ] FIG. 2. Total density of phonon states obtained from the
o 3 \ h potential of Ref. 26 in two limiting cases. Black line
c 1 for the case where the hydrogen atom is far from the
8 5 ‘ ‘ | | ] flat surface. Blue line for H adsorbed on the puckered
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ] surface. The inset is a close-up of the spectral region
8 200 400 600 800 ] of graphene, between 0.0 and 900.0 cm™!. Eigenmodes
[a 1k N have been Gaussian broadened by 8 cm™' to mimic a
r ] continuous density of state.
0 L P ) PR P . ]
0 500 1000 1500 2000 2500
w/cm!

the highest frequency peak in the spectrum occurs at 874 cm™!,

consistent with a model containing only transverse optical and
acoustic phonon branches.?* Hydrogen adsorption introduces
two new modes at frequencies well above the graphene region:
one stretching mode at 2549 cm~! and a twofold degenerate
bending at 1169 cm™!. Furthermore, some of the carbon cluster
frequencies are shifted, as a consequence of the puckering of
the graphene sheet and of the strong coupling of a carbon atom
with the adsorbate.

In light of this separation between the C—H system and the
graphene phonon bath, we further looked at the normal modes
of the 4D system potential only, which were obtained by fixing
all the lattice coordinates in the equilibrium geometry, except
the one involved in the CH bond. The resulting four normal
modes are

e a doubly degenerate bending at 1169.48 cm™! , which
only involves displacements of p and is thus completely
uncoupled from the z coordinates (at the harmonic
level);

e 2254936 cm™! C-H stretching mode;

e a 466.50 cm™! “surface” stretching mode, which ap-
proximately corresponds to block oscillations of the
C-H unit above the surface plane.

The lack of coupling between p and the other z coordinates is a
direct consequence of the cylindrical symmetry of the potential
itself,”® which demands it be quadratic everywhere in p at
quasi-collinear configurations, V22 (zu,zc, p) ® p*k(zh,2¢)s
i.e., in the neighborhoods of the minimum structure (p = 0).
Hence, the lateral displacement does not mix with either z¢ or
zg in the equilibrium configuration (82V32 /0pdz|p=0 = 0 for
7 =2y Or Z¢).

It should be noted that both the C—H bending and the
stretching frequencies hardly change from their full DOS val-
ues when constraining the lattice carbon atoms in plane. These
vibrations are well above the graphene cut-off (“Debye”)
frequency and are thus dynamically decoupled from the
graphene bath. In contrast, the surface stretching mode, which
is very similar to a carbon atom normal displacement, is well
within the surface phonon band and strongly coupled to the
lattice.

Overall, our findings are in excellent agreement with the
first principles results of Sakong and Kratzer,*® who used a
larger (five dimensional) dynamical matrix and found the C-H

stretching at 2552 cm™' and two bending modes at 1175 and
1110 cm™!. Of course, differently from Fig. 2, the phonon
DOS of Ref. 48 extends up to 1583 cm™' because of the inclu-
sion of the higher frequency longitudinal and shear optical
branches.*?

IV. TECHNICALITIES
A. Classical molecular dynamics

Classical, equilibrium MD simulations were performed
with the potential energy surface described above. These simu-
lations were then used to compute the autocorrelation function
of the displacement of the hydrogen atom from its equilibrium
structure and the spectral functions according to Eqgs. (5) and
(6). Thermal averages were computed over a set of trajectories
with initial conditions sampling the canonical distribution,
after a preliminary equilibration stage accomplished via stan-
dard Langevin dynamics of each carbon atom of the lattice
(i.e., with white noise). After the equilibration stage, Langevin
dynamics was turned off everywhere except at the edges of the
carbon cluster, in order to mimic an infinite carbon slab. During
this second part of the dynamics, the dynamical variable zy
was sampled.

Time propagation was performed with a symplectic prop-
agator for Langevin dynamics*’ that reduces to the velocity-
Verlet propagator when the damping is turned off (y — 0).
Table I summarizes the main parameters of the MD simu-
lations. The relaxation rate at the cluster edges was set to
¥~ =100 fs and was chosen after carefully checking that
it guarantees a reasonable broadening of the peaks without

TABLE I. Integration parameters of the MD simulations performed with the
“source” atomistic model.

