The calcium binding protein parvalbumin (PV) is widely distributed in the mammalian nervous system and its relationship with GABAergic neurons differs within thalamic nuclei and animal species. In the rat somatosensory thalamus PV immunoreactive (ir) neurons were found only in the GABAergic reticular thalamic nucleus (RT), while a dense PVir neuropil is present in the ventrobasal complex (VB). In this study the distribution and relationship of PV and GABA were investigated in RT and VB during postnatal development at electron microscopic level. The pre-embedding immunoperoxidase detection of PV was combined with the post-embedding immunogold localization of GABA. In RT, at all developmental ages, neuronal cell bodies, dendrites and rare axonal terminals were both PVir and GABAir. In VB during the first postnatal week several small vesicle-containing profiles were double-labelled and some of them were identifiable as synaptic terminals. From postnatal day 7 (P7) to P9 the medial part of VB was more intensely PVir than the lateral one and some differences in the sequence of maturation of PVir terminals were noted between these two VB subdivisions. Single-labelled PVir profiles were first observed at P8, whereas single-labelled PVir terminals appeared at P12 and at P15 they became more frequent and larger, showing the typical morphology of ascending afferents described in adult VB. These results demonstrate the late expression of PV and acquisition of adult morphology in ascending terminals of rat VB during postnatal development in comparison with the innervation arising from the GABAergic RT.

Parvalbumin and GABA in the developing somatosensory thalamus of the rat: an immunocytochemical ultrastructural correlation / Alida Amadeo, Barbara Ortino, Carolina Frassoni. - In: ANATOMY AND EMBRYOLOGY. - ISSN 0340-2061. - 203:2(2001), pp. 109-119.

Parvalbumin and GABA in the developing somatosensory thalamus of the rat: an immunocytochemical ultrastructural correlation

Alida Amadeo;
2001

Abstract

The calcium binding protein parvalbumin (PV) is widely distributed in the mammalian nervous system and its relationship with GABAergic neurons differs within thalamic nuclei and animal species. In the rat somatosensory thalamus PV immunoreactive (ir) neurons were found only in the GABAergic reticular thalamic nucleus (RT), while a dense PVir neuropil is present in the ventrobasal complex (VB). In this study the distribution and relationship of PV and GABA were investigated in RT and VB during postnatal development at electron microscopic level. The pre-embedding immunoperoxidase detection of PV was combined with the post-embedding immunogold localization of GABA. In RT, at all developmental ages, neuronal cell bodies, dendrites and rare axonal terminals were both PVir and GABAir. In VB during the first postnatal week several small vesicle-containing profiles were double-labelled and some of them were identifiable as synaptic terminals. From postnatal day 7 (P7) to P9 the medial part of VB was more intensely PVir than the lateral one and some differences in the sequence of maturation of PVir terminals were noted between these two VB subdivisions. Single-labelled PVir profiles were first observed at P8, whereas single-labelled PVir terminals appeared at P12 and at P15 they became more frequent and larger, showing the typical morphology of ascending afferents described in adult VB. These results demonstrate the late expression of PV and acquisition of adult morphology in ascending terminals of rat VB during postnatal development in comparison with the innervation arising from the GABAergic RT.
Development; Electron microscopy; Reticular thalamic nucleus; Synapses; Ventrobasal complex
Settore BIO/16 - Anatomia Umana
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/28727
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact