Nicotinic acetylcholine receptors (nAChRs) represent an important modulator of striatal function both under normal conditions and in pathological states such as Parkinson's disease. Because different nAChR subtypes may have unique functions, immunoprecipitation and ligand binding studies were done to identify their subunit composition. As in the rodent, alpha2, alpha4, alpha6, beta2, and beta3 nAChR subunit immunoreactivity was identified in monkey striatum. However, distinct from the rodent, the present results also revealed the novel presence of alpha3 nAChR subunit-immunoreactivity in this same region, but not that for alpha5 and beta4. Relatively high levels of alpha2 and alpha3 subunits were also identified in monkey cortex, in addition to alpha4 and beta2. Experiments were next done to determine whether striatal subunit expression was changed with nigrostriatal damage. 1-Methyl-4-phenyl- 1,2,3,6-tetrahydropyridine treatment decreased alpha6 and beta3 subunit immunoreactivity by similar to80% in parallel with the dopamine transporter, suggesting that they are predominantly expressed on nigrostriatal dopaminergic projections. In contrast, alpha3, alpha4, and beta2 subunit immunoreactivity was decreased similar to50%, whereas alpha2 was not changed. These data, together with those from dual immunoprecipitation and radioligand binding studies ([H-3] cytisine, I-125-alpha-bungarotoxin, and I-125-alpha-conotoxin MII) suggest the following: that alpha6beta2beta3, alpha6alpha4beta2beta3, and alpha3beta2* nAChR subtypes are present on dopaminergic terminals and that the alpha4beta2 subtype is localized on both dopaminergic and nondopaminergic neurons, whereas alpha2beta2* and alpha7 receptors are localized on nondopaminergic cells in monkey striatum. Overall, these results suggest that drugs targeting non-alpha7 nicotinic receptors may be useful in the treatment of disorders characterized by nigrostriatal dopaminergic damage, such as Parkinson's disease.

Subunit composition of nicotinic receptors in monkey striatum : effect of treatments with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine or L-DOPA / M. Quik, S. Vailati, T. Bordia, J.M. Kulak, H. Fan, J.M. McIntosh, F. Clementi, C. Gotti. - In: MOLECULAR PHARMACOLOGY. - ISSN 0026-895X. - 67:1(2005 Jan), pp. 32-41. [10.1124/mol.104.006015]

Subunit composition of nicotinic receptors in monkey striatum : effect of treatments with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine or L-DOPA

S. Vailati
Secondo
;
F. Clementi
Penultimo
;
2005

Abstract

Nicotinic acetylcholine receptors (nAChRs) represent an important modulator of striatal function both under normal conditions and in pathological states such as Parkinson's disease. Because different nAChR subtypes may have unique functions, immunoprecipitation and ligand binding studies were done to identify their subunit composition. As in the rodent, alpha2, alpha4, alpha6, beta2, and beta3 nAChR subunit immunoreactivity was identified in monkey striatum. However, distinct from the rodent, the present results also revealed the novel presence of alpha3 nAChR subunit-immunoreactivity in this same region, but not that for alpha5 and beta4. Relatively high levels of alpha2 and alpha3 subunits were also identified in monkey cortex, in addition to alpha4 and beta2. Experiments were next done to determine whether striatal subunit expression was changed with nigrostriatal damage. 1-Methyl-4-phenyl- 1,2,3,6-tetrahydropyridine treatment decreased alpha6 and beta3 subunit immunoreactivity by similar to80% in parallel with the dopamine transporter, suggesting that they are predominantly expressed on nigrostriatal dopaminergic projections. In contrast, alpha3, alpha4, and beta2 subunit immunoreactivity was decreased similar to50%, whereas alpha2 was not changed. These data, together with those from dual immunoprecipitation and radioligand binding studies ([H-3] cytisine, I-125-alpha-bungarotoxin, and I-125-alpha-conotoxin MII) suggest the following: that alpha6beta2beta3, alpha6alpha4beta2beta3, and alpha3beta2* nAChR subtypes are present on dopaminergic terminals and that the alpha4beta2 subtype is localized on both dopaminergic and nondopaminergic neurons, whereas alpha2beta2* and alpha7 receptors are localized on nondopaminergic cells in monkey striatum. Overall, these results suggest that drugs targeting non-alpha7 nicotinic receptors may be useful in the treatment of disorders characterized by nigrostriatal dopaminergic damage, such as Parkinson's disease.
Settore BIO/14 - Farmacologia
gen-2005
http://molpharm.aspetjournals.org/cgi/content/full/67/1/32
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/26582
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 68
social impact