No. of trajectories 1000
Equilibration Az 0.02 fs
Equilibration Trejax = 7_] 5.0fs
Equilibration time 2.0 ps
Propagation At 0.01 fs
Relax at the edges Teqges 100.0 fs
Propagation time 10.0 ps
Time step of trajectory sampling 0.5fs
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strongly affecting the fine structure of the correlation func-
tions; furthermore, a y~! = 100 fs relaxation time is compa-
rable to the one expected for the coupling of the carbon cluster
with the rest of the graphene sheet.

The accumulated realizations 6z}, (f) = z&,(t) — 27 were
then Fourier-transformed and used to compute the frequency-
dependent correlation function C(w) with the help of the
Wiener-Khinchin theorem,3®

. iy ) - 1

X{ (w) = / oz (e'dr,  Clw) = —IX, (w)]3,
0 Iy
(where av stands for the average over the realizations of the
random variable X, ) and could, in principle, be directly used
to obtain the hydrogen atom spectral density Jy(w) and the
carbon atom spectral density Jc(w) as outlined in Section II.
In practice though, we first had to smoothen the peaks of the
spectra, by applying a Gaussian damping in the time-domain
with a 1.0 ps relaxation time and then to filter out unde-
sirable high-frequency components. Indeed, while the total
propagation time of the trajectories gives a reasonably narrow
frequency spacing of 3.34 cm™!, the adopted time step gives
rise to a frequency cutoff larger than 60000 cm™', thereby
including a wide frequency region where the use of the Cauchy
transforms becomes numerically awkward because of the van-
ishing small spectral weights. The adopted lower cutoff of
we = 4000 cm™! is a reasonable “unbiased” choice, yet larger
than the Debye cut-off frequency wp of the graphene sheet
(wp =874 cm™! in our model, see Fig. 2). As a result, the
spectral densities still contain some undesired high frequency
features recently discussed in Ref. 40 and, in particular, a
growing base line that is due to the slow decay of C(w) above
wp. To remedy this numerical problem, we applied a low
frequency filter to damp out the high frequency contributions,
namely, we defined the working frequency-dependent correla-
tion function Cy(w) as

Cr(w) = CW)[1 + f(w)], ()

where?
o[-

(®(x) = 1 for x > 0 and zero otherwise), wy = 2541.0 cm™!,
and N = 12. The filtering function tends to —1 at large w and
goes smoothly to zero for w — wy.

wp'
X exp W @(0) — 0.)())

B. Quantum dynamics

High dimensional, quantum dynamical calculations were
carried out using the multi-configuration time-dependent
Hartree (MCTDH) method (Heidelberg packagesl‘54), for the
system and a discrete sampling of the bath modes. The system-
bath coupling strengths c; were obtained from the spectral
density Jc(w) describing the interaction of the carbon atom
Cy with the rest of the lattice, cx = \/2wrAwJc(wy )/, with
wi = kAw and for k = 1,.. ., F, with an appropriate number ¥
of oscillators (see below). In this paper, vibrational relaxation
is used for illustrative purposes, while Paper II is devoted to
simulations of the sticking process.
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The 4D system potential Vs(xy,zc) as defined in Eq. (7)
was used as a reference to generate approximate vibrational
eigenstates of the system, by using an exact (Lanczos) diago-
nalization scheme. These functions were then used to generate
several product initial states with the ground-state wavefunc-
tion of the uncoupled bath, which were later propagated in
time under the action of the full IO Hamiltonian. For the
primitive Discrete Variable Representation (DVR) grid, we
used a Hermite basis set for all the degrees of freedom—10
points for zg, 30 for z¢, 5 for x g, and yy and 6 for each of the
X s—with appropriate masses and harmonic frequencies. The
adopted mode-combination scheme and the number of single
particle functions (spf’s) are summarized in Table II and were
carefully checked to give well converged results. Note that
the system was described with a single mode while the bath
oscillators were grouped in modes of five degrees of freedom.

