The objective of this study was to develop and validate a fast method for typing the main mutations of bovine milk protein genes by using microarray technology. An approach based on the ligation detection reaction (LDR) and a universal array (UA) was used. Polymorphisms in both the coding and noncoding sequences of alpha(S1)-casein, beta-casein, kappa-casein, and beta-lactoglobulin genes were considered because of their well-known effects on milk composition and cheese production. A total of 22 polymorphic sites, corresponding to 21 different variants, were included in the diagnostic microarray. First, a multiplex PCR was developed to amplify all the DNA target sequences simultaneously. Second, the LDR-UA assay was implemented. The method was validated by analyzing 100 Italian Friesian DNA samples, which were also genotyped by conventional methods both at the protein level by means of milk isoelectrofocusing and at the molecular level using PCR-RFLP and PCR-single strand conformation polymorphism techniques. The genotypes obtained using the LDR-UA approach were in full agreement with those obtained by the conventional analyses. An important result of the LDR-UA assay was a more accurate genotyping of the different milk protein alleles than was found with conventional typing methods. At the kappa-casein gene, in fact, 4 samples were heterozygous (3 reference samples and 1 validation sample) for an allele coding for Thr(136) and Ala(148). This variant, which can be considered as the wild type of the genus Bos, is not usually identifiable by the conventional typing methods used. The multiplex PCR-LDR-UA approach developed provides for an accurate, inexpensive, and high-throughput assay that does not exhibit false positive or false negative signals, thus making it highly suitable for animal genotyping.

Development of a single nucleotide polymorphism genotyping microarray platform for the identification of bovine milk protein genetic polymorphisms / S. Chessa, F. Chiatti, G. Ceriotti, A. Caroli, C. Consolandi, G. Pagnacco, B. Castiglioni. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 90:1(2007), pp. 451-464. [10.3168/jds.S0022-0302(07)72647-4]

Development of a single nucleotide polymorphism genotyping microarray platform for the identification of bovine milk protein genetic polymorphisms

S. Chessa
Primo
;
F. Chiatti
Secondo
;
G. Ceriotti;G. Pagnacco
Penultimo
;
2007

Abstract

The objective of this study was to develop and validate a fast method for typing the main mutations of bovine milk protein genes by using microarray technology. An approach based on the ligation detection reaction (LDR) and a universal array (UA) was used. Polymorphisms in both the coding and noncoding sequences of alpha(S1)-casein, beta-casein, kappa-casein, and beta-lactoglobulin genes were considered because of their well-known effects on milk composition and cheese production. A total of 22 polymorphic sites, corresponding to 21 different variants, were included in the diagnostic microarray. First, a multiplex PCR was developed to amplify all the DNA target sequences simultaneously. Second, the LDR-UA assay was implemented. The method was validated by analyzing 100 Italian Friesian DNA samples, which were also genotyped by conventional methods both at the protein level by means of milk isoelectrofocusing and at the molecular level using PCR-RFLP and PCR-single strand conformation polymorphism techniques. The genotypes obtained using the LDR-UA approach were in full agreement with those obtained by the conventional analyses. An important result of the LDR-UA assay was a more accurate genotyping of the different milk protein alleles than was found with conventional typing methods. At the kappa-casein gene, in fact, 4 samples were heterozygous (3 reference samples and 1 validation sample) for an allele coding for Thr(136) and Ala(148). This variant, which can be considered as the wild type of the genus Bos, is not usually identifiable by the conventional typing methods used. The multiplex PCR-LDR-UA approach developed provides for an accurate, inexpensive, and high-throughput assay that does not exhibit false positive or false negative signals, thus making it highly suitable for animal genotyping.
Cattle; Microarray; Milk protein gene
Settore AGR/17 - Zootecnica Generale e Miglioramento Genetico
2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/25515
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 40
social impact