Because of the unfavorable scaling of quantum dynamics
with the number of degrees of freedom, the bath sizes were
limited to 50 or 75 oscillators. To achieve a good sampling
of the spectral density, the equally spaced bath frequencies
were focused in the spectral region most relevant for the
various relaxation processes considered. Thus, in the case
of the relaxation of the surface stretching normal mode, we
used a 0-900 cm™! bath, whereas when investigating relax-
ation of the C-H stretching mode, we focused on the range
2100-2900 cm~!. These spectral regions were extended for
investigating bending relaxation and when excitation involved
more than one mode, where both the low (0-900 cm™') and
the high (2100-2900 cm™") frequency regions were sampled.
These reduced sampling schemes were carefully checked
against simulations using a uniform sampling of the SD in the
0-4000 cm™! range (not shown). Apart from obvious differ-
ences due to the shorter recurrence time and the coarser
sampling of the latter, a good agreement was found between
the two sets of calculations.

TABLE II. Mode-combination scheme and number of single particle func-
tions used in the MCTDH quantum dynamical simulations described in the
main text.

Bath size F=75

Frequency range /Jem™! [0,900]  [2100, 2900] [0,900] +[2100,2900]

System 8 8 7
q1 ... g5 3 2 2
q6 --- 410 3 2 3
qi1 --- 415 3 3 3
q16 --- 420 4 3 3
q21 --- 425 4 3 3
q26 --- 430 4 3 3
q31 --- 435 4 3 3
q36 --- 440 4 3 3
q41 --- Q45 4 3 2
q46 --- 450 3 2 2
qs1 - gs5 2 2
q56 --- 460 2 4
q61 --- 465 2 2
q66 --- 470 2 2
q71 --- q75 2 2
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V. RESULTS AND DISCUSSION
A. Spectral densities

A number of MD simulations for several temperatures
in the range 5-300 K were performed, and for each temper-
ature 1000 trajectories were run, with dissipation at the cluster
edges, according to the parameters given in Table I. This num-
ber is sufficient to obtain well converged results and, impor-
tantly, is well within the limit of an ab initio molecular dy-
namics approach. Fig. 3 shows the results of these calculations,
namely, the frequency-dependent correlation function of the
H atom displacement C(w), and the spectral densities Jg(w)
and Jc(w) obtained upon application of Egs. (5) and (6). As
is evident from panel (a) of Fig. 3, two main structures appear
in Cy(w): a broad band at low frequencies, in the 0-900 cm™!
region, and a narrow peak at approximately 2500 cm™!, which
is consistent with phonon spectrum and the normal mode
analysis of the system given in Section III (for the purpose
of a comparison notice that in Fig. 3 above C(w) is given on
a logarithmic scale). The low frequency region is associated
with the surface stretching mode, which is strongly coupled to
and mixed with the lattice modes; this is manifested in a rather
broad band that has the width of the DOS of the cluster. In
contrast, the peak of the C—H stretching mode stands out from
a marginal background, in line with the lower frequency cutoff
of the bath. As discussed in Ref. 40, in such a situation where
the system frequency exceeds the Debye frequency of the
environment, only a d-peak should ideally appear in a bilinear
coupling model. In realistic situations, some broadening al-
ways occurs, for at least three main reasons: (i) the system
anharmonicities (see below), (ii) the failure of the bilinear
coupling assumption, and (iii) the dissipative-like trajectory
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propagation conditions. The first arises because anharmonic
effects in the system potential cannot be handled with the
approach outlined in Section II, and need to be known in
advance. They are readily recognized by their characteristic
temperature-dependent behavior, which makes them more pro-
nounced when the vibrator explores all regions of the potential
more extensively. Similarly for the effects of the failure of the
bilinear-coupling model, they are expected to become more
evident when increasing the temperatures. They are more sub-
tle than the system anharmonicities but, differently from them,
are representative of frue system-environment interactions and
can be likely mapped into an “extended” bilinear model, where
bath modes appear with frequencies larger than the Debye
frequency of the true environment. Finally, the third cause of
broadening is due to the algorithmic nature of the molecular
dynamics approach (e.g., the presence of thermostats or the use
of damping functions) and is simply impossible to eliminate in
any real numerical application.

As is evident from Fig. 3 (panel (a)), the low frequency re-
gion is extremely stable with temperature, thereby suggesting
that this spectral region provides a sound and coherent repre-
sentation of a real coupling between the hydrogen atom oscil-
lations and the bath of lattice phonons. On the other hand, the
high frequency region is strongly temperature-dependent and
presents a peak which progressively broadens when increas-
ing the temperature. As will be shown below, this effect is
mainly due to the anharmonicity of the C—H system and thus
should not be attributed to the stochastic properties of the
environment. This is not a real problem for the 10 model
of Eq. (3), since the latter uses a full anharmonic poten-
tial for the C—H vibrator and thus includes these effects by
construction.

— T=5K
— T=10K
— T=15K
T=50K
T=100K
T=150K
—— T=200K

200
w/cm™

w/cm”

1

FIG. 3. Spectral functions obtained from molecular dynamics simulations with the source potential model described in the main text. From (a) to (c),
(i) a semi-log plot of the temperature scaled correlation function C(w) T, (i) the spectral density of the coupling on the H atom (/g (w)), and (iii) the
spectral density of the coupling on the C atom (J¢(w)). The different curves correspond to different values of the temperature in the range 5-300 K, color coded
from blue to red for increasing values of T. Spectral function are given in atomic units and the inset in panel (a) is a linear plot of the same graph.
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Application of Eq. (5) gives the spectral density acting on
the hydrogen atom, Jy(w). This function is negligible above
~1200 cm™!, where a remnant of the high-frequency stretching
peak in C(w) appears but it is orders of magnitude smaller
than the values shown in Fig. 3 (panel (b)). As depicted in that
figure, the SD contains a broad 0-900 cm™! band, describing
the (strong) coupling of the C-H surface stretching mode
with the rest of the lattice, and a peak at ~1100 cm™' in
correspondence with the bending mode. The latter is slightly
temperature dependent, more likely as a consequence of the
same anharmonicity reason described above (notice that we
are probing the motion of the hydrogen atom coordinate zg,
which contains both surface stretching, bending, and stretch-
ing contributions).

Further application of the Cauchy transform through
Eq. (6) gives the spectral density on the carbon atom Jc(w)
which forms the basis of the IO model of Eq. (3). As shown
in Fig. 3 (panel (c)), and similarly to Cy(w), Jc(w) presents a
clear separation between the region of the low frequency sur-
face mode and that of the high frequency stretching mode. The
low frequency region is again rather stable with temperature
and describes the interaction of the C—H unit with the lattice
phonon bath. This was confirmed with an independent check
where we performed a direct analysis of the source potential
and of the coupling it gives rise to. In this case, the spectral
density on the carbon atom Jc(w) was obtained by the small-
amplitude expansion around the equilibrium structure through
the expression

T C,%
J = ) —Aw-—Q), 9
c() 2;@ (@~ ) ©)

where k runs over “constrained” normal modes of the carbon
cluster Qy , Q are the corresponding eigenfrequencies, A(x) is
a broadened 6—peak, and the coupling coefficients c; are given
by

6ZC(9Q~1{
where Q = Q(Q1,...,0n). Here, the constrained modes Oy

were defined to be the normal modes of the lattice when the
system coordinates were held fixed at the global equilibrium

Ck (Xm,2¢,Q)

[l

eq
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position. As illustrated in Fig. 4, the resulting Jc(w) com-
pares reasonably well with the SDs shown in the panel (c) of
Fig. 3, the slight discrepancy being likely a boundary ef-
fect only. Indeed, while the potential-based approach used the
finite cluster model, the trajectory-based approach employed
Langevin atoms at the cluster edge to mimic the infinite lattice,
thereby effectively coupling (renormalizing) the long wave-
length (low frequency) modes with a continuum. Of course,
since none of the constrained eigenfrequencies exceeded the
lattice cut-off frequency, Jo(w) obtained in this way has a strict
Debye cutoff, wp ~ 900 cm™!.

To understand the origin of the structure of Jc(w) at high
frequencies, additional MD simulations were performed with
a modified potential,

Var(xXm,2¢,0)

— Varer, 2¢,Q) = Ven(x),, 2 = Qo,z¢ — Qo)

+ VO (&l zi = Qo.zc — Qo) (10)
in which the 4D potential of the system Vg was replaced by
its quadratic expansion Vézf)l around the global minimum. The
resulting carbon atom SDs for the harmonic C—H system, as
obtained at two different temperatures, are depicted in Fig. 5
where it is evident that the major source of broadening in
the high-frequency region is the anharmonicity of the system
potential. As mentioned above, this can be considered a reme-
diable failure of one of our assumptions of Section II, since
the IO model of Eq. (3) correctly includes the full (anhar-
monic) C-H potential. We ruled out other possible failures
by performing additional tests with C—H constrained in the
collinear configuration: the results of such calculations, re-
ported in Fig. 6, show that energy transfer effectively occurs
only through the heights of the C and H atoms, at least with
our model potential. Thus, the residual peak and the accompa-
nying background which persist despite the linearization of the
model are either a signature of non-linearities in the system-
environment coupling or, more likely, just artifacts of the MD.

In general, though, any partial failure of our assumptions
(e.g., the above mentioned sequential energy transfer) is neces-
sarily mapped into a fictitious relaxation pathway, thereby
contributing to the broadening of the high-frequency peak.
For instance, it may well be that bending-mediated relaxation

030
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—— derivatives of the coupling
autocorrelation
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1 FIG. 4. The spectral density of the coupling on the car-
j bon atom Jc(w) as computed from the analysis of the
source potential (green line, see text for detail). Also
shown for comparison, the trajectory-based spectral den-
sity reported in panel (c) of Fig. 3 (blue line, T =5 K).
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FIG. 5. Harmonic approximation to the source model potential. The figure
shows a comparison between the spectral density of the coupling on the
carbon atom Jc(w) obtained with the original potential (colored curves) and
its harmonic approximation (black), both at low and at a high temperature
(top and bottom panel for 5 K and 300 K, respectively).

becomes an operative energy relaxation pathway when re-
laxing the rotationally invariant approximation on the C-H
interaction but, according to the protocol outlined in Section II,
it will be necessarily mapped into a high-frequency “bath.” De-
termining whether these contributions have a true “physical”
origin (and can thus be used as a surrogate of more complicated
interactions which cannot be captured by the IO Hamiltonian
coupling model) is generally a hard task. For instance, in the
example above of a bending-mediated relaxation, only part
of the bending-stretching coupling would fall into the system
potential (hence generate “spurious” contributions to Jc(w))
since the in-plane motion of the C atom and its coupling with
the lattice are not included in our modeling and their contri-
bution should be better considered as “physical.” Fortunately,
in this work, we are mainly interested in the sticking dynamics
and for this process the high frequency region of Jo(w) is irrel-
evant (see Paper II). A simple extension of the IO model with
an exponential coupling based on the properties of the “true”

T T T T
full 4D, T=5K

full 4D, T = 100 K

full 4D, T = 300 K

collinear 2D, T=5K

collinear 2D, T = 100 K

collinear 2D, T = 300 K

L L L L
2000 3000
1

L L L L | L
107, 1000
w/cm™

FIG. 6. The temperature scaled auto-correlation Cg(w)T ™! as computed
with either the original 4D system potential (solid lines) or its restriction to
the 2D collinear arrangement (dashed lines), at three different temperatures
T =5K, 100 K, and 300 K.
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bath only (i.e., on the SD at frequencies smaller than wp) has
been discussed in Ref. 40. It only requires an additional length
scale a~! for the interaction that can be obtained, at least in
principle from the knowledge of the full potential once the
transformation to effective modes*'~**> has been performed,
namely, through
1 8V,
3D0 02}2 ]6ZC

where X is the first effective mode and Dy its coupling strength
to z¢. Such exponential coupling model seems to be most
appropriate in typical situations where vibrational relaxation
occurs, i.e., as a consequence of a close contact between the
vibrator and its environment.

In closing this section, we show that Jo(w) computed at
the lowest temperature considered (7" = 5 K) is consistent with
the correlation functions C(w) we started from, irrespective
of the temperature. To this end, we set up a classical 10
Hamiltonian of Eq. (3) and performed molecular dynamics
simulations to compute C}?(w) (see Table III for details). We
employed 300 bath oscillators, evenly arranged in frequency
up to 1000 cm™! in order to include only the low frequency re-
gion. The results of these test calculations are reported in Fig. 7
and show a remarkable agreement with respect to the position
of the peaks, with only minor differences in the heights of the
low-frequency peaks which are very sensitive to the long time
behavior of the dynamics and, thus, to the discretization of the
bath and the time truncation. The agreement is very good in
the low frequency region of the spectrum but remarkable in the
high frequency region, too. This strongly supports the idea that
the broadening of the 2500 cm~' peak mainly comes from the
anharmonic shape of the system potential, which is transferred
unaltered in the IO model. Additionally, these results clearly
show that the harmonic bath of the 10 model is well suited
to capture all the relevant properties of the stochastic force
exerted by the graphene lattice, at least in the low energy
regime which is most relevant for our purposes.

B. Vibrational relaxation

As a first quantum test of our IO model, we studied the
vibrational relaxation dynamics of the C—H bond following
the evolution of an initial state where the system was pre-
pared in an eigenstate of the 4D potential and allowed to
relax because of the interaction with the bath (initially in its

TABLE III. Parameters of the MD simulations using the derived IO model.

Number of trajectories 1000
Bath cut-off frequency wp 1000 cm™!
Number of oscillators F' 300
Mass of the oscillators p 12.0 amu
Temperature 5,100, 300 K
Equilibration Az 0.02 fs
Equilibration Trejax =y~ 5.0 fs
Equilibration time 2.0 ps
Time step At 0.01 fs
Propagation time 10.0 ps
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FIG. 7. Temperature scaled position autocorrelation function of the hydrogen
atom Cp(w)T ™" as computed with the lattice model (thin lines) and the
derived IO model (thick line), at three different temperatures 7 =5 K, 100 K,
and 300 K. The IO model used the T =5 K spectral density Jc(w) shown in
Fig. 3, truncated at w p = 1000 cem~L

ground-state, to mimic a 7 =0 K situation). This can be
considered a preliminary study of the sticking problem that
is addressed in Paper II and that represents the limiting case
where the initial “vibrational” eigenstate of the system is
picked up from the continuum. Vibrational eigenstates of the
4D potential were obtained by exact (Lanczos) diagonaliza-
tion, as implemented in the Heidelberg’s MCTDH package.
Computed eigenvalues are collected in Table IV, labeled by
the relevant quantum numbers: v, cy for the C-H stretching,
Vs.surf fOr the surface stretching, and v, for the C—H bending.
Stretching and bending quantum numbers were assigned by
comparison with the expected harmonic spectrum, after taking
into account the strong anharmonicity of the C—H stretching.
The anharmonicity is evident already from the position of the
Vecn = 1 state that has an excitation energy of only 2257 cm™',
i.e., much lower than the value of the frequency we found at
the bottom of the potential well (2549 cm™").

Similar to the classical IO case considered above, the
independent oscillator Hamiltonian employed for the quantum
simulations used the spectral density Jc(w) computed at 5 K

TABLE IV. Low energy bound states of the 4D full potential of the C-H
system. Values in parentheses refer to the potential constrained to the collinear
configuration (2D).

E/Cm_] Vs surf Vs,CH Vb
0 0.00 0 0 0
1 460.87 (468.95) 1 0 0
2 920.11 (937.75) 2 0 0
3 1183.26 0 0 1
4 1378.14 (1406.37) 3 0 0
5 1638.82 1 0 1
6 1835.29 (1874.77) 4 0 0
7 2091.24 2 0 1
8 2199.00 (2257.39) 0 1 0
9 2291.86 (2342.95) 5 0 0
10 2371.74 0 0 2
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FIG. 8. Vibrational relaxation of the C—H excited state. Time evolution of the
system energy (as defined in the text) from different initial vibrational states,
for the 2D collinear case (top panel) and for the full 4D case (bottom panel).
Panels on left give the vibrational energy spectrum of the system and quantum
labels for the 2D (s, surf> Vs,c i) and the 4D (Vs surfs Vs,CcH» Vb)) cases
(top and bottom panels, respectively). The dashed lines mark the recurrence
time 7., of the bath models adopted (#,,. = 1853, 3127, and 1471 fs for model
baths I, II, and III, respectively, see text for details).

in order to minimize the appearance of anharmonic effects
of the system in the bath. In contrast with the molecular dy-
namics simulations, though, we also made use of the high
frequency region of Jc(w) and thus included in our modeling
a relaxation mechanism for the C—H stretching that would be
otherwise absent (at least with the model potential adopted in
this work). Thus, simulations of the relaxation dynamics of
the stretching mode are just representative of what one can
expect when a similar Jo(w) is used as a surrogate of a more
complicated system-environment coupling. Even though this
relaxation incidentally turns out to occur on the right time
scale, the coupling encoded in J-(w) at these frequencies has
little physical meaning and more than likely reflects artifacts
of the MD approach (for a thorough investigation on this point,
we refer to Ref. 40).

Quantum dynamical calculations were performed us-
ing the MCTDH method, as described in Section IV, us-
ing three different bath discretization schemes: a low fre-
quency model suited for relaxation of low-frequency modes
(model I, with w € [0, 900] cm™"), a high-frequency one opti-
mized for the relaxation of the stretching mode (model II,
w € [2100,2900] cm™'), and a combination of both (model IIT)
to investigate combined excitation of different modes.
Different frequency spacings were adopted in each case, and
the resulting recurrence times f,. turned out be 1853, 3127,
and 1471 fs, respectively. Fig. 8 shows the time evolution of
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the system energy in the 2D collinear and full 4D cases, for
the first excited states of the system potential. This energy is
defined as the expectation value of the system Hamiltonian
plus half the value of the interaction energy in order to account
for the energy that at any time is in the coupling term; the
adopted splitting of the total energy can be justified with the
help of the virial theorem.’® As illustrated in Fig. 8, relaxation
from the surface stretching proceeds over a very short time
scale and is complete in a few tens of fs. On such a small
time scale excitation of the bath involves a rather large range
of frequencies around the resonant one (w ~ 460 cm™), as
illustrated in Fig. 9 (top panel), which shows the average
occupation number of the bath oscillators during the v gyf = 1
relaxation dynamics. Notwithstanding the fast relaxation dy-
namics, the energy decays reported in Fig. 8 show essentially
a Markovian behavior, except for the slippage at short times
which extends for a considerable fraction of the relaxation
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FIG. 9. Time evolution of the average excitation number of the bath oscilla-
tors during relaxation of the v g,rf = 1 state (top panel) and the v, cy =1 state

(bottom panel) of the system potential. Along with the bath excitation, the
energy of the system is shown.
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window. This feature is related to the prepared initial states and
to the switching on of the coupling term, which actually causes
a slight increase of the system energy. The opposite behavior
is seen in the relaxation of the C—H stretching mode that takes
place over a picosecond scale and seems to be complete on
a time scale much larger than the 3.0 ps limit imposed by
the recurrence time of our bath discretization. In this weak
coupling limit, energy is exchanged with quasi-resonant bath
oscillators only, as is evident from Fig. 9 (bottom panel)
which shows the average occupation number for the stretching
mode relaxation. Notice that the quasi-resonant frequencies
do not correspond to the spurious 2550 cm™' peak of the
Jc(w) spectral density since the first excited state of the C-H
stretching mode has a considerably lower excitation frequency
(2257 cm™") because of the strong anharmonicity of the system
potential. Hence, the resulting relaxation rate (7 ~ 5.0 ps) is
determined by the background only, whose origin is not as
clear as that of the main peak. Its magnitude is incidentally
close to the result obtained by Sakong and Kratzer,*® who
applied perturbation theory from first principles and found
T=52ps.

Finally, we further compared the full dynamical model
with the reduced-dimensional 2D collinear one in the relax-
ation dynamics and found that relaxation of the stretching
modes is hardly affected by the inclusion of the additional
coordinates (compare top and bottom of Fig. 8). This finding
agrees well with the features of our system potential, namely,
the lack of coupling between p and the heights of the C
and H atoms above the surface, for configurations close to
linearity.

VI. CONCLUSIONS

We have presented a system bath model that captures the
essential physics of a hydrogen atom chemisorbed on graphene
and is ideally suited for high-dimensional wavepacket investi-
gations of its quantum dynamics. The system comprises the
hydrogen atom and the height of the carbon atom involved
in bonding and is described by a 4D potential energy sur-
face based on density functional theory data. The interac-
tion with the rest of the lattice, as subsumed in the spec-
tral density of the environmental couplings felt by the car-
bon atom, has been obtained by inverting classical informa-
tion about the hydrogen atom dynamics, with the help of a
“source” potential previously developed by one of the present
authors. The proposed approach though is rather general and
easily accommodates improvements in the system potential
and/or in the HC-lattice coupling, and work is already in
progress to apply ab initio molecular dynamics for obtaining
a Hamiltonian model from first principles only. The inversion
procedure which led us to the working system-bath model
has been described in detail and thoroughly checked. As an
example of application to dynamical problems, the resulting
independent oscillator model has been used to investigate the
quantum dynamics of vibrational relaxation at T = 0 K with
the help of the multi-configuration time-dependent Hartree
method. A related paper extends this study to the sticking
dynamics.”’
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